MS/MS Fragmentation of VVEEVGKMK
Found in Q8R0Y6, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh11 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Plotted from to 1000 Da
Label all possible matches ○ Label matches used for scoring @

Monoisotopic mass of neutral peptide Mr(calc): 1119.5482
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
MS : Oxidation (M), with neutral losses 0.00000 (shown in table). 68.9953
K9 : mal_CO2 (K), with neutral loss 43.9595
Ions Score: 21 Expect: 0.023
Matches : 17/110 fragment ions using 97 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y+</th>
<th>y+</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>328.1867</td>
<td>164.5970</td>
<td>310.1761</td>
<td>155.5917</td>
<td>V</td>
<td>977.4972</td>
<td>489.2532</td>
<td>960.4707</td>
<td>480.2390</td>
<td>959.4866</td>
<td>480.2470</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>457.2293</td>
<td>229.1133</td>
<td>459.2187</td>
<td>220.1130</td>
<td>E</td>
<td>878.4289</td>
<td>430.7180</td>
<td>861.4022</td>
<td>431.2048</td>
<td>860.4182</td>
<td>430.7128</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>556.2977</td>
<td>278.6525</td>
<td>538.2871</td>
<td>269.6472</td>
<td>V</td>
<td>620.3436</td>
<td>310.6754</td>
<td>603.3171</td>
<td>302.1622</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>613.3192</td>
<td>307.1632</td>
<td>595.3086</td>
<td>298.1579</td>
<td>G</td>
<td>521.2752</td>
<td>261.1412</td>
<td>504.2486</td>
<td>252.6280</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>838.4493</td>
<td>444.7284</td>
<td>811.4293</td>
<td>436.2151</td>
<td>M</td>
<td>336.1588</td>
<td>168.5839</td>
<td>319.1322</td>
<td>160.0697</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>919.4840</td>
<td>459.7420</td>
<td>892.4640</td>
<td>445.2408</td>
<td>K</td>
<td>189.1234</td>
<td>95.0653</td>
<td>172.0968</td>
<td>86.5520</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **MKIGNPLDR**

Found in Q8R016, Cytosolic 10-formyltetrahydrofolate dehydrogenase
OG = Mus musculus
GN = Aldh111
PE = 2
SV = 1

Click mouse within plot area to zoom in by factor of two about that point

Plot from 150 to 1050 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1128.8597

Fixed modifications: NMTS (C) (apply to specified residues or termini only)

Variable modifications:

K2 : mal CO2 (K), with neutral loss 49.0000

Ions Score: 28 Expect: 0.086

Matches: 7/78 fragment ions using 9 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>302.1533</td>
<td>151.5803</td>
<td>285.1267</td>
<td>143.0670</td>
<td></td>
<td></td>
<td>K</td>
<td>954.3307</td>
<td>477.7720</td>
<td>937.5102</td>
<td>469.2587</td>
<td>936.5261</td>
<td>468.7657</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>415.2374</td>
<td>208.1223</td>
<td>398.2108</td>
<td>199.6090</td>
<td></td>
<td></td>
<td>I</td>
<td>784.4312</td>
<td>392.7192</td>
<td>767.4046</td>
<td>384.2060</td>
<td>766.4206</td>
<td>383.7139</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>472.2588</td>
<td>236.6330</td>
<td>455.2323</td>
<td>228.1198</td>
<td></td>
<td></td>
<td>G</td>
<td>671.3471</td>
<td>336.1772</td>
<td>654.3206</td>
<td>327.6639</td>
<td>653.3365</td>
<td>327.1719</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>586.3017</td>
<td>293.6254</td>
<td>569.2752</td>
<td>283.1412</td>
<td></td>
<td></td>
<td>N</td>
<td>614.3257</td>
<td>307.6665</td>
<td>597.2991</td>
<td>298.1532</td>
<td>596.3151</td>
<td>298.6012</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>683.3545</td>
<td>342.1809</td>
<td>666.3280</td>
<td>333.0676</td>
<td></td>
<td></td>
<td>P</td>
<td>590.2827</td>
<td>250.0450</td>
<td>483.2562</td>
<td>242.1317</td>
<td>482.2722</td>
<td>241.6397</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>911.4655</td>
<td>456.2364</td>
<td>894.4350</td>
<td>447.7231</td>
<td>893.4550</td>
<td>447.2311</td>
<td>D</td>
<td>290.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0533</td>
<td>272.1353</td>
<td>136.5713</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MKIGNPLDR
Found in Q8R0V6, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1100 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1144.8546
Fixed modifications: METS (C) (apply to specified residues or termini only)
Variable modifications:
M1 : Oxidation (M), with neutral losses 0.0000 (shown in table), 68.9988
K2 : mal-COO (K), with neutral loss 43.9888
Ions Score: 30 Expect: 0.023
Matches : 13/110 fragment ions using 25 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^-></th>
<th>b^a</th>
<th>b^--</th>
<th>b^0</th>
<th>Seq.</th>
<th>y</th>
<th>y^-></th>
<th>y^a</th>
<th>y^--</th>
<th>y^0</th>
<th>y^0^--</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0427</td>
<td>74.5250</td>
<td>M</td>
<td>934.5367</td>
<td>477.7720</td>
<td>937.5102</td>
<td>469.2587</td>
<td>936.5261</td>
<td>468.7667</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1482</td>
<td>159.5777</td>
<td>301.1217</td>
<td>151.0845</td>
<td>K</td>
<td>954.5367</td>
<td>477.7720</td>
<td>937.5102</td>
<td>469.2587</td>
<td>936.5261</td>
<td>468.7667</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>431.2323</td>
<td>216.1198</td>
<td>414.2057</td>
<td>207.6065</td>
<td>I</td>
<td>784.4312</td>
<td>392.7192</td>
<td>757.4046</td>
<td>384.2060</td>
<td>766.4206</td>
<td>383.7139</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>488.2537</td>
<td>244.8305</td>
<td>471.2272</td>
<td>236.1172</td>
<td>G</td>
<td>671.3471</td>
<td>336.1772</td>
<td>654.3206</td>
<td>327.6659</td>
<td>653.3365</td>
<td>327.1719</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>502.2967</td>
<td>301.6520</td>
<td>585.2701</td>
<td>293.1387</td>
<td>N</td>
<td>614.3257</td>
<td>307.6665</td>
<td>597.2991</td>
<td>299.1532</td>
<td>596.3151</td>
<td>298.6612</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>609.3194</td>
<td>350.1783</td>
<td>682.3220</td>
<td>341.6651</td>
<td>P</td>
<td>500.2827</td>
<td>250.6450</td>
<td>483.2562</td>
<td>242.1317</td>
<td>482.2722</td>
<td>241.6397</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>927.4604</td>
<td>464.2339</td>
<td>910.4339</td>
<td>455.7206</td>
<td>D</td>
<td>290.1459</td>
<td>145.5760</td>
<td>273.1193</td>
<td>137.0833</td>
<td>272.1353</td>
<td>136.5713</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KLVEYCQR
Found in Q8R0Y6, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or [Plotform] 150 to 1200 Da [Full range]

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1165.5203
Fixed modifications: MTS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : mal_COO (K), with neutral loss 43.9898
Ions Score: 26 Expect: 0.022
Matches : 11/70 Fragment ions using 19 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b*++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y*++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>956.4328</td>
<td>478.7201</td>
<td>939.4063</td>
<td>470.2068</td>
<td>938.4223</td>
<td>469.7148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>L</td>
<td>942.1730</td>
<td>422.1780</td>
<td>826.3222</td>
<td>413.6647</td>
<td>825.3382</td>
<td>413.1727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>383.2053</td>
<td>192.1363</td>
<td>306.2387</td>
<td>183.6230</td>
<td>V</td>
<td>843.3488</td>
<td>372.6438</td>
<td>727.2538</td>
<td>364.1305</td>
<td>726.2698</td>
<td>363.6835</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>512.3079</td>
<td>256.6576</td>
<td>495.2813</td>
<td>428.1443</td>
<td>494.2973</td>
<td>247.6523</td>
<td>E</td>
<td>744.2804</td>
<td>372.6438</td>
<td>727.2538</td>
<td>364.1305</td>
<td>726.2698</td>
<td>363.6835</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675.3712</td>
<td>338.1892</td>
<td>658.3447</td>
<td>539.7660</td>
<td>657.3606</td>
<td>329.1840</td>
<td>Y</td>
<td>615.2378</td>
<td>308.1225</td>
<td>598.2112</td>
<td>299.6092</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>824.3681</td>
<td>412.6877</td>
<td>807.3416</td>
<td>740.1744</td>
<td>806.3575</td>
<td>403.6824</td>
<td>C</td>
<td>452.1744</td>
<td>226.5909</td>
<td>435.1479</td>
<td>218.0776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>952.4267</td>
<td>476.7170</td>
<td>935.4001</td>
<td>468.2037</td>
<td>934.4161</td>
<td>467.7117</td>
<td>Q</td>
<td>303.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching Ion Score: 26 Expect: 0.022
Matches: 11/70 Fragment ions using 19 most intense peaks (help)
MS/MS Fragmentation of DGKADPLGLAEAEK
Found in Q8ROYE6, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=AldhIII PE=2 SV=1

Monoisotopic mass of neutral peptide (calc): 1447.5760
Fixed modifications: NMT5 (C) (apply to specified residues or termini only)
Variable modifications:
K5 : m/z 102 (R), with neutral loss 43.0898
Monoisotopic mass of neutral peptide (calc): 1443.5731
Matches: 10/123 fragment ions using 12 most intense peaks (calc)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>28.2207</td>
<td>98.0237</td>
<td>49.5125</td>
<td>D</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>173.0557</td>
<td>87.0315</td>
<td>155.0451</td>
<td>78.0262</td>
<td>G</td>
<td>1269.6685</td>
<td>635.3379</td>
<td>1252.6420</td>
<td>626.8246</td>
<td>1251.6579</td>
<td>626.3326</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>343.1612</td>
<td>172.0842</td>
<td>328.1347</td>
<td>163.5710</td>
<td>K</td>
<td>1212.6470</td>
<td>606.8272</td>
<td>1195.6205</td>
<td>598.3139</td>
<td>1194.6395</td>
<td>597.8219</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>414.1953</td>
<td>207.0628</td>
<td>397.1718</td>
<td>199.0895</td>
<td>A</td>
<td>1042.5415</td>
<td>521.7744</td>
<td>1025.5150</td>
<td>513.2011</td>
<td>1024.5310</td>
<td>512.7691</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>529.2532</td>
<td>265.1163</td>
<td>512.1987</td>
<td>256.6030</td>
<td>D</td>
<td>973.5044</td>
<td>486.2558</td>
<td>954.4779</td>
<td>477.7426</td>
<td>953.4938</td>
<td>477.2509</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>626.2780</td>
<td>313.4247</td>
<td>609.2515</td>
<td>305.1294</td>
<td>P</td>
<td>856.4775</td>
<td>428.7424</td>
<td>839.4509</td>
<td>420.2291</td>
<td>838.4669</td>
<td>419.7371</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>739.3621</td>
<td>370.1947</td>
<td>722.3555</td>
<td>361.6714</td>
<td>L</td>
<td>759.4247</td>
<td>380.2160</td>
<td>742.2981</td>
<td>371.7027</td>
<td>741.4141</td>
<td>371.2107</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>890.8358</td>
<td>398.6924</td>
<td>797.3570</td>
<td>390.1821</td>
<td>K</td>
<td>664.2406</td>
<td>323.6740</td>
<td>629.3141</td>
<td>315.1607</td>
<td>628.3301</td>
<td>314.6867</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>909.4576</td>
<td>452.3375</td>
<td>892.4411</td>
<td>446.7422</td>
<td>L</td>
<td>589.3192</td>
<td>299.1632</td>
<td>572.2926</td>
<td>286.6499</td>
<td>571.3086</td>
<td>286.1579</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1039.5102</td>
<td>519.7387</td>
<td>1021.4837</td>
<td>511.3255</td>
<td>E</td>
<td>476.2531</td>
<td>238.2081</td>
<td>429.2086</td>
<td>230.1079</td>
<td>428.2243</td>
<td>229.6159</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1109.5473</td>
<td>555.2773</td>
<td>1092.5208</td>
<td>546.7640</td>
<td>A</td>
<td>347.1925</td>
<td>174.0999</td>
<td>330.1660</td>
<td>165.5866</td>
<td>329.1819</td>
<td>165.0846</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1238.5899</td>
<td>619.7986</td>
<td>1221.5634</td>
<td>611.2853</td>
<td>E</td>
<td>276.1554</td>
<td>138.3813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.1448</td>
<td>129.5761</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>150.0863</td>
<td>65.5467</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of HIMKSCALSNVK

Found in Q8KOY6, Cytosolic 13-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Adh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

![Graph](image)

Monoisotopic mass of neutral peptide Mr(calc): 1461.4778

Fixed modifications: HExS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b'</th>
<th>y'</th>
<th>Seq</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0662</td>
<td>69.5323</td>
<td>H</td>
<td>1281.6364</td>
<td>641.3218</td>
<td>1264.6098</td>
<td>612.3085</td>
<td>1263.6258</td>
<td>632.3165</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.1563</td>
<td>126.0788</td>
<td>I</td>
<td>1166.5523</td>
<td>584.7798</td>
<td>1151.5257</td>
<td>576.2605</td>
<td>1150.5317</td>
<td>375.7745</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>382.1907</td>
<td>191.5990</td>
<td>M</td>
<td>1037.5118</td>
<td>519.2595</td>
<td>1020.4833</td>
<td>510.7463</td>
<td>1019.5012</td>
<td>310.2543</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>532.3963</td>
<td>276.6518</td>
<td>337.2697</td>
<td>268.1383</td>
<td>867.4063</td>
<td>434.2068</td>
<td>820.3797</td>
<td>425.6995</td>
<td>840.3927</td>
<td>425.2013</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>639.3283</td>
<td>320.1678</td>
<td>622.3017</td>
<td>311.6515</td>
<td>780.3474</td>
<td>390.6098</td>
<td>763.2477</td>
<td>382.1775</td>
<td>762.3637</td>
<td>381.8555</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>788.3252</td>
<td>394.6662</td>
<td>771.2986</td>
<td>386.1530</td>
<td>841.3517</td>
<td>412.1795</td>
<td>814.3508</td>
<td>397.6790</td>
<td>813.3668</td>
<td>307.1870</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>859.2623</td>
<td>430.1848</td>
<td>842.3539</td>
<td>421.6715</td>
<td>S</td>
<td>560.3402</td>
<td>280.6738</td>
<td>543.3137</td>
<td>272.1605</td>
<td>542.3297</td>
<td>271.6605</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>972.4464</td>
<td>486.7268</td>
<td>955.4198</td>
<td>478.2136</td>
<td>L</td>
<td>447.2562</td>
<td>224.1517</td>
<td>430.2390</td>
<td>215.6183</td>
<td>429.2456</td>
<td>215.1264</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1059.4784</td>
<td>530.2428</td>
<td>1042.4519</td>
<td>521.7296</td>
<td>1041.4678</td>
<td>521.2376</td>
<td>1040.4638</td>
<td>520.7337</td>
<td>1039.4698</td>
<td>519.7397</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1173.5213</td>
<td>587.2643</td>
<td>1156.4948</td>
<td>578.7510</td>
<td>1155.5103</td>
<td>578.2590</td>
<td>1154.5083</td>
<td>577.7563</td>
<td>1153.5063</td>
<td>577.2543</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1372.5897</td>
<td>636.7985</td>
<td>1255.5632</td>
<td>628.2852</td>
<td>V</td>
<td>246.1812</td>
<td>122.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of HIMKSCALSNVK

