Protein Identification by Mass Spectrometry

ISSUES TO BE CONSIDERED

Michael A. Baldwin‡

During the past two decades, mass spectrometry has become established as the primary method for protein identification from complex mixtures of biological origin. This is largely attributable to the fortunate coincidence of instrumental advances that allow routine analysis of minute amounts (typically femtomoles) of involatile, polar compounds such as peptides in complex mixtures, with the rapid growth in genomic databases that are amenable to searching with mass spectrometry (MS) data. Like many other developing fields in science, the creation of techniques and software tools and the initial generation and interpretation of data have been the domain of experts, people who are cognizant not only of the benefits of the methods but also of their actual and potential weaknesses. Now, as mass spectrometric techniques and proteomic tools become increasingly available and accessible, a much broader range of researchers is applying the same methodology, often with substantially less understanding of the major limitations that critically affect the reliability and significance of the results. Ideally, the MS community should establish criteria for mass spectrometric identification of proteins that should be employed by researchers. As this remains a rapidly developing field with many different experimental approaches and different ways of searching and interpreting the data, it is difficult to promulgate hard and fast rules. Nevertheless, Molecular & Cellular Proteomics is attempting to develop standards of acceptability for proteomics papers, based on emerging knowledge as well as on principles of biological MS established over the last 20 years by the MS community. Authors of proteomics papers employing MS must make themselves fully aware of the key issues that are driving development of these guidelines. Hence, the paper that follows attempts to highlight the strengths and weaknesses of the methods in current use. It is particularly important to realize that for any protein match returned from a database search, there is a non-zero probability that it will be wrong. Many times, the quality of the data is such that the probability of a false positive can be disregarded, but in some cases the identifications returned by the search engines are very likely incorrect. Therefore, it is unacceptable to simply list all the hits that come back from any search engine and then discuss their biological significance as though they were categorically correct.

PEPTIDE ANALYSIS

Almost without exception, protein identification is based on the analysis of peptides generated by proteolytic digestion. The most widely used enzyme is trypsin, which hydrolyzes the protein on the C-terminal side of lysine and arginine, unless the subsequent amino acid in the sequence is a proline. This is advantageous as every peptide other than the protein C terminus has at least two sites for efficient protonation, the N-terminal amino group and the C-terminal basic residue, so peptides are readily ionized and detected as positive ions. However, for a variety of reasons, it is normal for only a subset of the potential tryptic peptides from any protein to be detected, particularly when the peptides are ionized directly from unseparated mixtures in which there may be competition for the available protons. There are also experimental limitations for the detection of peptides that are either very small or very large, a factor that is not controllable with a single enzyme as this is dependent on the distribution of lysine and arginine residues within a protein. Protein sequence coverage can be improved by carrying out a parallel digestion with a second protease of different specificity such as chymotrypsin, then combining the two digests for a common analysis.2 In practice, whether a large or small fraction of the peptides generated from any protein is detected depends on many variables: the amount of that protein present in the original sample; the efficiency of any protein extraction, digestion, and peptide extraction; the presence of other proteins and other impurities; and the sensitivity and performance characteristics of the mass spectrometer and its mode of ionization, mass separation, and ion detection.

Mass spectrometers employed in proteomic analysis use either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) but they vary widely in their operation and performance characteristics. Early database searching was based on low-resolution linear MALDI-time-of-flight (MALDI-TOF) giving a mass accuracy of perhaps ±2 Da

From the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446

Received, November 6, 2003

Published, MCP Papers in Press, November 6, 2003, DOI 10.1074/mcp.R300012-MCP200

1 The abbreviations used are: MS, mass spectrometry; MALDI, matrix-assisted laser desorption/ionization; ESI, electrospray ionization; TOF, time-of-flight; LC, liquid chromatography; MS/MS, tandem MS; QqTOF, quadrupole mass selector and quadrupole collision cell with orthogonal acceleration TOF; CID, collision-induced dissociation; HPLC, high-pressure LC; ICAT, isotope-coded affinity tag.

