Supplementary data for:

N-GLYCANS MODULATE THE FUNCTION OF HUMAN CORTICOSTEROID-BINDING GLOBULIN

Zeynep Sumer-Bayraktar\(^1\), Daniel Kolarich\(^2\), Matthew P. Campbell\(^2\), Sinan Ali\(^1\), Nicolle H. Packer\(^2\), Morten Thaysen-Andersen\(^2\)

From Department of \(^1\)Biological Sciences and \(^2\)Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia

Running head: Structure and Function of Human CBG N-glycans

Address correspondence: Morten Thaysen-Andersen, Ph.D. Macquarie University NSW 2109, Australia,

Phone: +61 2 9850 7487, Fax: +61 2 9850 6192, E-mail: morten.andersen@mq.edu.au

\(^\text{§}\)Present address: Max Planck Institute of Colloids and Interfaces, Berlin, Germany

Legends for Supplementary figures: Page 2-3

Supplementary figure 1: Page 4

Supplementary figure 2: Page 5

Supplementary figure 3: Page 6

Supplementary figure 4: Page 7

Supplementary figure 5: Page 8
Legends for Supplementary figures

Supplementary figure 1. For site-specific identification and relative quantitation of CBG N-glycoforms, glycoproteomics LC-MS data was searched against this catalogue of observed and hypothetical CBG N-glycans using GlycospectrumScan. The catalogue was manually generated based on initial interpretation of LC-MS/MS glycomics and glycoproteomics data. In total 36 related glycoform compositions were generated covering sialylated/ non-sialylated and fucosylated/non-fucosylated complex type N-glycans.

Supplementary figure 2. Determination of the NeuAc linkage. XICs for \(m/z\) 1111.3 (A), \(m/z\) 820.3 (B), \(m/z\) 1439.3 (C) and \(m/z\) 1002.8 (D) have been generated for untreated (upper chromatograms) and \(\alpha_2,3\)-specific neuraminidase treated (lower chromatograms) CBG N-glycans (alditols). The abundant bi- and tri-antennary fully sialylated complex N-glycans eluting at retention time 55 min (A) and 65 min (C), respectively, are completely absent after enzyme digestion and are observed as the non-sialylated bi- and tri-antennary structures at retention time 45 min (B) and 52 min (D). Partially desialylated N-glycans are not present in the enzyme-treated sample as shown by lack of signal when making XIC for the corresponding \(m/z\) values (data not shown). It is likely that the doublet peaks observed in C) and D) correspond to \(\beta_1,4\)- and \(\beta_1,3\)-Gal linked isomers. See Figure 3 for nomenclature.

Supplementary figure 3. Supporting evidence for high antenna CBG N-glycans and the likely presence of \(\beta_1,3\)-linked Gal. A) CBG N-glycans were analysed using LC-PGC-ESI-IT-MS/MS without any treatment prior to release (top BPC), with broad specificity neuraminidase treatment prior to release (middle BPC), and with combined neuraminidase and \(\beta_1,4\)-specific galactosidase incubation prior to release (bottom BPC). The shift of analyte retention times clearly shows modulation of the N-glycan structures upon enzyme treatment. B) Summed MS full scans of the eluting area of the neuraminidase/\(\beta_1,4\)-specific galactosidase treated N-glycans. Fully desialylated and degalactosylated N-glycan structures i.e. bi-, tri-, tetra- and penta-antennary structures were present proving high antenna formation. A number of mono-
and di-galactosylated structures were still present. Based on the MS peak height, the non-\(\beta 1,4\)-linkage was found to be present for approximately 10-15% of all GlcNAc-Gal linkages (calculation not shown).

C) Upon fragmentation using CID MS/MS the Gal residues were confirmed to be located in the non-reducing terminal and ions formed from cross-ring cleavages strongly indicated the existence of \(\beta 1,3\)-linked Gal residues. Together, this confirms that CBG \(N\)-glycans are predominantly of the highly branched form as oppose to structures having repeating LacNAc units.

Supplementary figure 4. Differential accessibility to the glycosylation sites of human CBG. The glycosylation sites 2-5 of CBG were mapped on the available crystal structure of human CBG complexed with cortisol (PDB: 2VDY) (4) and visualised from two arbitrary angles (A and B) to illustrate the difference in site accessibility. Site 2 (Asn\(^{74}\)) and 3 (Asn\(^{154}\)) are exposed agreeing with the high degree of fucosylation and branching of the \(N\)-glycans observed from these sites (See glycoprofiling in Table 1 and Table 2), whereas site 4 (Asn\(^{238}\)) and 5 (Asn\(^{308}\)) are more buried and therefore less processed in terms of branching and core-fucosylation. To obtain the given crystal structure, human CBG was expressed recombinantly without Site 1 and 6. The relative accessible surface areas for the glycosylation sites 2-5 were calculated using NACCESS (40,41). In the program we used a probe radius size of 5Å (default 1.4 Å, radius as water) to roll around the atomic surface of the protein to calculate atomic solvent accessible areas; NACCESS uses those Van der Waals' radii derived by Chothia (42).

Supplementary figure 5. Location of CBG glycosylation site 4 (Asn\(^{238}\)). Glycosylation site 4 was mapped on the available crystal structure of human CBG complexed with cortisol (PDB: 2VDY) (4). This site was located near the entrance to the steroid binding site and conjugated \(N\)-glycans can thus be involved in the regulation of the accessibility of steroid to the site.
Supplementary figure 2

A. CBG N-glycan

B. CBG N-glycan

C. CBG N-glycan

D. CBG N-glycan

XIC (m/z 1111.3)

XIC (m/z 820.3)

XIC (m/z 1439.3)

XIC (m/z 1002.8)

+ α2,3-specific neuraminidase

+ α2,3-specific neuraminidase

+ α2,3-specific neuraminidase

+ α2,3-specific neuraminidase
Supplementary figure 4

Site 2 (Asn74) – Rel. Accessibility: 1.00

Site 3 (Asn154) – Rel. Accessibility: 0.80

Site 4 (Asn238) – Rel. Accessibility: 0.28

Site 5 (Asn308) – Rel. Accessibility: 0.23
Supplementary figure 5

Site 4 (Asn238)

Steroid binding site
(Cortisol bound)