Found in Q6ROV6, Cytoplasmic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh1313 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
On [Plot Form] 200 to 1400 Da [Full range]
Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide Mr (calc.): 1477.6727
Fixed modifications: IGTS (C) - apply to specified residues or termini only
Variable modifications:
N
: Oxidation (M); with neutral losses 0.9880 (shown in table), 68.9883
K
: me, 0.202 (K), with neutral loss 0.9880

Raw Score: 39 Excess: 0.0022
Matches: 14/172 fragment ions using 22 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b''''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>y''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0662</td>
<td>69.5367</td>
<td>H</td>
<td>1</td>
<td>1297.6313</td>
<td>619.3193</td>
<td>1280.8047</td>
<td>610.8047</td>
<td>1279.6207</td>
<td>640.3140</td>
</tr>
<tr>
<td>2</td>
<td>251.1563</td>
<td>126.0788</td>
<td>I</td>
<td>1</td>
<td>518.8835</td>
<td>260.7700</td>
<td>429.7207</td>
<td>260.8047</td>
<td>421.6207</td>
<td>260.3140</td>
</tr>
<tr>
<td>3</td>
<td>308.1857</td>
<td>199.5965</td>
<td>M</td>
<td>1118.5472</td>
<td>592.7772</td>
<td>1167.5207</td>
<td>584.2640</td>
<td>1166.5268</td>
<td>583.7720</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>588.2912</td>
<td>284.6492</td>
<td>551.2546</td>
<td>276.1630</td>
<td>K</td>
<td>1037.5118</td>
<td>519.2595</td>
<td>1020.4853</td>
<td>510.7463</td>
<td>1019.5012</td>
</tr>
<tr>
<td>5</td>
<td>652.3232</td>
<td>328.1652</td>
<td>319.8267</td>
<td>319.1630</td>
<td>S</td>
<td>867.5063</td>
<td>434.2068</td>
<td>859.3797</td>
<td>422.6935</td>
<td>849.3957</td>
</tr>
<tr>
<td>6</td>
<td>804.3201</td>
<td>402.6667</td>
<td>787.2926</td>
<td>394.1504</td>
<td>C</td>
<td>789.3743</td>
<td>390.6908</td>
<td>763.3477</td>
<td>382.1775</td>
<td>762.3637</td>
</tr>
<tr>
<td>7</td>
<td>875.3972</td>
<td>438.1823</td>
<td>858.3307</td>
<td>429.6690</td>
<td>A</td>
<td>631.3774</td>
<td>316.1923</td>
<td>614.3508</td>
<td>307.6790</td>
<td>613.3688</td>
</tr>
<tr>
<td>8</td>
<td>988.4643</td>
<td>494.7263</td>
<td>971.4147</td>
<td>486.2110</td>
<td>L</td>
<td>970.4397</td>
<td>485.7190</td>
<td>953.4137</td>
<td>477.6330</td>
<td>952.3297</td>
</tr>
<tr>
<td>9</td>
<td>1075.4753</td>
<td>538.2403</td>
<td>1058.4458</td>
<td>529.7270</td>
<td>S</td>
<td>447.2552</td>
<td>224.1317</td>
<td>430.2266</td>
<td>215.6185</td>
<td>429.2426</td>
</tr>
<tr>
<td>10</td>
<td>1189.5162</td>
<td>592.2618</td>
<td>1172.4897</td>
<td>586.7483</td>
<td>N</td>
<td>586.2385</td>
<td>350.8137</td>
<td>573.8137</td>
<td>344.1976</td>
<td>572.1024</td>
</tr>
<tr>
<td>11</td>
<td>1288.5847</td>
<td>644.7960</td>
<td>1271.5581</td>
<td>636.2827</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MLLVKNIQLEDGK
Found in Q88Y6. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or [Plot form] 200 to 1800 Da [Full range]

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(m/z): 1691.5884
Fixed modifications: MTS (C) (apply to specified residues or termini only)
Variable modifications:
M : Oxidation (M), with neutral losses 0.0000 (shown in table), O8.9993
K : mal-CE2 (K), with neutral loss 42.0028

Ions Score: 57 Expect: 0.56e-095

Matches: 16/160 Fragment Ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b''''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y^0</th>
<th>y^0''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.0427</td>
<td>74.5250</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261.1267</td>
<td>131.0670</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>374.2108</td>
<td>187.6090</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>473.2792</td>
<td>237.1432</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>543.3847</td>
<td>222.2960</td>
<td>626.2582</td>
<td>312.6827</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>757.4277</td>
<td>379.2175</td>
<td>740.4011</td>
<td>370.7042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1070.5117</td>
<td>435.7595</td>
<td>833.4612</td>
<td>427.2462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>998.5703</td>
<td>490.7888</td>
<td>981.5438</td>
<td>491.2755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1111.6544</td>
<td>556.3308</td>
<td>1094.6278</td>
<td>547.8176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1210.6970</td>
<td>620.8252</td>
<td>1223.6704</td>
<td>612.3383</td>
<td>1222.6864</td>
<td>611.8468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1355.7239</td>
<td>678.3636</td>
<td>1338.6974</td>
<td>669.8223</td>
<td>1337.7134</td>
<td>669.3603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1412.7454</td>
<td>706.8763</td>
<td>1395.7183</td>
<td>699.3631</td>
<td>1394.7348</td>
<td>697.8710</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5348</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>147.1123</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EAFENLGWKGINKA
Found in Q8R0V6. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

On: Full range

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1039.5111
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K10 : nM_2CO2 (E), with neutral loss 44.0159

Ions Score: 20 Expect: 2.01E-05

Matches : 56/129 fragment ions using 60 most intense peaks {[help]}

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>seq</th>
<th>y0</th>
<th>y0'</th>
<th>y0''</th>
<th>y0''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>1517.7859</td>
<td>759.3966</td>
<td>1500.7594</td>
<td>750.8833</td>
<td>1499.7754</td>
<td>750.3913</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>201.0870</td>
<td>101.0471</td>
<td>183.0764</td>
<td>92.0418</td>
<td>A</td>
<td>1446.7488</td>
<td>723.3780</td>
<td>1429.7223</td>
<td>715.3648</td>
<td>1428.7383</td>
<td>714.5728</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>348.1554</td>
<td>174.5813</td>
<td>330.1448</td>
<td>165.5761</td>
<td>F</td>
<td>1299.6804</td>
<td>630.3438</td>
<td>1282.6339</td>
<td>641.5806</td>
<td>1281.6668</td>
<td>641.3386</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>591.2409</td>
<td>296.1241</td>
<td>573.2304</td>
<td>287.1188</td>
<td>N</td>
<td>1056.5949</td>
<td>528.3011</td>
<td>1049.5683</td>
<td>520.2873</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>648.2624</td>
<td>324.6348</td>
<td>630.2518</td>
<td>316.6126</td>
<td>G</td>
<td>999.5734</td>
<td>500.2904</td>
<td>982.5469</td>
<td>491.7771</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>761.3464</td>
<td>381.1799</td>
<td>744.3359</td>
<td>372.1616</td>
<td>L</td>
<td>886.4894</td>
<td>443.7483</td>
<td>869.4628</td>
<td>435.2259</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>947.4288</td>
<td>474.2165</td>
<td>930.3992</td>
<td>465.7032</td>
<td>W</td>
<td>796.4109</td>
<td>350.7087</td>
<td>783.3835</td>
<td>342.1954</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1004.4472</td>
<td>502.7272</td>
<td>987.4207</td>
<td>494.2140</td>
<td>G</td>
<td>643.3866</td>
<td>322.1979</td>
<td>626.3620</td>
<td>318.0647</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1174.5527</td>
<td>587.7800</td>
<td>1157.5262</td>
<td>579.2667</td>
<td>K</td>
<td>473.2834</td>
<td>237.1452</td>
<td>456.2565</td>
<td>238.8319</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1287.6388</td>
<td>644.3220</td>
<td>1270.6103</td>
<td>635.8083</td>
<td>I</td>
<td>360.1999</td>
<td>180.6031</td>
<td>343.1724</td>
<td>172.0899</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1401.6797</td>
<td>701.3435</td>
<td>1384.6532</td>
<td>692.3830</td>
<td>H</td>
<td>264.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1472.7169</td>
<td>736.8621</td>
<td>1455.6903</td>
<td>728.3488</td>
<td>A</td>
<td>157.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>74.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GASAINWTLIHGDKK
Found in O6R076. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Adh111 PE=2 SV=1

Cyclize mass within plot area to zoom in by factor of two about that point
Or, select from range: 200 to 1000 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(mole) : 1468.8860
Fixed modifications: HET (C) (apply to specified residues or tandem only)
Variable modifications:
K5 : mal-COOH (K), with neutral loss 42.0608
Ions Source: 4+ Eppm: 0.00021
Matches : 11/150 fragment ions using 12 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b+</th>
<th>b++</th>
<th>Seq</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>0.287</td>
<td>29.5180</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td>0.659</td>
<td>65.0366</td>
<td></td>
<td></td>
<td>A</td>
<td>1595.8540</td>
<td>798.4306</td>
<td>1578.8275</td>
<td>798.9174</td>
<td>1577.8425</td>
<td>789.4254</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>216</td>
<td>0.097</td>
<td>108.5356</td>
<td></td>
<td>S</td>
<td>1524.8169</td>
<td>762.9121</td>
<td>1507.7904</td>
<td>754.3988</td>
<td>1506.8263</td>
<td>733.9068</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>287</td>
<td>0.130</td>
<td>144.0711</td>
<td></td>
<td>A</td>
<td>1437.7849</td>
<td>719.3901</td>
<td>1420.7583</td>
<td>710.8828</td>
<td>1419.7743</td>
<td>710.3908</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>408</td>
<td>2.191</td>
<td>209.6152</td>
<td></td>
<td>I</td>
<td>1566.7478</td>
<td>683.8775</td>
<td>1549.7212</td>
<td>675.5642</td>
<td>1548.7372</td>
<td>674.8722</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>514</td>
<td>2.620</td>
<td>257.6346</td>
<td>497.2354</td>
<td>249.1214</td>
<td>496.2314</td>
<td>248.6293</td>
<td>N</td>
<td>1352.6637</td>
<td>627.3355</td>
<td>1326.6571</td>
<td>618.8222</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>700</td>
<td>3.413</td>
<td>350.6744</td>
<td>683.3148</td>
<td>542.1610</td>
<td>682.3307</td>
<td>541.6690</td>
<td>W</td>
<td>1138.6208</td>
<td>570.3140</td>
<td>1122.5942</td>
<td>561.8007</td>
<td>1121.602</td>
</tr>
<tr>
<td>9</td>
<td>914</td>
<td>4.730</td>
<td>547.7402</td>
<td>897.4456</td>
<td>449.2259</td>
<td>896.4625</td>
<td>448.7349</td>
<td>L</td>
<td>852.4938</td>
<td>426.7505</td>
<td>835.4762</td>
<td>418.2373</td>
<td>834.4832</td>
</tr>
<tr>
<td>10</td>
<td>1027</td>
<td>5.571</td>
<td>514.2822</td>
<td>1010.5306</td>
<td>505.7689</td>
<td>1009.5465</td>
<td>505.2769</td>
<td>I</td>
<td>739.4097</td>
<td>370.2085</td>
<td>722.3832</td>
<td>361.6952</td>
<td>721.3991</td>
</tr>
<tr>
<td>11</td>
<td>1134</td>
<td>6.160</td>
<td>582.8116</td>
<td>1147.5895</td>
<td>574.2934</td>
<td>1146.6055</td>
<td>573.8054</td>
<td>H</td>
<td>626.3227</td>
<td>313.6665</td>
<td>609.2991</td>
<td>305.1353</td>
<td>608.3151</td>
</tr>
<tr>
<td>12</td>
<td>1221</td>
<td>6.675</td>
<td>611.2224</td>
<td>1204.6109</td>
<td>602.8091</td>
<td>1203.6269</td>
<td>602.2171</td>
<td>G</td>
<td>409.2667</td>
<td>245.1370</td>
<td>472.2402</td>
<td>236.6257</td>
<td>471.2562</td>
</tr>
<tr>
<td>13</td>
<td>1356</td>
<td>6.644</td>
<td>668.8359</td>
<td>1319.6379</td>
<td>660.2226</td>
<td>1318.6539</td>
<td>659.8306</td>
<td>D</td>
<td>432.2453</td>
<td>216.6263</td>
<td>415.2187</td>
<td>208.1130</td>
<td>414.2347</td>
</tr>
<tr>
<td>14</td>
<td>1464</td>
<td>7.394</td>
<td>722.8333</td>
<td>1447.7328</td>
<td>724.3701</td>
<td>1446.7488</td>
<td>723.8781</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5992</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1027</td>
<td>7.571</td>
<td>514.2822</td>
<td>1010.5306</td>
<td>505.7689</td>
<td>1009.5465</td>
<td>505.2769</td>
<td>I</td>
<td>189.1234</td>
<td>95.0653</td>
<td>172.0968</td>
<td>86.5520</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KEGHEVVGVFTIPDK**

Found in Q8R0Y6, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Plot from 200 to 1600 Da

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide M(calc): 1720.8720

Fixed modifications: NMET (C) (apply to specified residues or termini only)

Variable modifications:

K1: pentaOglycine (K), with neutral loss 43.91 u

Ion Score: 30 Extrap: 0.014

Matches: 42/116 fragment ions using 130 most intense peaks (Ref)

<table>
<thead>
<tr>
<th>1</th>
<th>171.1128</th>
<th>86.0600</th>
<th>154.0863</th>
<th>77.5468</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>300.1524</td>
<td>120.5813</td>
<td>283.1238</td>
<td>142.0861</td>
<td>282.1448</td>
</tr>
<tr>
<td>4</td>
<td>494.2358</td>
<td>247.6215</td>
<td>477.2092</td>
<td>239.1082</td>
<td>476.2252</td>
</tr>
<tr>
<td>5</td>
<td>623.2784</td>
<td>312.1428</td>
<td>606.2518</td>
<td>303.6295</td>
<td>605.2678</td>
</tr>
<tr>
<td>6</td>
<td>722.3468</td>
<td>361.6770</td>
<td>705.3202</td>
<td>353.1486</td>
<td>704.3362</td>
</tr>
<tr>
<td>7</td>
<td>821.4152</td>
<td>411.2112</td>
<td>804.3886</td>
<td>402.6900</td>
<td>803.4046</td>
</tr>
<tr>
<td>8</td>
<td>878.4667</td>
<td>459.7220</td>
<td>861.4101</td>
<td>451.2067</td>
<td>860.4261</td>
</tr>
<tr>
<td>9</td>
<td>977.5631</td>
<td>489.2563</td>
<td>960.4785</td>
<td>480.7429</td>
<td>959.4645</td>
</tr>
<tr>
<td>10</td>
<td>1124.5735</td>
<td>562.7904</td>
<td>1107.5469</td>
<td>554.2771</td>
<td>1106.5629</td>
</tr>
<tr>
<td>11</td>
<td>1225.6212</td>
<td>613.3142</td>
<td>1208.5946</td>
<td>604.8009</td>
<td>1207.6106</td>
</tr>
<tr>
<td>12</td>
<td>1338.7657</td>
<td>669.5863</td>
<td>1321.6787</td>
<td>661.3430</td>
<td>1320.6947</td>
</tr>
<tr>
<td>13</td>
<td>1568.7849</td>
<td>718.3826</td>
<td>1541.7314</td>
<td>709.8694</td>
<td>1541.7374</td>
</tr>
<tr>
<td>14</td>
<td>1568.7849</td>
<td>718.3826</td>
<td>1541.7314</td>
<td>709.8694</td>
<td>1541.7374</td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>147.1112</td>
<td>74.0000</td>
<td>130.0865</td>
<td>65.5468</td>
</tr>
</tbody>
</table>

Notes:

- **KEGHEVVGVFTIPDK** is the identified peptide from the MS/MS fragmentation of Q8R0Y6 cytosolic 10-formyltetrahydrofolate dehydrogenase.
- The peptide was found in Mus musculus (mouse) with a unique protein accession number Q8R0Y6.
- The peptide contains 15 residues with a calculated monoisotopic mass of 1720.8720 u.
- Fixed modifications include NMET (C) on specified residues.
- Variable modifications include pentaOglycine (K) with a neutral loss of 43.91 u.
- The ion score is 30, and the expected value is 0.014.
- The peptide matches 42/116 fragment ions using 130 most intense peaks.
MS/MS Fragmentation of GNDKVPGAWEACGQK
Found in Q8RYS5, Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldhd11l PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1700 Da Full range

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide M(Neu)=1768.7616
Fixed modifications: NMTS (C) (apply to specified residues or terminate only)
Variable modifications:
N : m/z 15 (Y), with neutral loss 41 Da

Ion Score: 38 Expect: 0.0005
Matches: 17/164 fragment ions using 28 most intense peaks (title)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>Seq.</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>172.0717</td>
<td>86.5395</td>
<td>155.0451</td>
<td>78.0252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1691.7516</td>
<td>846.3784</td>
<td>1674.7251</td>
<td>837.8662</td>
</tr>
<tr>
<td>3</td>
<td>287.0986</td>
<td>144.0329</td>
<td>270.0721</td>
<td>155.5397</td>
<td>269.0880</td>
<td>135.0477</td>
<td></td>
<td>D</td>
<td>1577.7087</td>
<td>789.3580</td>
<td>1560.6821</td>
<td>780.8447</td>
<td>1559.6981</td>
</tr>
<tr>
<td>5</td>
<td>536.2736</td>
<td>278.6399</td>
<td>529.2460</td>
<td>270.1256</td>
<td>538.2620</td>
<td>269.6346</td>
<td></td>
<td>V</td>
<td>1592.5762</td>
<td>746.7917</td>
<td>1575.5487</td>
<td>638.2785</td>
<td>1574.5665</td>
</tr>
<tr>
<td>6</td>
<td>615.3253</td>
<td>327.1663</td>
<td>606.2688</td>
<td>318.6530</td>
<td>615.3148</td>
<td>318.1610</td>
<td></td>
<td>P</td>
<td>1193.6978</td>
<td>597.2573</td>
<td>1176.6482</td>
<td>588.7443</td>
<td>1175.6972</td>
</tr>
<tr>
<td>7</td>
<td>710.3468</td>
<td>355.6770</td>
<td>698.3202</td>
<td>347.1638</td>
<td>692.3362</td>
<td>346.6717</td>
<td></td>
<td>G</td>
<td>1086.4580</td>
<td>548.7312</td>
<td>1079.4285</td>
<td>540.2179</td>
<td>1078.4445</td>
</tr>
<tr>
<td>8</td>
<td>781.3839</td>
<td>391.1955</td>
<td>764.3573</td>
<td>382.6823</td>
<td>762.3733</td>
<td>382.1903</td>
<td></td>
<td>A</td>
<td>1059.4336</td>
<td>520.2204</td>
<td>1042.4070</td>
<td>511.7071</td>
<td>1041.4220</td>
</tr>
<tr>
<td>9</td>
<td>957.4612</td>
<td>484.2352</td>
<td>950.4387</td>
<td>473.7220</td>
<td>949.4202</td>
<td>473.2200</td>
<td></td>
<td>W</td>
<td>968.3983</td>
<td>484.7319</td>
<td>951.3899</td>
<td>476.1838</td>
<td>950.3839</td>
</tr>
<tr>
<td>10</td>
<td>1068.3109</td>
<td>534.7591</td>
<td>1051.4843</td>
<td>526.2458</td>
<td>1050.5003</td>
<td>525.7538</td>
<td></td>
<td>T</td>
<td>782.3171</td>
<td>391.6622</td>
<td>765.2906</td>
<td>383.1489</td>
<td>764.3068</td>
</tr>
<tr>
<td>11</td>
<td>1197.5535</td>
<td>599.2804</td>
<td>1180.5269</td>
<td>590.7671</td>
<td>1179.5429</td>
<td>590.2751</td>
<td></td>
<td>E</td>
<td>681.2695</td>
<td>341.1384</td>
<td>664.2492</td>
<td>332.6251</td>
<td>663.2589</td>
</tr>
<tr>
<td>12</td>
<td>1268.5906</td>
<td>634.7989</td>
<td>1251.5660</td>
<td>626.2857</td>
<td>1250.5800</td>
<td>625.7907</td>
<td></td>
<td>A</td>
<td>532.3226</td>
<td>276.6171</td>
<td>533.2063</td>
<td>286.1038</td>
<td>532.2063</td>
</tr>
<tr>
<td>13</td>
<td>1417.6875</td>
<td>708.2974</td>
<td>1400.6510</td>
<td>700.7841</td>
<td>1399.5769</td>
<td>700.2921</td>
<td></td>
<td>C</td>
<td>481.2083</td>
<td>248.0983</td>
<td>464.1632</td>
<td>232.5852</td>
<td>472.2083</td>
</tr>
<tr>
<td>14</td>
<td>1474.6099</td>
<td>737.8081</td>
<td>1457.5824</td>
<td>729.2948</td>
<td>1456.5984</td>
<td>728.8028</td>
<td></td>
<td>G</td>
<td>332.1926</td>
<td>166.6001</td>
<td>315.1663</td>
<td>158.0688</td>
<td>332.1926</td>
</tr>
<tr>
<td>15</td>
<td>1692.6675</td>
<td>801.8374</td>
<td>1675.6410</td>
<td>793.3241</td>
<td>1654.6570</td>
<td>792.8321</td>
<td></td>
<td>Q</td>
<td>273.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>120.5761</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>K</td>
<td>147.1126</td>
<td>74.0660</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EGHEVVGVFTIPDKDGK

Found in Q8R0V6, Cytosolic 10-formyltetrahydrofolate dehydrogenase Os-Mus musculus GN-Aldh111 PE-2 SV-1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches □ □ Label matches used for scoring □

Monoisotopic mass of neutral peptide (Da) = 1511.0214
Fixed modifications: 1677.9 (C) □ apply to specified residues or termini only
Variable modifications:
X 4 : m+2 (K), with neutral loss 44.0586
Luna Score: 83 Expect: 9.2e-09
Matches: 26/145 fragment ions using 67 most intense peaks □ □

<table>
<thead>
<tr>
<th>m</th>
<th>b</th>
<th>b*</th>
<th>h+</th>
<th>h*</th>
<th>Seq</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>17</td>
<td>1721.887</td>
<td>861.4465</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>169.0698</td>
<td>83.0340</td>
<td>G</td>
<td>13</td>
<td>770.9873</td>
<td>479.4945</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>324.1382</td>
<td>162.5688</td>
<td>306.1197</td>
<td>153.5635</td>
<td>H</td>
<td>16</td>
<td>1682.8746</td>
<td>941.9410</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>452.1722</td>
<td>227.0390</td>
<td>435.1622</td>
<td>218.0348</td>
<td>E</td>
<td>24</td>
<td>1348.8319</td>
<td>773.4161</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>552.2143</td>
<td>276.6124</td>
<td>534.2927</td>
<td>267.6190</td>
<td>V</td>
<td>26</td>
<td>1416.7732</td>
<td>708.3903</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>651.2997</td>
<td>326.1543</td>
<td>633.2891</td>
<td>317.1352</td>
<td>V</td>
<td>30</td>
<td>1257.7839</td>
<td>659.3531</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>708.3311</td>
<td>354.6692</td>
<td>690.3206</td>
<td>345.6659</td>
<td>G</td>
<td>40</td>
<td>1218.6365</td>
<td>608.3219</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>954.4680</td>
<td>477.7376</td>
<td>936.4574</td>
<td>468.7233</td>
<td>F</td>
<td>86</td>
<td>1062.5466</td>
<td>531.7769</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1055.5156</td>
<td>528.2615</td>
<td>1037.5051</td>
<td>519.2562</td>
<td>T</td>
<td>104</td>
<td>915.4782</td>
<td>458.2427</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1168.5907</td>
<td>584.8035</td>
<td>1150.5891</td>
<td>575.7902</td>
<td>I</td>
<td>123</td>
<td>814.4305</td>
<td>407.7189</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1267.6529</td>
<td>633.3299</td>
<td>1247.6419</td>
<td>624.3246</td>
<td>P</td>
<td>141</td>
<td>701.5346</td>
<td>351.1769</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1366.6784</td>
<td>690.8433</td>
<td>1346.6688</td>
<td>681.8381</td>
<td>D</td>
<td>159</td>
<td>604.2937</td>
<td>302.6505</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1568.7849</td>
<td>775.8691</td>
<td>1533.7584</td>
<td>767.8382</td>
<td>K</td>
<td>187</td>
<td>429.2679</td>
<td>245.1370</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1665.8117</td>
<td>833.4096</td>
<td>1648.7833</td>
<td>824.3693</td>
<td>D</td>
<td>194</td>
<td>319.1612</td>
<td>160.0842</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1722.8333</td>
<td>861.9203</td>
<td>1705.8068</td>
<td>853.4070</td>
<td>G</td>
<td>201</td>
<td>204.1343</td>
<td>102.7508</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1471.1121</td>
<td>74.0600</td>
<td>1360.0863</td>
<td>65.5468</td>
<td>K</td>
<td>208</td>
<td>1471.1121</td>
<td>74.0600</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EGHEVVGVFTIPDKDGK
MS/MS Fragmentation of RPQPEEGATYEIGIQKK
Found in Q8R0Y6. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh111 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1700 Da Full range
Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide Mr(m/z): 1842.9075
Fixed modifications: HIS9 (C) (apply to specified residues or terminal only)
Variable modifications: K15 : m+15 (N), with neutral loss 43.0056
Ion Score: 15 Random: 0.0012
Matches: 52/142 Fragment ions using 92 most intense peaks (small)

<table>
<thead>
<tr>
<th>#</th>
<th>log_b</th>
<th>b*</th>
<th>b**</th>
<th>log_y</th>
<th>y*</th>
<th>y**</th>
<th>log_y0</th>
<th>y0</th>
<th>y0*</th>
<th>y0**</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157.1084</td>
<td>79.0578</td>
<td>140.0381</td>
<td>70.5446</td>
<td>R</td>
<td>1716.8439</td>
<td>838.9256</td>
<td>1690.8174</td>
<td>850.4123</td>
<td>1698.8333</td>
<td>849.9023</td>
</tr>
<tr>
<td>2</td>
<td>254.1613</td>
<td>127.5842</td>
<td>237.1346</td>
<td>119.0709</td>
<td>P</td>
<td>1419.7911</td>
<td>810.3992</td>
<td>1602.7648</td>
<td>801.8839</td>
<td>1601.7806</td>
<td>801.3939</td>
</tr>
<tr>
<td>3</td>
<td>382.2197</td>
<td>191.6135</td>
<td>365.1932</td>
<td>183.1002</td>
<td>Q</td>
<td>1491.7326</td>
<td>746.3999</td>
<td>1474.7096</td>
<td>737.8569</td>
<td>1473.7220</td>
<td>727.5946</td>
</tr>
<tr>
<td>4</td>
<td>479.2725</td>
<td>249.1399</td>
<td>462.2459</td>
<td>231.6266</td>
<td>P</td>
<td>1394.6798</td>
<td>697.8435</td>
<td>1377.6533</td>
<td>689.3930</td>
<td>1376.6692</td>
<td>688.8383</td>
</tr>
<tr>
<td>5</td>
<td>608.3151</td>
<td>304.6662</td>
<td>591.2883</td>
<td>296.1479</td>
<td>E</td>
<td>1289.6174</td>
<td>623.3222</td>
<td>1272.5909</td>
<td>614.8090</td>
<td>1272.6165</td>
<td>624.3170</td>
</tr>
<tr>
<td>6</td>
<td>737.3577</td>
<td>369.1825</td>
<td>720.3111</td>
<td>360.6692</td>
<td>E</td>
<td>1186.5946</td>
<td>548.8090</td>
<td>1179.5681</td>
<td>540.2877</td>
<td>1178.5841</td>
<td>559.7977</td>
</tr>
<tr>
<td>7</td>
<td>794.3791</td>
<td>397.6923</td>
<td>777.3256</td>
<td>389.1799</td>
<td>G</td>
<td>1095.5732</td>
<td>450.2092</td>
<td>1085.5466</td>
<td>431.7769</td>
<td>1085.3628</td>
<td>431.2849</td>
</tr>
<tr>
<td>8</td>
<td>865.4163</td>
<td>432.2118</td>
<td>848.3091</td>
<td>424.6965</td>
<td>A</td>
<td>968.4374</td>
<td>472.2222</td>
<td>958.4434</td>
<td>474.3203</td>
<td>958.3993</td>
<td>498.2584</td>
</tr>
<tr>
<td>9</td>
<td>966.4659</td>
<td>482.3136</td>
<td>949.4374</td>
<td>472.2222</td>
<td>T</td>
<td>1008.5660</td>
<td>504.7171</td>
<td>999.5295</td>
<td>509.5233</td>
<td>999.3564</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1758.5699</td>
<td>829.7868</td>
<td>1741.5343</td>
<td>821.7253</td>
<td>K</td>
<td>744.4450</td>
<td>372.7162</td>
<td>727.3985</td>
<td>364.2029</td>
<td>726.4143</td>
<td>363.7109</td>
</tr>
<tr>
<td>12</td>
<td>1815.5913</td>
<td>858.2993</td>
<td>1798.5648</td>
<td>849.7860</td>
<td>G</td>
<td>618.3824</td>
<td>308.1949</td>
<td>598.3599</td>
<td>299.6816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1426.6754</td>
<td>714.8413</td>
<td>1411.6483</td>
<td>706.2821</td>
<td>I</td>
<td>558.3610</td>
<td>270.8481</td>
<td>541.3344</td>
<td>271.1709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1556.7340</td>
<td>778.8766</td>
<td>1539.7074</td>
<td>770.3573</td>
<td>Q</td>
<td>445.2769</td>
<td>223.1421</td>
<td>428.2504</td>
<td>214.6288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1726.8395</td>
<td>863.9234</td>
<td>1709.8192</td>
<td>855.4101</td>
<td>K</td>
<td>317.2183</td>
<td>159.1125</td>
<td>300.1915</td>
<td>150.5995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>147.1128</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NIQLEDGKMPASQFFK

Found in: OGR1A Y, Peptide結束

Source: Eukaryota,
OS=Homo sapiens OX=266044 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1900 Da Full range
Label all possible matches Label matches used for scoring