2 S. A. Carr, personal communication.
such searches are based on comparisons between the ex-
such as Protein Prospector’s MS-Tag. In their latest form,
of the predicted peptide (17–20), as implemented in programs
coherent sequences of amino acids corresponding to subsets
i.e.
against sequence tags predicted for all proteins in a database,
MS/MS spectra, generated by MALDI or ESI, were matched
Prior to the development of database searching, peptide
sociation (CID) spectra of individual peptides from MS/MS.
referred to as peptide mass mapping or mass fingerprinting
based on peptide analysis. The first developed is generally
retical digestion of each protein in a database. Early observ-
tections are relatively small databases suggested as few as
as three or four peptide matches could be sufficient to identify
the correct hit, even with relatively low-precision mass meas-
ument measurements from linear MALDI-TOF instruments (1).
But recently, genomic databases have grown rapidly, e.g. as of
June 14, 2003, the NCBI database contained 1,446,218
entries, which was 50% more than 1 year earlier. Conse-
quentlly, the criteria for protein identification have become
more stringent and more accurate mass measurement is es-
ential. It is also necessary to match a larger number of
peptides and to cover a larger percentage of the protein
sequence. The second approach uses collision-induced dis-
sociation (CID) spectra of individual peptides from MS/MS.
Prior to the development of database searching, peptide
MS/MS spectra from high performance multi-sector instru-
ments with fast atom bombardment ionization were used for
de novo peptide sequencing (16). In the mid 1990s, such
MS/MS spectra, generated by MALDI or ESI, were matched
against sequence tags predicted for all proteins in a database,
i.e. (short) series of fragment ions that could be attributed to
coherent sequences of amino acids corresponding to subsets
of the predicted peptide (17–20), as implemented in programs
such as Protein Prospector’s MS-Tag. In their latest form,
such searches are based on comparisons between the exper-
imentally observed fragment ions and all predicted frag-
ments for all hypothetical peptides of the appropriate molec-
ular mass, based on known fragmentation rules. Each peptide
match can be linked to a protein match, and it is possible that
even a single peptide will identify a protein correctly, although
identical sequences might be duplicated in closely related
proteins, therefore matching multiple peptide sequences pro-
vides greater statistical confidence. Clearly, the greater the
number of peptides being matched to any one protein and the
greater the sequence coverage, the greater the probability of
a correct identification. Error tolerant searching will allow a
peptide to be identified when it differs from a database pep-
tide by perhaps a single amino acid, and techniques have
been developed to identify remote sequence homologies,
although these are time-consuming and computationally inten-
tive (21, 22). Finally, if no matches are found because the
protein is not present in the database, de novo peptide se-
quencing continues to be a valuable method, based on known
rules for peptide fragmentation (23). This is straightforward
with good quality spectra and is valuable when a significant
proportion of peptides diverge from those predicted, due to
erors in databases, discrepancies between genomic se-
quency and processed or posttranslationally modified pro-
teins, species differences, and nonspecific enzyme cleav-
ges. An early example of the benefits of extensive sequenc-
ing was the determination of the primary structure of
Gal β 1,3 (4)GlcNAc α 2,3-sialyltransferase (24).

The use of MS/MS and CID is becoming the accepted
standard for protein identification and is steadily replacing
peptide mass fingerprinting, although the quality of tandem
mass data varies considerably with instrument type. Sequence ion
information from MALDI-TOF instruments using post-source
decay (25) is painstaking to collect and the accuracy of mass
assignments is relatively low, therefore it is little used now,
particularly as MALDI has become available on higher per-
formance QqTOF (26–30) and TOF/TOF (31–33) instruments.
Low-resolution three-dimensional ion traps have been very
popular and are well-suited to high-throughput LC-MS/MS,
but cannot distinguish different charge states when operating
in full scan mode. This is a limitation as ions are separated not
by mass but by mass/charge (m/z), and ESI typically gives
multiply charged ions. Library searching based on such low-
resolution ion trap data typically tests multiple possibilities
based on the assumption that the precursor ions can have
one, two, or three protons attached. For some search en-
gines, all fragments are assumed to be singly charged,
thereby increasing the probability that any peptide match will
be incorrect. However, the popularity of ion traps has pre-
sented a challenge for software development and several
search engines now assume that fragment ions from multiply
charged precursors might also be multiply charged. Precursor
ion charge states may also be deduced from an analysis of
fragment ion spectra (34). With higher resolution instruments,
charge states are readily determined unambiguously from
the peak spacing, e.g. with QqTOF instruments, and Fourier
transform MS has identified charge states for protonated molecular ions and fragment ions of proteins of up to 45 kDa (35). It is also important to add that new ion trap designs, including linear traps, provide much higher resolution and, in combination with other mass analyzers, will form the basis of a new generation of powerful tandem instruments.