Resonantion mass of neutral peptide (Details): 2784.4467
Fixed modifications: MTS (C) - Apply to specified residues or termini only
Variable modifications:
K^: m/z 16 Da, with neutral loss 43.0158
H^: Oxidation (M), with neutral losses 0.0200 shown in table: 61.9560
Score: 38 Expect: 0.0000
Matches: 18/573 fragments less using 19 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b0</th>
<th>y0</th>
<th>Seq.</th>
<th>y-x</th>
<th>y-x</th>
<th>y-x</th>
<th>y-x</th>
<th>y-x</th>
<th>y-x</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115</td>
<td>58</td>
<td>98</td>
<td>23</td>
<td>49</td>
<td>51</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>228</td>
<td>134</td>
<td>114</td>
<td>50</td>
<td>22</td>
<td>77</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>356</td>
<td>192</td>
<td>178</td>
<td>80</td>
<td>21</td>
<td>170</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>469</td>
<td>278</td>
<td>235</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>464</td>
<td>318</td>
<td>259</td>
<td>63</td>
<td>38</td>
<td>580</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>713</td>
<td>346</td>
<td>357</td>
<td>176</td>
<td>36</td>
<td>348</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>770</td>
<td>367</td>
<td>383</td>
<td>87</td>
<td>34</td>
<td>377</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>940</td>
<td>472</td>
<td>470</td>
<td>740</td>
<td>22</td>
<td>462</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1071</td>
<td>519</td>
<td>536</td>
<td>266</td>
<td>27</td>
<td>527</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score: 38 Expect: 0.0000
Matches: 18/573 fragments less using 19 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>m/z</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>y'''</th>
<th>y''''</th>
<th>y'''''</th>
<th>y''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>65.5275</td>
<td>M</td>
<td>2561.2716</td>
<td>1281.1394</td>
<td>2544.2441</td>
<td>172.6326</td>
<td>2543.2610</td>
<td>272.3342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>302.1833</td>
<td>151.5803</td>
<td>K</td>
<td>2391.1661</td>
<td>1196.8867</td>
<td>2374.1396</td>
<td>187.5794</td>
<td>2373.1555</td>
<td>187.5814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>415.2374</td>
<td>208.1223</td>
<td>I</td>
<td>2278.0820</td>
<td>1139.5446</td>
<td>2261.0555</td>
<td>171.0314</td>
<td>2260.0714</td>
<td>170.0384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>472.2388</td>
<td>236.6380</td>
<td>G</td>
<td>2211.0005</td>
<td>1111.0339</td>
<td>2204.0340</td>
<td>160.2506</td>
<td>2203.0500</td>
<td>160.2586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>586.3017</td>
<td>293.6254</td>
<td>N</td>
<td>2107.0176</td>
<td>1054.0124</td>
<td>2098.9911</td>
<td>150.4992</td>
<td>2097.0071</td>
<td>150.5072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>796.4356</td>
<td>398.7229</td>
<td>L</td>
<td>1906.8808</td>
<td>957.4840</td>
<td>1792.8542</td>
<td>138.4908</td>
<td>1785.8702</td>
<td>138.5038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>811.4615</td>
<td>456.2546</td>
<td>R</td>
<td>1761.8399</td>
<td>913.4306</td>
<td>1764.8270</td>
<td>122.9173</td>
<td>1763.8433</td>
<td>122.9252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1027.5666</td>
<td>524.2870</td>
<td>D</td>
<td>1625.7527</td>
<td>818.3800</td>
<td>1608.7262</td>
<td>110.8867</td>
<td>1607.7422</td>
<td>110.8947</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1182.5816</td>
<td>591.8004</td>
<td>D</td>
<td>1510.7258</td>
<td>755.8665</td>
<td>1495.8922</td>
<td>97.5453</td>
<td>1492.9152</td>
<td>97.5531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1283.6412</td>
<td>643.3245</td>
<td>T</td>
<td>1409.6781</td>
<td>705.3427</td>
<td>1392.6516</td>
<td>86.9264</td>
<td>1391.6676</td>
<td>86.9342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1397.6842</td>
<td>699.3457</td>
<td>N</td>
<td>1295.6552</td>
<td>648.3212</td>
<td>1278.6306</td>
<td>69.0800</td>
<td>1277.6464</td>
<td>69.0878</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1534.7431</td>
<td>765.7857</td>
<td>H</td>
<td>1158.7563</td>
<td>579.7918</td>
<td>1141.7457</td>
<td>51.7178</td>
<td>1140.7657</td>
<td>51.7255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1591.7645</td>
<td>796.3685</td>
<td>G</td>
<td>1004.2021</td>
<td>502.7547</td>
<td>987.7475</td>
<td>43.9414</td>
<td>986.4943</td>
<td>43.9549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1816.8759</td>
<td>908.4164</td>
<td>P</td>
<td>876.4343</td>
<td>438.7243</td>
<td>859.4169</td>
<td>34.0212</td>
<td>858.4329</td>
<td>34.0290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1950.9183</td>
<td>965.8603</td>
<td>N</td>
<td>762.0000</td>
<td>381.7039</td>
<td>745.3740</td>
<td>27.1906</td>
<td>744.3900</td>
<td>27.2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2087.9777</td>
<td>1034.4202</td>
<td>L</td>
<td>625.3416</td>
<td>315.1745</td>
<td>608.3151</td>
<td>20.8882</td>
<td>607.3311</td>
<td>20.8982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2288.0574</td>
<td>1134.6034</td>
<td>A</td>
<td>495.2990</td>
<td>248.5532</td>
<td>479.2725</td>
<td>14.0599</td>
<td>478.2809</td>
<td>14.0682</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2405.1164</td>
<td>1205.0618</td>
<td>H</td>
<td>426.3619</td>
<td>213.1346</td>
<td>408.2594</td>
<td>12.6233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2518.2084</td>
<td>1259.0303</td>
<td>L</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
<td>9.0391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>R</td>
<td>175.1990</td>
<td>88.0651</td>
<td>152.9024</td>
<td>79.5408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EGHEVGVFTIPDKDGKADPLGLEAEK
EGHEVVGVFTIPDKDGKADPLGLEAEKDGPVFK
MS/MS Fragmentation of DINKALYVSDK
Found in Q8K0Y6. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh11 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 D or Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1350.6667
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
M4 : m+1_O2 (K), with neutral loss 43.0199
Total Score: 14 Expect: 0.18
Matches: 12/114 fragment ions using 31 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b</th>
<th>h0</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y'</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>229</td>
<td>115.0628</td>
<td>211.1077</td>
<td>106.0575</td>
<td>I</td>
<td>1192.6572</td>
<td>596.8322</td>
<td>1175.6307</td>
<td>588.3190</td>
<td>1174.6466</td>
<td>587.8270</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>343</td>
<td>172.0842</td>
<td>326.1347</td>
<td>163.5710</td>
<td>N</td>
<td>1079.5732</td>
<td>540.2902</td>
<td>1062.5466</td>
<td>531.7769</td>
<td>1061.5626</td>
<td>531.2849</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>513</td>
<td>257.1370</td>
<td>496.2402</td>
<td>248.6237</td>
<td>K</td>
<td>965.5302</td>
<td>483.2688</td>
<td>948.5037</td>
<td>474.7555</td>
<td>947.5197</td>
<td>474.2635</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>584</td>
<td>292.6556</td>
<td>567.2773</td>
<td>284.1423</td>
<td>A</td>
<td>795.4247</td>
<td>398.2160</td>
<td>778.3981</td>
<td>389.7027</td>
<td>777.4141</td>
<td>389.2107</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>860</td>
<td>430.7203</td>
<td>843.4247</td>
<td>422.2160</td>
<td>V</td>
<td>611.3035</td>
<td>300.1554</td>
<td>594.2770</td>
<td>297.6421</td>
<td>593.2930</td>
<td>297.1501</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>959</td>
<td>480.2635</td>
<td>942.4813</td>
<td>471.7502</td>
<td>V</td>
<td>448.2402</td>
<td>224.6237</td>
<td>431.2136</td>
<td>216.1105</td>
<td>430.2296</td>
<td>215.6185</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1046</td>
<td>523.7795</td>
<td>1029.5251</td>
<td>515.2662</td>
<td>S</td>
<td>349.1718</td>
<td>175.0895</td>
<td>332.1452</td>
<td>166.5763</td>
<td>331.1612</td>
<td>166.0842</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1161</td>
<td>581.2930</td>
<td>1144.5521</td>
<td>572.7797</td>
<td>D</td>
<td>262.1397</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
<td>122.5682</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FLFPEGIKGVMQAVR.L

Found in Q8R9Y6. Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus GN=Aldh11 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da Full range
Label all possible matches ◆ Label matches used for scoring ◆

Monoisotopic mass of neutral peptide [M+H]^+: 1782.9382
Fixed modifications: MMTS (C) (apply to specified residues or term only)
Variable modifications:
 KR = [mal E20 K (R)] with neutral loss 41.005
 M0 = Oxidation (M), with neutral losses 0.0000 (shown in table), 65.0293
 Ions Score: 16 Expect: 0.21

Matches: 24/200 fragment ions using 62 most intense peaks (keep)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b⁺</th>
<th>b²⁺</th>
<th>y</th>
<th>y⁺</th>
<th>y²⁺</th>
<th>Seq</th>
<th>y⁺⁺</th>
<th>y²⁺⁺</th>
<th>y³⁺⁺</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.1415</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261.1508</td>
<td>131.0825</td>
<td>L</td>
<td>1602.8572</td>
<td>801.9373</td>
<td>1385.8407</td>
<td>792.4240</td>
<td>1584.8507</td>
<td>792.4210</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>408.2282</td>
<td>204.6177</td>
<td>F</td>
<td>1489.7832</td>
<td>45.3952</td>
<td>1472.7566</td>
<td>736.8819</td>
<td>1471.7726</td>
<td>736.8899</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>505.3809</td>
<td>252.1414</td>
<td>P</td>
<td>1362.7147</td>
<td>671.8101</td>
<td>1325.6502</td>
<td>665.3477</td>
<td>1324.7042</td>
<td>662.8257</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>634.5357</td>
<td>317.6604</td>
<td>616.3169</td>
<td>308.6601</td>
<td>E</td>
<td>1245.8620</td>
<td>623.3346</td>
<td>1228.8234</td>
<td>614.8214</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>691.3529</td>
<td>346.1761</td>
<td>673.5314</td>
<td>337.1761</td>
<td>G</td>
<td>1116.6194</td>
<td>558.3133</td>
<td>1099.5928</td>
<td>550.3001</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>804.4201</td>
<td>402.7183</td>
<td>783.4183</td>
<td>393.7129</td>
<td>I</td>
<td>1059.3979</td>
<td>530.3026</td>
<td>1042.5714</td>
<td>521.7853</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>974.5346</td>
<td>487.7709</td>
<td>957.5080</td>
<td>479.2577</td>
<td>956.5210</td>
<td>478.7650</td>
<td>K</td>
<td>946.5139</td>
<td>473.7006</td>
<td>925.4873</td>
<td>465.2473</td>
</tr>
<tr>
<td>9</td>
<td>1031.5580</td>
<td>516.2817</td>
<td>1014.5259</td>
<td>507.7684</td>
<td>1003.5455</td>
<td>507.2764</td>
<td>G</td>
<td>776.4083</td>
<td>388.7078</td>
<td>759.3818</td>
<td>380.1945</td>
</tr>
<tr>
<td>10</td>
<td>1118.5914</td>
<td>559.7904</td>
<td>1116.5809</td>
<td>550.7901</td>
<td>M</td>
<td>719.3869</td>
<td>360.1971</td>
<td>702.3603</td>
<td>351.6888</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1277.6589</td>
<td>639.3336</td>
<td>1260.6333</td>
<td>630.8203</td>
<td>1259.6498</td>
<td>630.3283</td>
<td>V</td>
<td>572.5231</td>
<td>286.6794</td>
<td>555.3249</td>
<td>278.6169</td>
</tr>
<tr>
<td>12</td>
<td>1405.7184</td>
<td>703.3620</td>
<td>1388.6919</td>
<td>694.8406</td>
<td>1387.7079</td>
<td>684.3576</td>
<td>Q</td>
<td>472.2831</td>
<td>237.1452</td>
<td>456.2565</td>
<td>228.6159</td>
</tr>
<tr>
<td>13</td>
<td>1476.7556</td>
<td>736.8814</td>
<td>1459.7290</td>
<td>730.6811</td>
<td>1458.7450</td>
<td>729.8761</td>
<td>A</td>
<td>345.2245</td>
<td>173.1452</td>
<td>328.1979</td>
<td>164.6020</td>
</tr>
<tr>
<td>14</td>
<td>1575.8240</td>
<td>788.4156</td>
<td>1558.7974</td>
<td>779.9023</td>
<td>1557.8134</td>
<td>779.4103</td>
<td>V</td>
<td>276.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TDVAAPFGGFKQSGFGK.D**

Found in Q8RO5Y, Cytoytic 10-formyltetrahydrofolate dehydrogenase OS=9.3a musculus GN=Aldh111 PE=2 SV=1

Click masses within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1795.3528

Fixed modifications: Glu->K (apply to specified residues or termini only)

Variable modifications:

- **K:** replacing N or K with a methyl group, with neutral loss 41.0088

Ions Score: 62 **Expect:** 0.0098

Matches: 58/106 fragment ions using 70 most intense peaks (0.1 Da)

<table>
<thead>
<tr>
<th>#</th>
<th>b5</th>
<th>b5**</th>
<th>b5++</th>
<th>Seq</th>
<th>m/z</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0530</td>
<td>51.5811</td>
<td></td>
<td></td>
<td>84.0444</td>
<td>42.5238</td>
</tr>
<tr>
<td>2</td>
<td>217.0819</td>
<td>109.0446</td>
<td></td>
<td></td>
<td>169.0718</td>
<td>100.5091</td>
</tr>
<tr>
<td>3</td>
<td>316.1503</td>
<td>158.5788</td>
<td></td>
<td></td>
<td>284.1397</td>
<td>149.5757</td>
</tr>
<tr>
<td>4</td>
<td>387.1874</td>
<td>194.0974</td>
<td></td>
<td></td>
<td>369.1769</td>
<td>185.0921</td>
</tr>
<tr>
<td>5</td>
<td>438.2245</td>
<td>220.6106</td>
<td></td>
<td></td>
<td>440.2140</td>
<td>220.6106</td>
</tr>
<tr>
<td>6</td>
<td>535.2773</td>
<td>269.1423</td>
<td></td>
<td></td>
<td>537.2667</td>
<td>269.1423</td>
</tr>
<tr>
<td>7</td>
<td>702.3547</td>
<td>351.8765</td>
<td></td>
<td></td>
<td>684.3547</td>
<td>351.8765</td>
</tr>
<tr>
<td>8</td>
<td>759.3673</td>
<td>380.1872</td>
<td></td>
<td></td>
<td>741.3566</td>
<td>371.1819</td>
</tr>
<tr>
<td>9</td>
<td>816.3868</td>
<td>408.6980</td>
<td></td>
<td></td>
<td>798.3781</td>
<td>399.6927</td>
</tr>
<tr>
<td>10</td>
<td>963.4571</td>
<td>482.2522</td>
<td></td>
<td></td>
<td>945.4463</td>
<td>473.2269</td>
</tr>
<tr>
<td>11</td>
<td>1113.5636</td>
<td>557.2849</td>
<td>111.5350</td>
<td>158.2786</td>
<td>557.2849</td>
<td>111.5350</td>
</tr>
<tr>
<td>12</td>
<td>1261.6213</td>
<td>631.3142</td>
<td>124.4594</td>
<td>162.7809</td>
<td>622.3809</td>
<td>124.4594</td>
</tr>
<tr>
<td>13</td>
<td>1348.6532</td>
<td>674.8302</td>
<td>133.6266</td>
<td>166.3106</td>
<td>666.8025</td>
<td>133.6266</td>
</tr>
<tr>
<td>14</td>
<td>1405.7141</td>
<td>703.8410</td>
<td>138.6481</td>
<td>170.8277</td>
<td>694.8057</td>
<td>138.6481</td>
</tr>
<tr>
<td>15</td>
<td>1552.7431</td>
<td>776.8752</td>
<td>151.7156</td>
<td>176.8209</td>
<td>768.8369</td>
<td>151.7156</td>
</tr>
<tr>
<td>16</td>
<td>1699.7645</td>
<td>803.8385</td>
<td>152.7380</td>
<td>180.8726</td>
<td>796.8266</td>
<td>152.7380</td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.5863</td>
<td>65.3468</td>
<td>147.1128</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KNIHPWVK**

Found in O8C106. Carboxymethyl-cysteine [ammonium], mitochondrial OS-Mus musculus GN-Cys1 PF-1 SV-?

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1950 Da

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1106.6878

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

H3 : c-mpl 002 (K), with neutral loss 42.0000

Ions Score: 27 Expect: 0.014

Matches: 13/56 fragment ions using 26 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b++++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y++++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>285.1557</td>
<td>143.0815</td>
<td>268.1292</td>
<td>134.5682</td>
<td>N</td>
<td>893.4992</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>398.2568</td>
<td>199.6235</td>
<td>381.2132</td>
<td>191.1103</td>
<td>L</td>
<td>770.4563</td>
<td>447.2532</td>
<td>876.4726</td>
<td>438.7400</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>553.2987</td>
<td>268.1550</td>
<td>518.2722</td>
<td>259.6997</td>
<td>H</td>
<td>666.3722</td>
<td>353.6897</td>
<td>649.3457</td>
<td>525.1765</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>632.3515</td>
<td>316.6794</td>
<td>615.3240</td>
<td>308.1661</td>
<td>P</td>
<td>529.3133</td>
<td>265.1603</td>
<td>512.2867</td>
<td>256.6470</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>818.4308</td>
<td>409.7190</td>
<td>801.4042</td>
<td>401.2058</td>
<td>W</td>
<td>432.2605</td>
<td>216.6339</td>
<td>415.2340</td>
<td>208.1206</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>917.4992</td>
<td>459.2532</td>
<td>900.4726</td>
<td>450.7400</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LFAEAVQKSR

Found in OSG196. Carboxymethyl-cysteine synthase fammonial. mitochondrial OS=Mus musculus GN=Csn1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1283.6285
Fixed modifications: MMETSS (C) (apply to specified residues or termini only)
Variable modifications:
ND : m/z -16 (N), with neutral loss 49.9996

Matches: 18/88 fragment ions using 71 most intense peaks

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b'0</th>
<th>b'0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y'0</th>
<th>y'0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1077.5887</td>
<td>539.2880</td>
<td>1060.5422</td>
<td>530.7747</td>
<td>1059.5582</td>
<td>530.2827</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>201.1598</td>
<td>131.0835</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>465.7538</td>
<td>913.4738</td>
<td>457.2405</td>
<td>912.4898</td>
<td>456.7485</td>
<td>456.7485</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>461.2395</td>
<td>231.1234</td>
<td>E</td>
<td>850.4632</td>
<td>430.2352</td>
<td>842.4567</td>
<td>421.7220</td>
<td>841.4526</td>
<td>421.2300</td>
<td>841.4526</td>
<td>421.2300</td>
<td>841.4526</td>
<td>421.2300</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>532.2766</td>
<td>266.6419</td>
<td>A</td>
<td>730.4206</td>
<td>365.7139</td>
<td>713.3941</td>
<td>557.2007</td>
<td>712.4100</td>
<td>356.7087</td>
<td>712.4100</td>
<td>356.7087</td>
<td>712.4100</td>
<td>356.7087</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>759.4036</td>
<td>380.2054</td>
<td>Q</td>
<td>560.3151</td>
<td>280.6012</td>
<td>543.2885</td>
<td>272.1479</td>
<td>542.3045</td>
<td>271.6559</td>
<td>542.3045</td>
<td>271.6559</td>
<td>542.3045</td>
<td>271.6559</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>929.5091</td>
<td>465.2582</td>
<td>K</td>
<td>432.2565</td>
<td>216.6319</td>
<td>415.2300</td>
<td>208.1186</td>
<td>414.2459</td>
<td>207.6265</td>
<td>414.2459</td>
<td>207.6265</td>
<td>414.2459</td>
<td>207.6265</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1016.5411</td>
<td>508.7742</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
<td>244.1404</td>
<td>122.5738</td>
<td>244.1404</td>
<td>122.5738</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>175.1190</td>
<td>88.0631</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AKTAHVLEDGTK
Found in Q8C196, Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Monoisotopic mass of neutral peptide M(calc): 1467.7369
Fixed modifications: MS/MS (C) (apply to specified residues or termini only)
Variable modifications:
K : macl 202 (K), with neutral loss 49.9928

Matches: 15/136 fragment ions using 20 most intense peaks (Pepl)
MS/MS Fragmentation of DELGLNKYMESDGIK
Found in Q8C196. Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Plot from 00 to 1700 Da
Full range

Monoisotopic mass of neutral peptide (calc) : 1786.5103
Fixed modifications: MMT3 (C) (apply to specified residues or termini only)
Variable modifications:
E7 : mal_002 (K), with neutral loss 48.9990
Tack Score : 25 Expect : 0.015
Matches : 18/192 fragment ions using 40 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^-</th>
<th>b^+</th>
<th>b^++</th>
<th>y</th>
<th>y^-</th>
<th>y^+</th>
<th>y^++</th>
<th>Seq</th>
<th>y0</th>
<th>y0^+</th>
<th>y0^++</th>
<th>Y0</th>
<th>Y0^+</th>
<th>Y0^++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>1638.8043</td>
<td>819.9038</td>
<td>612.7778</td>
<td>811.3925</td>
<td>810.9005</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>245.0766</td>
<td>123.0420</td>
<td>227.0662</td>
<td>114.0368</td>
<td>E</td>
<td>1638.8043</td>
<td>819.9038</td>
<td>612.7778</td>
<td>811.3925</td>
<td>810.9005</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>415.1823</td>
<td>206.9048</td>
<td>397.1718</td>
<td>199.0895</td>
<td>G</td>
<td>1396.6777</td>
<td>698.8425</td>
<td>439.6511</td>
<td>690.3292</td>
<td>1378.6671</td>
<td>689.8372</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>528.2664</td>
<td>264.6368</td>
<td>510.2558</td>
<td>255.6316</td>
<td>L</td>
<td>1339.6562</td>
<td>660.3118</td>
<td>412.6297</td>
<td>661.8185</td>
<td>1321.6457</td>
<td>661.3265</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>642.3693</td>
<td>321.6383</td>
<td>621.2823</td>
<td>313.1459</td>
<td>N</td>
<td>1226.5722</td>
<td>613.7897</td>
<td>412.9546</td>
<td>605.2764</td>
<td>1208.5616</td>
<td>694.7844</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>712.4149</td>
<td>356.7111</td>
<td>705.3803</td>
<td>398.1978</td>
<td>K</td>
<td>1112.5292</td>
<td>556.7682</td>
<td>400.5027</td>
<td>548.2550</td>
<td>1094.5187</td>
<td>547.7630</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>975.4782</td>
<td>488.2427</td>
<td>958.4516</td>
<td>479.7205</td>
<td>Y</td>
<td>942.4237</td>
<td>471.7115</td>
<td>392.3972</td>
<td>463.2022</td>
<td>924.4131</td>
<td>462.7102</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1106.5753</td>
<td>553.7630</td>
<td>1089.4921</td>
<td>545.2497</td>
<td>M</td>
<td>719.3654</td>
<td>390.1388</td>
<td>272.3338</td>
<td>381.8706</td>
<td>761.3498</td>
<td>381.1785</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1235.5613</td>
<td>618.2814</td>
<td>1218.3477</td>
<td>609.7710</td>
<td>E</td>
<td>648.3199</td>
<td>324.6566</td>
<td>215.2933</td>
<td>316.1503</td>
<td>630.3093</td>
<td>315.6583</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1437.6281</td>
<td>719.3138</td>
<td>1420.5937</td>
<td>710.8805</td>
<td>D</td>
<td>422.4213</td>
<td>216.6261</td>
<td>145.2117</td>
<td>208.1130</td>
<td>414.2347</td>
<td>207.6210</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1494.6411</td>
<td>747.8245</td>
<td>1477.6512</td>
<td>739.3112</td>
<td>G</td>
<td>317.2183</td>
<td>159.1128</td>
<td>100.1818</td>
<td>150.5095</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1607.7258</td>
<td>804.3665</td>
<td>1580.6909</td>
<td>785.8532</td>
<td>I</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>322.0888</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1718.7866</td>
<td>851.3430</td>
<td>1691.7512</td>
<td>795.3562</td>
<td>K</td>
<td>147.1128</td>
<td>74.6000</td>
<td>130.6853</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **VVAVDCGIKNNVIR**

Found in Q8C196, Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point.

Or, Filter from 200 to 5000 Da Full range

Label all possible matches ✅ Label matches used for scoring ✅

Monoisotopic mass of neutral peptide Mr (calc): 1630.5171

Fixed modifications: HMB (C) (apply to specified residues or termini only)

Variable modifications:

K8 : m/z Δ29 (K), with neutral loss 48.0595

Ions Score: 19 Expect: 0.10

Matches: 17/114 fragment ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b--</th>
<th>y0</th>
<th>y+</th>
<th>y++</th>
<th>y0+</th>
<th>y+0</th>
<th>y++0</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.3415</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>199.1441</td>
<td>100.0757</td>
<td>V</td>
<td>1488.7661</td>
<td>744.3867</td>
<td>1471.7396</td>
<td>736.3734</td>
<td>1470.7236</td>
<td>735.8814</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>270.1812</td>
<td>135.5942</td>
<td>A</td>
<td>1380.6977</td>
<td>695.3522</td>
<td>1372.6712</td>
<td>686.8392</td>
<td>1371.6672</td>
<td>686.3472</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>369.2496</td>
<td>185.1283</td>
<td>V</td>
<td>1318.6806</td>
<td>659.3339</td>
<td>1301.6541</td>
<td>651.3207</td>
<td>1300.6309</td>
<td>650.8287</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>484.2766</td>
<td>242.6419</td>
<td></td>
<td>466.2660</td>
<td>233.6356</td>
<td>D</td>
<td>1219.5922</td>
<td>610.2997</td>
<td>1202.5656</td>
<td>601.7863</td>
<td>1201.5816</td>
</tr>
<tr>
<td>6</td>
<td>632.2725</td>
<td>317.1404</td>
<td></td>
<td>613.2629</td>
<td>308.1351</td>
<td>C</td>
<td>1104.5632</td>
<td>552.7863</td>
<td>1087.5287</td>
<td>544.2739</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>690.2949</td>
<td>345.6511</td>
<td></td>
<td>572.2844</td>
<td>336.6458</td>
<td>G</td>
<td>935.5633</td>
<td>478.2878</td>
<td>938.5418</td>
<td>469.7745</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>803.2790</td>
<td>402.1931</td>
<td></td>
<td>785.3684</td>
<td>392.1879</td>
<td>I</td>
<td>898.5469</td>
<td>440.7771</td>
<td>881.5023</td>
<td>441.2638</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>973.4845</td>
<td>487.2459</td>
<td></td>
<td>956.4850</td>
<td>478.7326</td>
<td>K</td>
<td>785.4628</td>
<td>392.2350</td>
<td>768.4363</td>
<td>384.7218</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1087.5275</td>
<td>544.2674</td>
<td></td>
<td>1070.5009</td>
<td>535.7541</td>
<td>N</td>
<td>615.3573</td>
<td>308.1823</td>
<td>596.3307</td>
<td>299.6690</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1201.5794</td>
<td>601.2889</td>
<td></td>
<td>1184.5438</td>
<td>592.7756</td>
<td>N</td>
<td>501.3144</td>
<td>251.1608</td>
<td>484.2678</td>
<td>242.6475</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1360.6388</td>
<td>650.8230</td>
<td></td>
<td>1283.6123</td>
<td>642.3098</td>
<td>V</td>
<td>387.2714</td>
<td>194.1394</td>
<td>370.2449</td>
<td>185.6261</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1413.7229</td>
<td>707.3651</td>
<td></td>
<td>1396.6963</td>
<td>698.8518</td>
<td>I</td>
<td>286.2639</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0919</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GTTITSVLPKPALVASR
Found in Q8C194, Carbamoyl phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from × to Da to Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr[mole]: 1796.2044
Fixed modifications: HET (O) (apply to specified residues or termini only)
Variable modifications: K10 : ma,002 (O) with neutral loss 48.0150
Ion Score: 28 Expect: 0.049
Matches: 28/219 fragment ions using 44 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>Seq.</th>
<th>y0</th>
<th>y0'</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td>G</td>
<td>141.0659</td>
<td>71.0366</td>
<td>T</td>
<td>1696.0003</td>
<td>818.5033</td>
<td>1678.9738</td>
<td>839.0902</td>
<td>1677.9804</td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td>242.1135</td>
<td>121.5604</td>
<td>T</td>
<td>1594.9527</td>
<td>797.9800</td>
<td>1577.9261</td>
<td>789.4667</td>
<td>1576.9421</td>
<td>789.9474</td>
</tr>
<tr>
<td>3</td>
<td>260.1241</td>
<td>130.5657</td>
<td>335.1976</td>
<td>178.1024</td>
<td>I</td>
<td>1492.0050</td>
<td>747.4561</td>
<td>1476.8784</td>
<td>738.9429</td>
<td>1475.8944</td>
<td>728.4509</td>
</tr>
<tr>
<td>4</td>
<td>373.2082</td>
<td>187.1077</td>
<td>456.2453</td>
<td>228.6263</td>
<td>T</td>
<td>1380.8208</td>
<td>650.9141</td>
<td>1363.7444</td>
<td>642.4008</td>
<td>1362.8104</td>
<td>651.9088</td>
</tr>
<tr>
<td>5</td>
<td>474.2536</td>
<td>237.6316</td>
<td>543.2773</td>
<td>272.1423</td>
<td>S</td>
<td>S17.9772</td>
<td>649.3903</td>
<td>1262.7467</td>
<td>631.8771</td>
<td>1261.767</td>
<td>651.3850</td>
</tr>
<tr>
<td>6</td>
<td>561.2879</td>
<td>281.1476</td>
<td>642.3457</td>
<td>321.6765</td>
<td>V</td>
<td>1192.7412</td>
<td>596.8742</td>
<td>1175.7147</td>
<td>588.3610</td>
<td>1174.7307</td>
<td>587.8690</td>
</tr>
<tr>
<td>7</td>
<td>660.3563</td>
<td>330.6818</td>
<td>733.4495</td>
<td>387.2238</td>
<td>L</td>
<td>1093.6728</td>
<td>547.3400</td>
<td>1076.6463</td>
<td>538.8268</td>
<td>1075.6622</td>
<td>538.3348</td>
</tr>
<tr>
<td>8</td>
<td>780.4931</td>
<td>385.7502</td>
<td>852.6282</td>
<td>426.7449</td>
<td>P</td>
<td>930.3887</td>
<td>690.7980</td>
<td>913.5622</td>
<td>682.2847</td>
<td>912.5782</td>
<td>681.7927</td>
</tr>
<tr>
<td>9</td>
<td>1040.5986</td>
<td>520.8030</td>
<td>1023.7271</td>
<td>512.2897</td>
<td>K</td>
<td>883.5360</td>
<td>442.2716</td>
<td>866.5094</td>
<td>433.7584</td>
<td>865.5254</td>
<td>433.2663</td>
</tr>
<tr>
<td>10</td>
<td>1117.6514</td>
<td>569.3293</td>
<td>1100.6249</td>
<td>550.1816</td>
<td>1119.6048</td>
<td>560.3241</td>
<td>P</td>
<td>713.6865</td>
<td>357.2189</td>
<td>696.4039</td>
<td>348.7056</td>
</tr>
<tr>
<td>11</td>
<td>1208.6885</td>
<td>604.8479</td>
<td>1191.6620</td>
<td>596.3346</td>
<td>1190.6780</td>
<td>595.8426</td>
<td>A</td>
<td>616.3777</td>
<td>308.6925</td>
<td>599.3511</td>
<td>300.1792</td>
</tr>
<tr>
<td>12</td>
<td>1321.7726</td>
<td>661.3899</td>
<td>1304.7460</td>
<td>652.8767</td>
<td>1303.7620</td>
<td>652.3846</td>
<td>L</td>
<td>545.2466</td>
<td>273.1739</td>
<td>528.3140</td>
<td>264.6606</td>
</tr>
<tr>
<td>13</td>
<td>1420.8410</td>
<td>710.9241</td>
<td>1403.8144</td>
<td>702.4109</td>
<td>1402.8304</td>
<td>701.9189</td>
<td>V</td>
<td>432.2565</td>
<td>216.6319</td>
<td>415.2300</td>
<td>208.1186</td>
</tr>
<tr>
<td>14</td>
<td>1491.8781</td>
<td>746.4427</td>
<td>1474.8516</td>
<td>737.9294</td>
<td>1473.8675</td>
<td>737.4374</td>
<td>A</td>
<td>333.1881</td>
<td>167.0977</td>
<td>316.1615</td>
<td>158.5844</td>
</tr>
<tr>
<td>15</td>
<td>1587.9101</td>
<td>789.9387</td>
<td>1561.8838</td>
<td>781.4454</td>
<td>1540.8996</td>
<td>760.9034</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>122.0659</td>
</tr>
<tr>
<td>16</td>
<td>1755.9190</td>
<td>828.9053</td>
<td>1729.9927</td>
<td>810.4120</td>
<td>1709.9076</td>
<td>799.8608</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.9624</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EIGFSDKQISK
Found in Q8C196, Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1400 Da
Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1336.68110
Fixed modifications: MG(S) (C) (apply to specified residues or termini only)
Variable modifications:
M7 : ma5_C02 (K), with neutral loss 43.9590
Tons Score: 27 Expect: 0.028
Matches : 36/106 fragment ions using 93 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td>225.1234</td>
<td>113.0653</td>
<td>I</td>
<td>1164.6259</td>
<td>582.8166</td>
<td>1147.5994</td>
<td>574.3033</td>
<td>1146.6153</td>
</tr>
<tr>
<td>3</td>
<td>300.1554</td>
<td>150.5813</td>
<td>282.1448</td>
<td>141.5761</td>
<td>G</td>
<td>1051.5419</td>
<td>526.2746</td>
<td>1034.5153</td>
<td>517.7613</td>
<td>1033.5313</td>
</tr>
<tr>
<td>4</td>
<td>441.2238</td>
<td>224.1135</td>
<td>429.2132</td>
<td>215.1103</td>
<td>F</td>
<td>994.5284</td>
<td>497.7638</td>
<td>977.4938</td>
<td>489.2506</td>
<td>976.5098</td>
</tr>
<tr>
<td>5</td>
<td>534.2558</td>
<td>267.6316</td>
<td>516.2453</td>
<td>258.6263</td>
<td>S</td>
<td>847.4520</td>
<td>424.2296</td>
<td>830.4254</td>
<td>415.7164</td>
<td>829.4414</td>
</tr>
<tr>
<td>8</td>
<td>947.4469</td>
<td>474.2271</td>
<td>930.4203</td>
<td>465.7138</td>
<td>Q</td>
<td>475.2875</td>
<td>238.1474</td>
<td>458.2609</td>
<td>229.6341</td>
<td>457.2769</td>
</tr>
<tr>
<td>10</td>
<td>1147.5630</td>
<td>574.2851</td>
<td>1130.5364</td>
<td>565.7719</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0560</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AMLSTGFKIPQK