A largely uncontrolled variable factor in database searching is the choice of search engine, of which there are several in common use (36). A number of web sites offer free access to web-based database searching programs for peptide mass fingerprinting and the identification of sequence tags, all of which provide other tools as well, such as programs for calculating isotope patterns, predicting enzyme digestion patterns, and theoretical prediction of CID fragments. Some sites allow free downloading of the programs. An alternative to internet access is to purchase a license to have the programs resident in-house, and some mass spectrometer vendors supply software and software licenses with the purchase of an instrument. An enumeration of all the current search engines is a moving target, but well-known web-based examples include tools on the ExPASy proteomics server provided by the Swiss Institute of Bioinformatics (www.expasy.ch/tools), Mascot from Matrix Science (London, UK; www.matrixscience.com), and Protein Prospector provided by the University of California (San Francisco, CA; prospector.ucsf.edu). Systems supplied by instrument manufacturers include Sequest from Thermo-Finnigan (San Jose, CA) and Spectrum Mill from Agilent Technologies (Palo Alto, CA).

DIGESTION OF ISOLATED PROTEINS VERSUS DIGESTION OF PROTEIN MIXTURES

Protein identification by digestion and peptide mass fingerprinting is not effective for complex protein mixtures unless preceded by a separative step, most often a two-dimensional gel separation. Using large format gels, it is possible to separate and analyze hundreds or even thousands of protein spots from a single gel. This is manually repetitive and time-consuming but automated methods have been developed (37), and several companies offer robots for spot identification, spot cutting, digestion, and spotting of the peptide mixtures onto MALDI plates. In practice, gel separation is equally applicable to MS/MS, but an alternative approach is to digest a complex mixture and then to separate the peptides chromatographically before introduction to the mass spectrometer. Such mixtures may contain thousands of proteins and multi-dimensional high-pressure LC (HPLC) may be necessary, e.g., an initial separation by strong cation exchange chromatography may be followed by reversed-phase chromatography (38). Peptide mass fingerprinting is no longer possible with this approach as the association is lost between particular peptides and the proteins from which they were derived, therefore CID and peptide sequencing is essential. The latter method is more easily automated than two-dimensional gel analysis, consequently in many laboratories it is replacing the use of gels. It can also be combined with one-dimensional gel separation in which individual bands that may contain multiple proteins are cut out, digested, and the peptides are introduced to the mass spectrometer via an HPLC separation (39).

AUTOMATION OF DATA COLLECTION AND ANALYSIS

In so-called data-dependent experiments, with HPLC coupled to a tandem mass spectrometer, repetitive recording of MS spectra is interleaved with the selection and analysis of peaks for CID analysis (40). The amount of data generated by such experiments running on a continuous basis is overwhelming for manual interpretation, consequently automation is becoming essential. Effective automated transfer of mass spectrometric data to the informatics programs is dependent on the reliable performance and accuracy of so-called “peak-picking” algorithms. Such programs are often proprietary to the instrument manufacturers, although some mathematical approaches have been described (41). Ideally, they convert the instrument-specific and technique-specific raw mass spectra into generic lists of monoisotopic mass and intensity, usually after some spectral processing to enhance the peak envelopes (ion current profiles) while reducing electronic and random noise. The m/z value for each peak is usually defined by its centroid (the center of mass of the peak), determined above a certain fraction of the peak height such as 50%, a variable that is selected to avoid the inclusion of noise at the baseline and to allow some failure to fully resolve adjacent peaks. MALDI-generated ions are singly charged but ESI-generated ions usually carry multiple charges, therefore ESI peaks are separated by fractional m/z values. A challenge is to correctly identify the first peak in each isotopic cluster. For well-resolved, isolated peptide ions of molecular mass less than ~1500 Da with good signal-to-noise ratios, this is relatively straightforward as the first peak in each cluster, i.e., the monoisotopic peak (42), is the most abundant. Above 2000 Da this is no longer true, and the correct identification of the monoisotopic peak becomes progressively more difficult with increasing mass, particularly if it falls below a threshold selected to discriminate between actual peaks and background noise. This problem is compounded by the overlapping isotopic clusters likely to occur in the spectra of peptide mixtures.