Found in **OBC190**. Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1269.7275
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:

Fbra : m/z 0.000 (X), with neutral loss 48.9698

Tally Score: 32 **Expect:** 0.0047

Matches: 22/90 fragment ions using 64 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b+</th>
<th>y0</th>
<th>y0+</th>
<th>y0++</th>
<th>y0+++</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>203.0849</td>
<td>102.0461</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>1291.7079</td>
<td>646.3576</td>
<td>1274.6813</td>
<td>637.8443</td>
<td>1273.6973</td>
</tr>
<tr>
<td>3</td>
<td>316.1689</td>
<td>158.5881</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1160.6674</td>
<td>580.8373</td>
<td>1143.6408</td>
<td>572.3241</td>
<td>1142.6568</td>
</tr>
<tr>
<td>4</td>
<td>403.2010</td>
<td>202.1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>1047.5833</td>
<td>524.2953</td>
<td>1030.5568</td>
<td>515.7820</td>
<td>1029.5728</td>
</tr>
<tr>
<td>5</td>
<td>504.2486</td>
<td>252.6280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>960.5523</td>
<td>480.7703</td>
<td>943.5247</td>
<td>472.2609</td>
<td>942.5407</td>
</tr>
<tr>
<td>6</td>
<td>561.2701</td>
<td>281.1387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>859.5038</td>
<td>430.2554</td>
<td>842.4771</td>
<td>421.7422</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>708.3353</td>
<td>354.6729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>802.4822</td>
<td>401.7447</td>
<td>785.4556</td>
<td>303.2314</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>878.4441</td>
<td>439.7257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>655.4137</td>
<td>328.2105</td>
<td>638.3872</td>
<td>319.6972</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>991.5281</td>
<td>496.2677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>485.3082</td>
<td>243.1577</td>
<td>468.2817</td>
<td>234.6445</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1088.3809</td>
<td>544.7941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>372.2224</td>
<td>186.6157</td>
<td>355.1976</td>
<td>178.1024</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1216.6395</td>
<td>608.8234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TVDSKSLFHYR**

Found in **08-106** Catharanthus roseus leaves, homologous mitochondrial OSMs, putative CNS-CoQ1 DP=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 250 to 1250 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1457.4888

Fixed modifications: M, S, K (apply to specified residues or termini only)

Variable modifications:

- N-terminus: #N, with neutral loss 40.0200

Ions Score: 36 **Expect:** 0.0016

Matches: 17/102 fragment ions using 39 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td></td>
<td></td>
<td>84.0444</td>
<td>42.5258</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td></td>
<td></td>
<td>183.1128</td>
<td>92.0600</td>
<td>1293.6586</td>
<td>647.3329</td>
<td>1276.6321</td>
</tr>
<tr>
<td>3</td>
<td>316.1503</td>
<td>158.5788</td>
<td></td>
<td></td>
<td>298.1397</td>
<td>149.5735</td>
<td>D</td>
<td>1194.3902</td>
<td>597.3987</td>
</tr>
<tr>
<td>4</td>
<td>403.1823</td>
<td>202.0948</td>
<td></td>
<td></td>
<td>385.1718</td>
<td>193.0895</td>
<td>S</td>
<td>1079.5633</td>
<td>540.2853</td>
</tr>
<tr>
<td>5</td>
<td>573.2879</td>
<td>287.1476</td>
<td>556.2613</td>
<td>278.6343</td>
<td>555.2773</td>
<td>278.1423</td>
<td>K</td>
<td>992.3312</td>
<td>496.7693</td>
</tr>
<tr>
<td>6</td>
<td>660.3190</td>
<td>330.6636</td>
<td>643.2033</td>
<td>322.1503</td>
<td>642.3003</td>
<td>321.6583</td>
<td>S</td>
<td>822.4257</td>
<td>411.7165</td>
</tr>
<tr>
<td>8</td>
<td>920.4724</td>
<td>460.7398</td>
<td>903.4458</td>
<td>452.2266</td>
<td>902.4618</td>
<td>451.7345</td>
<td>F</td>
<td>622.3896</td>
<td>311.6584</td>
</tr>
<tr>
<td>9</td>
<td>1057.5313</td>
<td>529.2693</td>
<td>1040.5047</td>
<td>520.7560</td>
<td>1039.5207</td>
<td>520.2640</td>
<td>H</td>
<td>475.2412</td>
<td>238.1242</td>
</tr>
<tr>
<td>10</td>
<td>1220.5946</td>
<td>610.8009</td>
<td>1203.5681</td>
<td>602.2877</td>
<td>1202.5840</td>
<td>601.7957</td>
<td>Y</td>
<td>338.1823</td>
<td>169.5948</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0024</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TFEESFQKALR**

Found in **OEC108** (Oecolochaina cornutana, Bombyliidae) mitochondrial GS=Amo musculae GN=Coel PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from [] 200 to 1500 Da [] Full range

Label all possible matches [] Label matches used for scoring []

Monoisotopic mass of neutral peptide Mr(calc): 1440.6888
Fixed modifications: IMS (C) (apply to specified residues or termini only)
Variable modifications:
K8 : mal-CD2 (K), with neutral loss 43.00888
Ions Score: 58 Expect: 0.0068
Matches: 26/36 Frequent ions using 44 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y''</th>
<th>y0</th>
<th>y''0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.6550</td>
<td>51.5311</td>
<td></td>
<td>84.0444</td>
<td>42.8258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>249.1234</td>
<td>125.0653</td>
<td></td>
<td>231.1128</td>
<td>116.0600</td>
<td>F</td>
<td>1296.6583</td>
<td>648.3828</td>
<td>1279.6317</td>
<td>640.3195</td>
</tr>
<tr>
<td>3</td>
<td>378.1660</td>
<td>180.5865</td>
<td></td>
<td>360.1554</td>
<td>180.5813</td>
<td>E</td>
<td>1119.3899</td>
<td>575.2086</td>
<td>1132.5633</td>
<td>566.7853</td>
</tr>
<tr>
<td>5</td>
<td>594.2406</td>
<td>297.6239</td>
<td></td>
<td>576.2300</td>
<td>288.8186</td>
<td>S</td>
<td>891.3047</td>
<td>446.2560</td>
<td>874.4781</td>
<td>437.7427</td>
</tr>
<tr>
<td>6</td>
<td>741.3090</td>
<td>371.1581</td>
<td></td>
<td>723.2984</td>
<td>362.1529</td>
<td>F</td>
<td>804.4726</td>
<td>402.7400</td>
<td>787.4461</td>
<td>394.2267</td>
</tr>
<tr>
<td>7</td>
<td>859.3876</td>
<td>435.1874</td>
<td>852.3410</td>
<td>426.6742</td>
<td>851.3570</td>
<td>426.1821</td>
<td>Q</td>
<td>657.1042</td>
<td>329.2058</td>
<td>640.3777</td>
</tr>
<tr>
<td>8</td>
<td>1039.4731</td>
<td>520.2402</td>
<td>1022.4466</td>
<td>511.7269</td>
<td>1021.4625</td>
<td>511.2349</td>
<td>K</td>
<td>520.3477</td>
<td>265.1875</td>
<td>512.3191</td>
</tr>
<tr>
<td>9</td>
<td>1110.5102</td>
<td>555.7587</td>
<td>1093.4837</td>
<td>547.2455</td>
<td>1092.4997</td>
<td>546.7535</td>
<td>A</td>
<td>359.2401</td>
<td>180.1237</td>
<td>342.2136</td>
</tr>
<tr>
<td>10</td>
<td>1223.5943</td>
<td>612.3008</td>
<td>1206.5677</td>
<td>603.7875</td>
<td>1205.5837</td>
<td>603.2965</td>
<td>L</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
</tr>
<tr>
<td>11</td>
<td>175.1190</td>
<td>88.0631</td>
<td></td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TAHIVLEDGT KMK

Found in Q8C196, Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide (Mr(calc)): 1527.7608
Fixed modifications: MGST (C) (apply to specified residues or termini only)
Variable modifications:
K11 : meI2 (I), with monoisotopic mass 44.0080
Ion Source: ESI Detector: Q-TOF
Matches : 25/129 fragment ions using 88 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b^a</th>
<th>b++^a</th>
<th>g</th>
<th>g^a</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y^a</th>
<th>y++^a</th>
<th>y^b</th>
<th>y^b++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td>A</td>
<td>1383.7301 692.3687 1366.7035 683.8534 1365.7193 683.3654</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>173.0921</td>
<td>87.0497</td>
<td>155.0815</td>
<td>78.0444</td>
<td>A</td>
<td>H</td>
<td>1312.6929 626.8501 1295.6864 648.3330 1294.6824 647.8418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>318.1516</td>
<td>155.7214</td>
<td>252.1408</td>
<td>116.5738</td>
<td>H</td>
<td>I</td>
<td>1175.6340 588.3207 1158.6075 579.8074 1157.6235 579.3154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>422.1350</td>
<td>211.2121</td>
<td>405.2245</td>
<td>203.1159</td>
<td>I</td>
<td>V</td>
<td>1062.8500 551.7786 1045.5234 522.2651 1044.5394 522.7733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>522.0835</td>
<td>261.6524</td>
<td>504.2929</td>
<td>252.6001</td>
<td>V</td>
<td>L</td>
<td>963.4816 482.2441 946.4550 473.7311 945.4710 473.2391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>635.4787</td>
<td>318.1974</td>
<td>617.3770</td>
<td>309.1921</td>
<td>L</td>
<td>E</td>
<td>850.3975 427.7024 833.3709 417.1891 832.3699 416.6971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>764.4101</td>
<td>382.7187</td>
<td>746.4158</td>
<td>373.7134</td>
<td>E</td>
<td>D</td>
<td>721.3549 361.1811 704.3284 352.6678 703.3443 352.1735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>936.4738</td>
<td>468.7429</td>
<td>918.4685</td>
<td>459.7367</td>
<td>G</td>
<td>C</td>
<td>549.2968 273.1599 532.2799 266.6453 531.2959 266.1518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1027.5262</td>
<td>519.2667</td>
<td>1019.5156</td>
<td>510.2651</td>
<td>C</td>
<td>K</td>
<td>448.5888 224.6330 431.2233 216.1198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1120.6317</td>
<td>590.3052</td>
<td>1109.6032</td>
<td>593.8602</td>
<td>K</td>
<td>M</td>
<td>378.1533 139.5803 361.6167 131.0670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1338.6722</td>
<td>669.8397</td>
<td>1321.6457</td>
<td>661.3265</td>
<td>M</td>
<td>K</td>
<td>147.1128 74.0600 138.0863 65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1555.7132</td>
<td>782.8566</td>
<td>1538.6862</td>
<td>774.3405</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QISKCLGLTEAQTR
Found in OSC196. Carboxypeptidase Y; ammonia mitochondrial OS=Mus musculus GN=Cox1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da
Label all possible matches

Monoisotopic mass of neutral peptide M(calc): 1670.0616
Fixed modifications: MMT (C) (apply to specified residues or termini only)
Variable modifications:
K8: + 15.99491 (E), with neutral loss 44.012

Ions Score: 23 Expect: 0.012
Matches : 17/150 fragment ions using 20 most intense peaks

<table>
<thead>
<tr>
<th></th>
<th>m/z</th>
<th>b</th>
<th>b--</th>
<th>b+</th>
<th>b0</th>
<th>Seq.</th>
<th>y</th>
<th>y--</th>
<th>y+</th>
<th>y0</th>
<th>y--</th>
<th>y+</th>
<th>y0</th>
<th>y--</th>
<th>y+</th>
<th>y0</th>
<th>y--</th>
<th>y+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0393</td>
<td>56.5233</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0853</td>
<td>I</td>
<td>1307.7607</td>
<td>754.3840</td>
<td>1490.7342</td>
<td>745.8707</td>
<td>1489.7201</td>
<td>745.3787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>329.1810</td>
<td>165.0946</td>
<td>312.1554</td>
<td>156.3813</td>
<td>S</td>
<td>1394.6766</td>
<td>697.8420</td>
<td>1377.6551</td>
<td>689.3287</td>
<td>1376.6661</td>
<td>688.8367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>499.2873</td>
<td>220.1474</td>
<td>482.2609</td>
<td>214.6314</td>
<td>F</td>
<td>1307.6446</td>
<td>654.3239</td>
<td>1290.6181</td>
<td>613.8127</td>
<td>1289.6641</td>
<td>613.5207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>648.2844</td>
<td>324.6458</td>
<td>631.2578</td>
<td>316.1326</td>
<td>C</td>
<td>1137.5391</td>
<td>569.2732</td>
<td>1120.5125</td>
<td>560.7599</td>
<td>1119.5285</td>
<td>560.2679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>761.3624</td>
<td>381.1879</td>
<td>744.3419</td>
<td>372.6746</td>
<td>L</td>
<td>988.5422</td>
<td>494.7741</td>
<td>971.5156</td>
<td>486.3615</td>
<td>970.5316</td>
<td>485.7694</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>818.3899</td>
<td>409.6966</td>
<td>801.3634</td>
<td>401.1835</td>
<td>G</td>
<td>875.4651</td>
<td>438.2237</td>
<td>858.4316</td>
<td>429.7194</td>
<td>857.4476</td>
<td>429.2274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>931.4740</td>
<td>466.2466</td>
<td>914.4474</td>
<td>457.7273</td>
<td>L</td>
<td>818.4367</td>
<td>409.7220</td>
<td>801.4101</td>
<td>401.2087</td>
<td>800.4261</td>
<td>400.7167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1032.5217</td>
<td>516.7613</td>
<td>1019.4921</td>
<td>508.2312</td>
<td>T</td>
<td>708.3526</td>
<td>353.1799</td>
<td>688.3260</td>
<td>344.8667</td>
<td>687.3240</td>
<td>344.1477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1161.5642</td>
<td>581.2828</td>
<td>1148.5377</td>
<td>572.7275</td>
<td>E</td>
<td>604.3649</td>
<td>302.6581</td>
<td>587.2784</td>
<td>294.1248</td>
<td>586.2944</td>
<td>293.6508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1232.6014</td>
<td>616.8013</td>
<td>1215.7548</td>
<td>608.2940</td>
<td>A</td>
<td>475.2623</td>
<td>238.1348</td>
<td>458.2358</td>
<td>239.6215</td>
<td>457.2181</td>
<td>239.1295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1369.6599</td>
<td>680.8333</td>
<td>1343.6334</td>
<td>672.3203</td>
<td>Q</td>
<td>404.2252</td>
<td>202.6162</td>
<td>387.1987</td>
<td>194.1030</td>
<td>386.2164</td>
<td>193.6100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1461.7076</td>
<td>731.3574</td>
<td>1444.6581</td>
<td>722.8442</td>
<td>T</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>258.1561</td>
<td>129.5817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>175.1159</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VMIGESIDEKR

Found in Q8C9B6. Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1341.6497

Fixed modifications: NO PTMs (apply to specified residues or termini only)

Variable modifications:

- K10 : m/z CO2 (K), with neutral loss 43.0166

In Silico Score: 89.24

Matches: 17/50 fragment ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b'''</th>
<th>b'''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y'''</th>
<th>y'''</th>
<th>y0</th>
<th>y0'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>231.1162</td>
<td>116.0617</td>
<td>M</td>
<td>1219.5987</td>
<td>610.3030</td>
<td>1202.5722</td>
<td>601.7897</td>
<td>1201.5881</td>
<td>601.2977</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>344.2002</td>
<td>172.6038</td>
<td>I</td>
<td>1088.5582</td>
<td>544.7828</td>
<td>1071.5317</td>
<td>535.2695</td>
<td>1070.5477</td>
<td>535.7775</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>401.2217</td>
<td>201.1145</td>
<td>G</td>
<td>975.4742</td>
<td>488.2407</td>
<td>958.4476</td>
<td>479.7274</td>
<td>957.4636</td>
<td>479.2354</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>530.2643</td>
<td>265.6358</td>
<td>E</td>
<td>918.4227</td>
<td>459.7300</td>
<td>901.4262</td>
<td>451.2167</td>
<td>900.4421</td>
<td>450.7247</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>617.2063</td>
<td>309.1518</td>
<td>S</td>
<td>789.4101</td>
<td>395.2087</td>
<td>772.3836</td>
<td>386.6954</td>
<td>771.3995</td>
<td>386.2034</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>730.3504</td>
<td>365.6938</td>
<td>I</td>
<td>702.3781</td>
<td>351.6927</td>
<td>685.3515</td>
<td>343.1794</td>
<td>684.3675</td>
<td>342.6874</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>845.4073</td>
<td>423.2073</td>
<td>D</td>
<td>589.2940</td>
<td>296.1506</td>
<td>572.2675</td>
<td>286.6274</td>
<td>571.2835</td>
<td>286.1454</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>974.4199</td>
<td>487.7286</td>
<td>E</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6319</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1144.5555</td>
<td>572.7814</td>
<td>1127.5289</td>
<td>564.2681</td>
<td>1126.5449</td>
<td>563.7761</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TLKGLNSDSVTTELTR
Found in Q8C18M. Carbamoyl-phosphate synthase [mammalian], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot ions 200 to 1700 Da
Label all possible matches * Label matches used for scoring *

Neutral loss mass of neutral peptide Mr(calc): 1947.9212
Fixed modifications: MMTS (C) (apply to specified residues or remove if used as variable modifications)
Variable modifications:
K1 : mal COX (R), with neutral loss 42.0182
Ion Score: 70 Expect: 1.2e-036
Matches : 25/472 fragment ions using 62 most intense peaks (1.0)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.3111</td>
<td>84.0444</td>
<td>42.5238</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.0731</td>
<td>197.1285</td>
<td>99.0679</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>385.2445</td>
<td>193.1259</td>
<td>369.2159</td>
<td>184.6126</td>
<td>287.2340</td>
<td>184.1206</td>
</tr>
<tr>
<td>4</td>
<td>442.2660</td>
<td>221.6666</td>
<td>425.2395</td>
<td>213.1324</td>
<td>424.2554</td>
<td>212.6134</td>
</tr>
<tr>
<td>5</td>
<td>555.3501</td>
<td>278.1787</td>
<td>538.3225</td>
<td>269.6654</td>
<td>537.3395</td>
<td>269.1734</td>
</tr>
<tr>
<td>6</td>
<td>669.3530</td>
<td>355.2001</td>
<td>652.3665</td>
<td>326.8609</td>
<td>511.3582</td>
<td>266.1649</td>
</tr>
<tr>
<td>7</td>
<td>736.4520</td>
<td>378.7612</td>
<td>739.3902</td>
<td>370.2029</td>
<td>738.3412</td>
<td>369.7109</td>
</tr>
<tr>
<td>8</td>
<td>871.4520</td>
<td>456.3566</td>
<td>854.4724</td>
<td>437.7163</td>
<td>853.4141</td>
<td>427.2324</td>
</tr>
<tr>
<td>9</td>
<td>958.4840</td>
<td>479.7456</td>
<td>561.4575</td>
<td>471.2324</td>
<td>940.4734</td>
<td>470.7404</td>
</tr>
<tr>
<td>10</td>
<td>1057.5520</td>
<td>529.2798</td>
<td>1040.3259</td>
<td>520.7666</td>
<td>1039.3418</td>
<td>520.2746</td>
</tr>
<tr>
<td>11</td>
<td>1158.6040</td>
<td>579.8037</td>
<td>1140.3732</td>
<td>571.2904</td>
<td>1140.3982</td>
<td>570.7984</td>
</tr>
<tr>
<td>12</td>
<td>1237.6473</td>
<td>644.3250</td>
<td>1210.6151</td>
<td>635.8117</td>
<td>1209.6231</td>
<td>635.3197</td>
</tr>
<tr>
<td>13</td>
<td>1416.6680</td>
<td>708.8461</td>
<td>1399.6587</td>
<td>700.3330</td>
<td>1398.6747</td>
<td>699.8410</td>
</tr>
<tr>
<td>14</td>
<td>1517.7350</td>
<td>759.3701</td>
<td>1500.7062</td>
<td>750.8558</td>
<td>1499.7224</td>
<td>750.3648</td>
</tr>
<tr>
<td>15</td>
<td>1650.8170</td>
<td>815.9121</td>
<td>1613.7902</td>
<td>807.3989</td>
<td>1612.8056</td>
<td>806.9069</td>
</tr>
<tr>
<td>16</td>
<td>R</td>
<td>173.1190</td>
<td>88.0631</td>
<td>138.0924</td>
<td>79.5489</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QIFLGGVDK

QIFLGGVDK

Found in **P51881**, ADP/ATP translocase 2

OS = *Mus musculus*
GN = Slc25a5
PE = 1
SV = 3

Click mouse within plot area to zoom in by factor of two about that point

Or,
Plot from [] to []

Da
Full range

Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1217.6404

Fixed modifications:
-

Variable modifications:
-

K9 : m/z ΔCO2 (K), with neutral loss 43.9898

Ions Score: 51
Expect: 0.000007

Matches: 20/90 fragment ions using 29 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0393</td>
<td>56.5233</td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td></td>
<td></td>
<td>I</td>
<td>1046.5993</td>
<td>523.8033</td>
<td>1029.5728</td>
<td>515.2900</td>
<td>1028.5887</td>
<td>514.7980</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>389.2183</td>
<td>195.1128</td>
<td>372.1918</td>
<td>186.5995</td>
<td></td>
<td></td>
<td>F</td>
<td>923.5152</td>
<td>467.2613</td>
<td>916.4887</td>
<td>458.7480</td>
<td>915.5047</td>
<td>458.2560</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>502.3024</td>
<td>251.6548</td>
<td>485.2758</td>
<td>243.1416</td>
<td></td>
<td></td>
<td>L</td>
<td>786.4168</td>
<td>393.7271</td>
<td>769.4203</td>
<td>385.2138</td>
<td>768.4363</td>
<td>384.7218</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>559.3239</td>
<td>280.1656</td>
<td>542.2973</td>
<td>271.6523</td>
<td></td>
<td></td>
<td>G</td>
<td>673.3628</td>
<td>337.1850</td>
<td>656.3362</td>
<td>328.6717</td>
<td>655.3522</td>
<td>328.1797</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>616.3413</td>
<td>308.6763</td>
<td>599.3188</td>
<td>300.1630</td>
<td></td>
<td></td>
<td>G</td>
<td>616.3413</td>
<td>308.6743</td>
<td>599.3148</td>
<td>300.1610</td>
<td>598.3307</td>
<td>299.6690</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>715.4157</td>
<td>358.2105</td>
<td>698.3872</td>
<td>349.6972</td>
<td></td>
<td></td>
<td>V</td>
<td>559.3198</td>
<td>280.1636</td>
<td>542.2933</td>
<td>271.6503</td>
<td>541.3093</td>
<td>271.1583</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>830.4407</td>
<td>415.7240</td>
<td>813.1414</td>
<td>407.2107</td>
<td>812.4301</td>
<td>406.7187</td>
<td>D</td>
<td>460.2514</td>
<td>230.6293</td>
<td>443.2249</td>
<td>222.1161</td>
<td>442.2409</td>
<td>221.6241</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1000.5162</td>
<td>500.7767</td>
<td>983.5197</td>
<td>492.2635</td>
<td>982.5356</td>
<td>491.7715</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>158.0924</td>
<td>79.5498</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YKQIFLGGVDK
Found in P51881, ADP/ATP translocase 2 OS=Mus musculus GN=Stc25a5 PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide M(r(calo)): 1862.6976
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications: K2 : mas-CO2 (K), with neutral loss 43.9898
Ions Score: 60 Expect: 6.6e-006
Matches: 16/90 Fragment ions using 22 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq.</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>344.1761</td>
<td>167.5917</td>
<td>317.1496</td>
<td>159.0784</td>
<td></td>
<td>K</td>
<td>1146.6517</td>
<td>573.8295</td>
<td>1129.6252</td>
<td>565.3162</td>
</tr>
<tr>
<td>3</td>
<td>462.2347</td>
<td>231.6210</td>
<td>445.2082</td>
<td>223.1077</td>
<td></td>
<td>Q</td>
<td>976.5462</td>
<td>488.7767</td>
<td>959.5197</td>
<td>480.2635</td>
</tr>
<tr>
<td>4</td>
<td>575.3188</td>
<td>288.1630</td>
<td>558.2922</td>
<td>279.6498</td>
<td></td>
<td>I</td>
<td>848.3876</td>
<td>424.7475</td>
<td>831.4611</td>
<td>416.2342</td>
</tr>
<tr>
<td>5</td>
<td>722.3872</td>
<td>361.6972</td>
<td>705.3605</td>
<td>353.1840</td>
<td></td>
<td>F</td>
<td>735.4036</td>
<td>368.2054</td>
<td>718.3770</td>
<td>359.6921</td>
</tr>
<tr>
<td>6</td>
<td>835.4713</td>
<td>418.2393</td>
<td>818.4447</td>
<td>409.7260</td>
<td></td>
<td>L</td>
<td>588.3352</td>
<td>294.6712</td>
<td>571.3086</td>
<td>286.1579</td>
</tr>
<tr>
<td>7</td>
<td>892.4927</td>
<td>446.7500</td>
<td>875.4662</td>
<td>458.2367</td>
<td></td>
<td>G</td>
<td>475.2511</td>
<td>238.1292</td>
<td>458.2245</td>
<td>228.1659</td>
</tr>
<tr>
<td>8</td>
<td>949.8142</td>
<td>475.2607</td>
<td>932.4876</td>
<td>466.7475</td>
<td></td>
<td>G</td>
<td>448.2296</td>
<td>209.6185</td>
<td>401.2031</td>
<td>201.1052</td>
</tr>
<tr>
<td>9</td>
<td>1048.5826</td>
<td>524.7949</td>
<td>1033.5560</td>
<td>516.2817</td>
<td></td>
<td>V</td>
<td>361.2082</td>
<td>181.1077</td>
<td>344.1816</td>
<td>172.5944</td>
</tr>
<tr>
<td>10</td>
<td>1163.6895</td>
<td>582.3084</td>
<td>1146.5830</td>
<td>573.7951</td>
<td>1145.5990</td>
<td>D</td>
<td>262.1397</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0838</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YKQIFLGGVDKR

Found in P51881, ADP/ATP translocase 2 OS=Mus musculus GN=Sdc25a5 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da
Tick Label all possible matches Divide Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1608.7997

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

- K2 = mal CO2H (K), with neutral loss 43.01067

Ions Score: 46 **Expect:** 0.00019

Matches: 84/108 fragment ions using 61 most intense peaks

#	b	b'	b''	b⁰	b⁰''	Seq.	y	y'	y''	y⁰	y⁰''	y¹	y¹''	y²	y²''	y³	y³''	y⁴	y⁴''	y⁵	y⁵''	y⁶	y⁶''	y⁷	y⁷''	y⁸	y⁸''	y⁹	y⁹''	y¹⁰	y¹⁰''	y¹¹	y¹¹''	y¹²	y¹²''				
1	164.0706	82.5389			Y																																		
2	334.1761	167.5917	317.1406	159.0784	K	1302.7528	651.8801	1285.7263	643.3668	1284.7423	642.8748	11																											
3	462.2347	231.6210	445.2082	223.1077	Q	1132.6473	566.8273	1115.6208	558.3140	1114.6368	557.8220	10																											
4	575.3188	288.1630	558.2922	279.6498	T	1004.5887	502.7980	987.5622	494.2847	986.5782	493.7927	9																											
5	722.3872	361.6972	705.3606	353.1840	F	891.5047	446.2560	874.4781	437.7427	873.4941	437.2507	8																											
6	835.4713	418.2393	818.4447	409.7260	L	744.4363	372.7218	727.4097	364.2085	726.4257	363.7165	7																											
7	892.4927	446.7500	875.4662	438.2367	G	631.3522	316.1797	614.3257	307.6665	613.3416	307.1745	6																											
8	949.5112	475.2607	932.4876	466.7475	G	574.3307	287.6690	557.3042	279.1557	556.3202	278.6657	5																											
9	1048.5826	524.7949	1031.5560	516.2817	V	517.3093	259.1583	500.2827	250.6450	499.2887	250.1530	4																											
10	1163.6095	582.3084	1146.5830	573.7051	D	418.2409	209.6241	401.2143	201.1108	400.2303	200.6188	3																											
11	1291.7045	646.3559	1274.6780	637.8426	K	303.2139	152.1106	286.1874	143.5973	2																													
12	R	175.1190	88.0631	158.0924	79.5498	1																																	
MS/MS Fragmentation of **DKYKQIFLGGVDK**