SETTING VARIABLE PARAMETERS AND RANKING HITS

Once the experimental data have been recorded, subjected to smoothing, possible baseline subtraction, the peaks extracted, and possibly filtered according to criteria that exclude nonpeptide peaks, the data must then be searched against an appropriate database, as selected by the researcher. All search engines allow for the setting of a number of variables such as protein molecular mass range, pI range, mass tolerance for peaks in a normal spectrum, mass tolerance for CID precursor ions, mass tolerance for fragment ions, number of
chances, number of peptides required for a match, andpossible modifications to certain residues such as alkylation ofcysteine or oxidation of methionine. The program then returnsa series of hits, ranked according to one of a number ofpossible criteria. Unfortunately, there are presently no universalstandards for scoring the output from these programs,therefore deciding/determining what is a significant match isnot straightforward. The information provided by the searchengines is variable, e.g. the scoring within Protein Prospectorhas been based on MOWSE (Molecular Weight Search),which allows for the nonuniform distribution of peptide sizesthat result from proteolysis (14). This is not particularly inform-ative, but some researchers have specified a MOWSE scoreof at least 100 for a hit from peptide mass mapping to be sig-nificant. Note however that no MOWSE threshold can bedefined above which a match is definitely correct and belowwhich it probably is not. At the University of California, SanFrancisco we are developing a new scoring system for ProteinProspector based on the frequency of observing certain iontypes in MS/MS spectra, backbone ions such as y and bscoring higher than side-chain ions such as d, v, and w. Otheralgorithms that employ probability-based scoring systemsincluding Sequest (18), Mascot (43), and Sonar (44) are beingdeveloped to provide more reliable significance thresholds,but again putative matches close to the threshold may well beincorrect.

A number of groups have addressed these problems bydeveloping statistical tools that improve the scoring for exist-ing search engines, particularly Sequest (45–47), while othershave developed independent tools (48–51). Ideally, the prob-abilities assigned will be independent of the mass spectrom-eter used and the search engine used. Some approachesfocus on improved peptide identification, and they generallyemploy a training set to derive a knowledge base of peptidefragmentation rules. An explicit objective of most of thesemethods is to make high-throughput experiments more reli-able and to minimize the need for time-consuming, visualinspection of data and its subjective, manual interpretation.Such an approach should facilitate the analysis of entire data-sets from experiments involving multiple LC-MS/MS runs withperhaps tens of thousands of MS/MS spectra. One methoddescribed uses an expectation maximization algorithm to as-sign a true probability value to each peptide identification. Ananalysis of the whole dataset identifies “sibling” peptidesoriginating from a single protein. A higher number of siblingpeptides observed for a given protein increases the probabil-ity of identifying that protein correctly. Thus based on statis-tical principles, protein identifications based on single pep-tides carry less weight than those based on multiple peptides(51). Consideration has also been given to the case in which a-particular peptide sequence is part of more than one protein,as in many enzyme families.

Experience shows that for any analysis of a digest from a single protein, there will be mass spectrometric peaks ob-served that are not matched by the search engine. Some ofthese may be identified as nonpeptide peaks by virtue offrac-tional mass values (mass defects) that fall outside anallowable window for the elemental compositions of normalpeptide ions. Others may be peptides from the targeted pro-tein but resulting from nonspecific cleavages or carrying post-translational or chemical modifications. However, in verymany cases, a sample cut from a single gel spot or a fractioncorresponding to a single peak in an HPLC run will actuallycontain multiple proteins, and only a subset of peptides willmatch any given protein hit. If peptide mass fingerprinting isemployed, the peptides that match to the top-scoring hit canbe subtracted, then the amended peak list can be searchedagain for second and subsequent proteins. However, MS/MSis better able to differentiate between peptide and nonpeptide signals and can also identify modified peptides. Multiple pro-teins will be detected more successfully when MS measure-ments are coupled with HPLC separation, either on-line oroff-line, in part because this allows a wider dynamic range andbecause it reduces suppression effects, i.e. the selective ion-ization of only a subset of the peptides present in a mixture.

THE IMPACT OF EXPERIMENTAL DESIGN AND METHODOLOGY ONTHE QUALITY OF THE RESULTS

In considering the reliability of protein identifications by MS,a variety of sources of obtaining erroneous results must beconsidered. First, there is contamination by other proteinsduring the initial isolation and digestion of the sample, whichis difficult to avoid for low-level samples, e.g. during gel elec-trophoresis, cutting spots from the gel, from sample tubes, pipettes, buffers, or extraneous matter dropping intothe sample (such as hair, skin, material from clothing, labora-tory dust). Then there is the efficient extraction of the peptidesand preparation of the sample for MS while trying to minimizethe presence of salts or detergents that may adversely affectionization. The analysis technique chosen should be appro-priate for the sample, e.g. a highly complex mixture should notbe analyzed without a separative step, either prior to analysisor on-line as in LC-MS/MS. If the preceding steps are opti-mized, the mass spectral method is appropriate, the instru-ment is well maintained, and suitable calibration spectra arerun, the data obtained should be as good as can be.

In submitting the data to a search engine, the researchermust first select a suitable database and must ensure that allthe variables are set appropriately. If possible and particularlyif the user is not very familiar with the relevant search engine,multiple searches should be submitted using different valuesfor the same dataset, and ideally using different search en-gines. At the University of California, San Francisco, wefre-quently compare hits from both Mascot and Protein Prospector. Strong protein hits usually coincide with both searchengines and may become stronger because of additionalpeptide identifications. Weak hits based on single weak pep-tides may also improve if the other search engine finds a
different peptide, which can happen as we consider some
different ion types with Protein Prospector, or even if both
searches identify the same peptide. In contrast, we are also
less likely to believe weak hits that are found by only one
search engine. For high-throughput analysis, it is not realistic
to review every spectrum, but a selection of spectra should be
scrutinized, particularly any that yield particularly important or
unexpected findings. In these, the signal-to-noise ratio should
be examined, the presence of appropriate isotope peaks should be confirmed, and the isotope spacing should be
tested to establish that charge states and mass assign-
ments are correct. However, this will only be meaningful if the
raw data can be examined, rather than smoothed, de-isoto-
oped, or otherwise manipulated versions of the spectrum.

The information derived from search results will depend on
the nature of the sample, the techniques used, and the par-
ticular search engine, but there are some general principles to
consider. For peptide mass fingerprinting, there should be
adequate sequence coverage for the peptides identified. Thus
the matching of four peptides representing 10% of the se-
quence does not constitute a reliable hit and should not be
listed as a positive identification. In contrast, six peptides
representing 20% of the sequence may be adequate for a
tentative identification. At this level, there is no definitive rule
so users should err on the side of caution, and bearing in mind
the ever-increasing size of databases and the risk of ambigu-
ous or incorrect results, it should be considered essential to
obtain corroborating data from at least one CID spectrum. For
protein identifications based on CID data, it is important to
appreciate that the first step requires correct peptide identi-
fications. Only if this is achieved can protein identifications
have any relevance. Ideally, an examination of a peptide
match should reveal that the fragment peaks matched tend to
be the stronger ones within the CID spectrum, preferably
distributed throughout the m/z range rather than all coming
from the low-mass ions. Hopefully, there will be some chem-
ical logic to the spectrum and the fragmentation, e.g. histidine
represents another site for protonation and gives higher
charge states in ESI, C-terminal arginine favors y rather than
b ion formation, cleavage N-terminal to a proline is favored,
etc. Then it must be appreciated that the protein is a gene
product that may represent one of a number of forms. If it is
truncated, this will be revealed only if the appropriate terminus is identified in a peptide, and then it is important to consider
that this peptide could correspond to a nonspecific cleavage.
Alternative splice variants will only be established unambi-
uously if an amino acid sequence corresponding to the actual
splicing point is observed in a peptide.

No structural or sequence inferences can be based on the
failure to observe a specific peptide; such a peptide may arise
from proteolysis but simply not be detected, it may have an
unexpected mass due to one or more modifications, or the
residues may indeed be present in the sequence but the
proteolysis may not proceed as anticipated. It is equally im-
portant to note that the absence of evidence for the presence
of a particular protein does not definitively establish the ab-
sence of the protein. Even though a protein may be found in
one sample but not another, it is not correct to describe this
as being present in sample A but not sample B. This is
something that simply cannot be proved by MS.

Then there is the question of supporting information. Until
recently, most mass spectrometric experiments were directed
toward identifying small numbers of proteins. In such cases, it
would be conventional to confirm any identification by obtain-
ing an appropriate antibody and running a Western blot. Finally,
the creation of a knockout mouse might be necessary to ascen-
tain whether there was any biological relevance, which for the
identification of neural cell adhesion molecule 1 as a binding
partner of the prion protein proved not to be the case (52). Such
confirmations are impossible in high-throughput proteomic ex-
periments, therefore researchers have a responsibility to either
discard marginal results or to present the full details of the
search output so that others can make their own evaluations.

PROTEIN QUANTITATION

Although many experiments in proteomics only require that
proteins be identified, quantitation can also be important,
particularly for differential analysis, such as in comparisons of
samples from diseased and healthy states. Prior to the wide-
spread adoption of MS, comparison of the intensity of staining
of spots on two-dimensional gels by densitometry was a
common approach to this problem. The use of gels continued
with mass spectrometric analysis and was extensively auto-
mated by some workers (37). Nevertheless, this approach to
quantitation may suffer from limited dynamic range for stain-
ing, uncertainties in protein identifications, and the danger
that the darkening of a spot could be due to the presence of
a new protein rather than up-regulation of the protein believed
to be responsible. Although it is now commonplace to use
mass spectrometric analysis of spots that show differential
staining, problems with the identification of low-level proteins
in mixtures may persist. With differential gel electrophoresis
(53), which is commercially available as the DIGE system
(Amersham Biosciences, Piscataway, NJ), the use of spec-
trally resolvable fluorescent dyes may separate and quantiti-
ate up to three samples on a single two-dimensional gel. This
employs software that automatically locates and analyzes
protein spots, assigning statistical confidence to observed
differences.

A different approach relies on the power of MS to separate
and identify differentially isotopically labeled species. Some
researchers have compared proteins from cells grown in dif-
ferent isotopic environments, e.g. incorporating 14N or 13C
into one population of proteins, the peptides from that could
be distinguished from analogs containing the lighter isotope
15N or 12C by their mass differences (54, 55). Another isotope
used in the MS analysis of peptides for at least 20 years is 18O
(56). Digestion of a protein in 18O-enriched water results in the
heavy isotope being incorporated at the C terminus of each new peptide formed, with the exception of the pre-existing protein C terminus. The use of a 1:1 mixture of heavy and light water results in mass spectral doublets for all CID fragments containing a peptide C terminus, e.g. y ions, allowing them to be distinguished from b ions and other N-terminal fragments. Comparative proteomics using digestion in 18O-water was given a new twist with a method described as “inverse labeling.” By carrying out two parallel but isotopically reversed experiments then subtracting one spectrum from the other, only peptides derived from proteins differing in abundance remained to be analyzed (57). A complicating factor is further exchange of isotopically labeled oxygen catalyzed by the protease that can lead to the presence of two 18O per carboxyl group, rather than one. However, this can be decoupled from proteolysis (58) and is advantageous as it gives a mass difference of 4 Da rather than 2, thereby ensuring more effective separation of the natural isotopic clusters.

Another method to introduce stable isotopes is to differentially label a specific amino acid such as cysteine with a chemical reagent containing light or heavy isotopes. Such reagents may incorporate an isotope-coded affinity tag (ICAT) to enable enrichment of the labeled peptides, as well as to permit measurement of relative abundance (59). The strength of the isotope labeling strategy is that it allows specific markers to be incorporated into two populations of proteins that can then be mixed together before any extraction, digestion, peptide separation, and analysis is undertaken. As long as peptides incorporating the different isotopes have virtually identical physical and chemical properties, the ratios of peak heights or areas from MS experiments will be proportional to the relative amounts of each protein. In practice some isotopes are better than others, e.g. differences in polarity between hydrogen and deuterium affect the retention times in HPLC whereas the incorporation of 12C/13C labels in peptide pairs can be measured to within about 10%, although weaker peptides or those affected by overlapping peaks may fall well outside this. ICAT methodology is applicable to high-throughput experiments and can be combined with statistical methods that optimize protein identification (61) as has been described for a dataset derived from lipid raft-associated proteins (62).

Note that the methods described above yield only “relative” quantities, whereas “absolute” protein quantitation requires a technique such as stable isotope dilution in which known amounts of isotopically labeled peptides are added to the digest (63). Such peptides are designed to mimic the peptides formed by proteolysis of the proteins of interest and can carry chemical modifications to simulate modified proteins such as phosphoproteins (64).

CHEMICAL AND POSTTRANSLATIONAL MODIFICATIONS

MS is ideal for the study of covalent modifications as all such modifications involve a change in molecular mass, which is reflected in the mass of any peptide carrying the modified amino acid(s). Sometimes this is uniquely attributable to the chemical transition, such as -2 Da for disulfide bond formation or +42 Da for acetylation. Some changes are easily identified, such as +16 Da for the addition of oxygen, but it may be unclear whether this is the common formation of methionine sulfoxide or something more unusual. It is also uncertain whether this is a posttranslational modification or a chemical change occurring during sample processing. Other mass changes may be more ambiguous, e.g. +80 Da could represent phosphorylation or sulfation, although these may be distinguished by the detection of an anion at m/z 79 versus 80, respectively, and a very accurate mass measurement. Specialized MS/MS techniques have been developed for the identification of the precursor ions for peptides that carry specific modifications such as phosphorylation or glycosylation (65–67). Some modifications may be quite heterogeneous, as with N-glycosylation, although enzymatic removal of the modified group can give a more defined change, e.g. peptide N-glycosidase F removes N-linked sugars and converts asparagine to aspartic acid (+1 Da). The major difficulties arise with the search for transient modifications of low stoichiometry, such as phosphorylation occurring in a regulatory role. Affinity methods have been employed to enrich phosphopeptides such as immobilized metal ion chromatography but with mixed success (68, 69). The difficulties are exacerbated when the modification is labile, either during chemical separation or in the mass spectrometer. Thus CID and MS/MS of the modified peptide should potentially reveal the site of modification, but a facile loss of phosphoric acid from the molecular ion may prevent the detection of any sequence-specific ions. In general, peptide mass mapping alone cannot be used for identification of posttranslational modifications. Based on MS data alone, a search can be made for phosphopeptide mass values that are 80 Da higher in mass than calculated for the amino acid sequence (or 160 Da, etc.), but MS/MS to confirm the sequence is essential, even if the precise site of modification cannot be defined. Other more labile modifications requiring special techniques for detection are sulfation (70) and O-GlcNAc (71, 72).

CONCLUSIONS

It is clear that the field of proteomic analysis by MS continues to be in a very dynamic state, making it presently difficult
to specify absolute standards for analytical protocols and subsequent interpretative judgments. Nevertheless, authors submitting MS-based manuscripts to Molecular & Cellular Proteomics must employ methodology that meets currently acceptable standards. Thus, protein identification based solely on peptide mass fingerprinting should no longer be acceptable and must be complemented by CID and MS/MS. Clearly, it is essential that researchers avoid the “black box” mentality and take responsibility for understanding the methods that they are using. Furthermore, it is strongly recommended that authors take the risk of presenting too much information in describing their experiments, their data, and its interpretation. It will then be incumbent on journal editors and reviewers to determine what fraction of this information is relevant and is required for publication. Authors should report the software they use, including the version, the database version, and the probability scores assigned to each protein identification. Molecular & Cellular Proteomics will also encourage the publication of reports that describe enhancements to experimental techniques or novel approaches to database searching and statistical analysis that improve the accuracy and reliability of protein analysis based on mass spectrometric measurements. Although the methods currently in use clearly can work very well, to date their application has been largely empirical. The editors of this journal now consider it essential that researchers in the field develop, adopt, and adhere to a unified, systematic, and rational approach to protein identification.

Acknowledgments—I am grateful for constructive input from Molecular & Cellular Proteomics editors Ralph Bradshaw, Al Burlingame, Ruedi Aebersold, and Steve Carr, and from Dennis Hochstrasser and his colleagues at GeneProt.

† This work was supported in part by NCRR RR01614. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446. E-mail: mikeab@itsa.ucsf.edu.

REFERENCES