Found in P51881, ADP/ATP translocase 2 OS=Mus musculus GN=Sc2m5a5 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or: [Plot form: 200 to 1500 Da] [Full range]
Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide M [calc]: 1895.8156
Fixed modifications: M(58) [apply to specified residues or termini only]
Variable modifications:
K4 : mod COO (K), with neutral loss 43.01058

Ions Score: 88, Expect: 6.0044
Matches: 44/140 fragment ions using 37 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^-</th>
<th>b^++</th>
<th>b^--</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^-</th>
<th>y^++</th>
<th>y^--</th>
<th>y^+++</th>
<th>y^-+</th>
<th>y^+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>1437.8109</td>
<td>719.4087</td>
<td>1420.7825</td>
<td>710.8954</td>
<td>1419.7925</td>
<td>710.4934</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>244.1292</td>
<td>122.5682</td>
<td>227.1026</td>
<td>114.0550</td>
<td>228.1185</td>
<td>113.5629</td>
<td>K</td>
<td>1399.7157</td>
<td>655.3612</td>
<td>1292.6835</td>
<td>646.8479</td>
<td>1291.7045</td>
<td>646.3559</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>703.3566</td>
<td>353.1819</td>
<td>688.3301</td>
<td>344.6087</td>
<td>687.3661</td>
<td>344.1767</td>
<td>Q</td>
<td>976.5342</td>
<td>488.7767</td>
<td>959.5197</td>
<td>480.2635</td>
<td>958.5335</td>
<td>479.7715</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>818.4407</td>
<td>409.7240</td>
<td>801.4141</td>
<td>401.2107</td>
<td>800.4014</td>
<td>400.7187</td>
<td>I</td>
<td>849.4876</td>
<td>424.7473</td>
<td>831.4611</td>
<td>416.2242</td>
<td>830.4771</td>
<td>415.7422</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>965.5061</td>
<td>483.2382</td>
<td>948.4825</td>
<td>474.7419</td>
<td>947.4851</td>
<td>474.2329</td>
<td>F</td>
<td>735.4036</td>
<td>368.2054</td>
<td>718.3770</td>
<td>359.6921</td>
<td>717.5980</td>
<td>359.0051</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1078.5932</td>
<td>539.8002</td>
<td>1061.5666</td>
<td>531.2869</td>
<td>1060.5825</td>
<td>530.7949</td>
<td>L</td>
<td>588.3335</td>
<td>294.6712</td>
<td>571.3086</td>
<td>286.1579</td>
<td>570.3246</td>
<td>285.6659</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1135.6146</td>
<td>588.3109</td>
<td>1118.5811</td>
<td>559.7977</td>
<td>1117.5841</td>
<td>559.3657</td>
<td>G</td>
<td>475.2551</td>
<td>238.1292</td>
<td>458.2245</td>
<td>229.6159</td>
<td>457.2405</td>
<td>229.1239</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1192.6361</td>
<td>596.8217</td>
<td>1175.6095</td>
<td>588.3084</td>
<td>1174.6255</td>
<td>587.8164</td>
<td>G</td>
<td>418.2296</td>
<td>209.6185</td>
<td>401.2031</td>
<td>201.1052</td>
<td>400.2191</td>
<td>200.6132</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1466.7314</td>
<td>703.8694</td>
<td>1389.7049</td>
<td>695.3561</td>
<td>1388.7209</td>
<td>694.8641</td>
<td>D</td>
<td>262.1397</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
<td>122.5862</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1128</td>
<td>74.9609</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DKYKQIFLGGVDKQR
Found in PS1881, ADP/ATP translocase 2 OS=Mus musculus GN=Slc25a1 PE=1 SV=3

Monoisotopic mass of neutral peptide Mn(m/e): 1781.9206
Fixed modifications: MGEG (C) apply to specified residues or termini only
Variable modifications:
K4 : m alc2 (K), with neutral loss 42.0169
Ions Score: 55 Expect: 6.00e-17
Matches to Fragment ions using 57 most intense peaks [help]

<table>
<thead>
<tr>
<th>z</th>
<th>m/z</th>
<th>b</th>
<th>b'</th>
<th>y</th>
<th>y'</th>
<th>Seq.</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
<th>[M+b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>244.1392</td>
<td>122.1682</td>
<td>227.1206</td>
<td>114.0520</td>
<td>226.1189</td>
<td>113.5629</td>
<td>K</td>
<td>1592.9111</td>
<td>787.4952</td>
<td>1576.8846</td>
<td>788.9439</td>
</tr>
<tr>
<td>3</td>
<td>407.1923</td>
<td>204.0999</td>
<td>390.1650</td>
<td>195.5866</td>
<td>389.1819</td>
<td>193.0946</td>
<td>Y</td>
<td>1465.8162</td>
<td>733.4117</td>
<td>1448.7896</td>
<td>724.8925</td>
</tr>
<tr>
<td>4</td>
<td>577.2988</td>
<td>289.1527</td>
<td>560.2715</td>
<td>280.6394</td>
<td>559.2875</td>
<td>280.1474</td>
<td>K</td>
<td>1302.7528</td>
<td>651.8801</td>
<td>1285.7263</td>
<td>643.3668</td>
</tr>
<tr>
<td>5</td>
<td>705.5563</td>
<td>353.1819</td>
<td>688.3301</td>
<td>344.6687</td>
<td>687.3461</td>
<td>344.1747</td>
<td>Q</td>
<td>1112.6473</td>
<td>566.8273</td>
<td>1115.6208</td>
<td>559.2140</td>
</tr>
<tr>
<td>6</td>
<td>818.4097</td>
<td>409.7240</td>
<td>801.4141</td>
<td>401.2107</td>
<td>800.4391</td>
<td>400.7187</td>
<td>I</td>
<td>1004.5887</td>
<td>502.7980</td>
<td>987.5622</td>
<td>494.2847</td>
</tr>
<tr>
<td>7</td>
<td>965.5093</td>
<td>483.2582</td>
<td>948.4825</td>
<td>474.7449</td>
<td>947.4983</td>
<td>474.2529</td>
<td>F</td>
<td>891.5847</td>
<td>446.2560</td>
<td>874.4781</td>
<td>437.7427</td>
</tr>
<tr>
<td>8</td>
<td>1078.5329</td>
<td>539.8002</td>
<td>1061.5666</td>
<td>531.2869</td>
<td>1060.5826</td>
<td>530.7949</td>
<td>L</td>
<td>744.4363</td>
<td>372.2178</td>
<td>727.4097</td>
<td>364.2085</td>
</tr>
<tr>
<td>10</td>
<td>1419.6651</td>
<td>696.8217</td>
<td>1379.6095</td>
<td>688.3084</td>
<td>1378.6255</td>
<td>687.8184</td>
<td>G</td>
<td>574.3307</td>
<td>287.6609</td>
<td>557.3042</td>
<td>279.1535</td>
</tr>
<tr>
<td>11</td>
<td>1591.7945</td>
<td>746.3559</td>
<td>1554.7680</td>
<td>737.8426</td>
<td>1553.6939</td>
<td>737.3506</td>
<td>V</td>
<td>517.3093</td>
<td>259.1583</td>
<td>500.2827</td>
<td>250.6430</td>
</tr>
<tr>
<td>12</td>
<td>1406.7114</td>
<td>703.8694</td>
<td>1369.7040</td>
<td>695.3561</td>
<td>1368.7209</td>
<td>694.8641</td>
<td>D</td>
<td>418.2409</td>
<td>209.6241</td>
<td>401.2143</td>
<td>201.1108</td>
</tr>
<tr>
<td>13</td>
<td>1534.8264</td>
<td>776.9168</td>
<td>1517.8799</td>
<td>759.4036</td>
<td>1516.8158</td>
<td>758.9116</td>
<td>K</td>
<td>302.2139</td>
<td>152.1106</td>
<td>286.1874</td>
<td>143.5973</td>
</tr>
<tr>
<td>14</td>
<td>1575.9170</td>
<td>808.4532</td>
<td>1558.8512</td>
<td>800.9386</td>
<td>1557.8774</td>
<td>800.4460</td>
<td>R</td>
<td>176.1199</td>
<td>88.0651</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of \textbf{VLKYAGLK}

Found in \textbf{O80ZT1}. Acetyl-CoA acetyltransferase. mitochondrial OS=\textit{Mus musculus} GN=Acat1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, plot from \textbf{100} to \textbf{950} Da

Label all possible matches \(\bigcirc\) Label matches used for scoring \(\bigcirc\)

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
& b & b'' & b* & b+++ & Seq. & y & y++ & y* & y++ & \\
\hline
1 & 100.0757 & 50.5415 & & & V & & & & & \\
2 & 213.1598 & 107.0835 & & & L & \textbf{834.5084} & 417.7578 & 817.4818 & 409.2445 & 7 \\
6 & 674.3872 & 337.6972 & 657.3606 & 329.1840 & G & \textbf{317.2183} & 159.1128 & 300.1918 & 150.5995 & 3 \\
8 & & & & & K & \textbf{147.1128} & 74.0600 & 130.0863 & 65.5468 & 1 \\
\hline
\end{tabular}
\end{table}

Monoisotopic mass of neutral peptide Mr(calc): 976.5593

Fixed modifications: MMT3 (C) (apply to specified residues or termini only)

Variable modifications:

KD : \textit{mal CO2 (K)}, with neutral loss 43.9899

Ions Score: 20 Expect: 0.040

Matches : 10/52 fragment ions using 40 most intense peaks (help)
MS/MS Fragmentation of **IHMGNCAENTAK**
Found in Q6QZT1, Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus GN=Aca1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1350 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(mono): 1419.5581
Fixed modifications: MET5 (C) (**apply to specified residues or termini only**)
Variable modifications:
K11: mal_COOH (K), with neutral loss 48.0590
Ions Searched: 25, Repeat: 0.011
Matches: 24/106 fragment ions using 90 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b'</th>
<th>b'^+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^9</th>
<th>y^9+++</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.1503</td>
<td>126.0785</td>
<td>H</td>
<td>1263.4912</td>
<td>632.2494</td>
<td>1246.4690</td>
<td>623.7361</td>
<td>1245.4809</td>
<td>623.2441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>382.1907</td>
<td>191.5990</td>
<td>M</td>
<td>1126.4326</td>
<td>563.7199</td>
<td>1109.4060</td>
<td>555.2067</td>
<td>1108.4220</td>
<td>554.7146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>439.2122</td>
<td>220.1097</td>
<td>G</td>
<td>995.3921</td>
<td>498.1997</td>
<td>978.3652</td>
<td>489.8864</td>
<td>977.3815</td>
<td>489.1944</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>553.2551</td>
<td>277.1312</td>
<td>P</td>
<td>328.2236</td>
<td>164.1112</td>
<td>316.0457</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>702.2520</td>
<td>351.6297</td>
<td>G</td>
<td>824.3277</td>
<td>412.6675</td>
<td>807.3012</td>
<td>404.1542</td>
<td>806.3171</td>
<td>403.6622</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>772.2891</td>
<td>387.1482</td>
<td>S</td>
<td>675.3308</td>
<td>338.1690</td>
<td>658.3047</td>
<td>339.6558</td>
<td>657.3202</td>
<td>329.6168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>902.3317</td>
<td>451.6695</td>
<td>R</td>
<td>883.3052</td>
<td>443.1562</td>
<td>884.3212</td>
<td>442.6642</td>
<td>587.2571</td>
<td>294.1372</td>
<td>586.2831</td>
<td>293.6452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1016.3747</td>
<td>508.6910</td>
<td>S</td>
<td>999.3481</td>
<td>490.1777</td>
<td>983.3611</td>
<td>489.6837</td>
<td>978.3815</td>
<td>489.1944</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1117.4223</td>
<td>599.2148</td>
<td>H</td>
<td>1100.3998</td>
<td>550.7015</td>
<td>1099.4118</td>
<td>550.2095</td>
<td>1099.4118</td>
<td>550.2095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1188.4595</td>
<td>594.7234</td>
<td>T</td>
<td>1171.4329</td>
<td>586.2201</td>
<td>1170.4489</td>
<td>585.7281</td>
<td>260.1665</td>
<td>130.5839</td>
<td>243.1339</td>
<td>122.0706</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
| 12 | K | 189.1234 | 95.0652 | 172.0968 | 85.5520 | 1

Note: The table above lists the fragment ions with their corresponding masses and sequences. The highlighted ions are those used for the analysis. The table includes information on the b, y, and b' ions, their charges, and the sequences associated with them. The mass values are rounded to the nearest decimal place for clarity.
MS/MS Fragmentation of IHMGNCENTAK
Found in Q80ZT1. Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus GN=Acat1 PE=1 SV=1

Monoisotopic mass of neutral peptide Mw(calc): 1428.8620
Fixed modifications: M+H (C) (apply to specified residues or termini only)
Variable modifications:
MG : Oxidation (M), with neutral losses 0.0000 (shown in table), 61.0512
K12 : m3CO2 (K), with neutral loss 42.0000
Ions Score: 55 Expect: 0.029
Matches to 12/388 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>-</sup></th>
<th>b<sup>-<sup>+</sup></sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>2+</sup></th>
<th>Seq</th>
<th>y</th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>-<sup>+</sup></sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0<sup>+</sup></sup></th>
<th>y<sup>0<sup>+</sup></sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114</td>
<td>57.5453</td>
<td>I</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>251</td>
<td>126.0788</td>
<td>H</td>
<td>1279.4884</td>
<td>640.2468</td>
<td>1262.4599</td>
<td>631.7356</td>
<td>1261.4738</td>
<td>631.2416</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>398</td>
<td>199.5965</td>
<td>M</td>
<td>1142.4273</td>
<td>571.7174</td>
<td>1123.4009</td>
<td>555.2041</td>
<td>1124.4169</td>
<td>552.7121</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>455</td>
<td>228.1072</td>
<td>G</td>
<td>993.3921</td>
<td>498.1997</td>
<td>978.3653</td>
<td>489.8564</td>
<td>977.3185</td>
<td>489.1944</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>569</td>
<td>282.1287</td>
<td>552.2232</td>
<td>276.6125</td>
<td></td>
<td>N</td>
<td>938.3706</td>
<td>469.6890</td>
<td>921.3441</td>
<td>461.1727</td>
<td>929.3601</td>
<td>460.8837</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>718</td>
<td>350.6271</td>
<td>701.2304</td>
<td>351.1135</td>
<td></td>
<td>C</td>
<td>824.3277</td>
<td>412.6675</td>
<td>807.3012</td>
<td>404.1542</td>
<td>806.3171</td>
<td>403.6522</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>789</td>
<td>395.1457</td>
<td>772.2357</td>
<td>386.6324</td>
<td></td>
<td>A</td>
<td>675.3308</td>
<td>338.1690</td>
<td>658.3042</td>
<td>329.6528</td>
<td>657.3202</td>
<td>329.1638</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1082</td>
<td>566.8884</td>
<td>1015.3480</td>
<td>508.1724</td>
<td>1014.3590</td>
<td>507.6831</td>
<td>N</td>
<td>475.2511</td>
<td>238.1292</td>
<td>458.2243</td>
<td>229.6139</td>
<td>457.2403</td>
<td>229.1239</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1133</td>
<td>597.2123</td>
<td>1116.3907</td>
<td>538.6990</td>
<td>1115.4067</td>
<td>538.2070</td>
<td>T</td>
<td>361.2082</td>
<td>181.1077</td>
<td>344.1816</td>
<td>172.5944</td>
<td>343.1976</td>
<td>172.1024</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1204</td>
<td>620.6544</td>
<td>1187.4278</td>
<td>594.2176</td>
<td>1186.4438</td>
<td>593.7255</td>
<td>A</td>
<td>260.1605</td>
<td>130.5839</td>
<td>243.1339</td>
<td>122.0766</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **IHMGNCAENTAK**
Found in **Q8ZT1**. Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus GN=Acat1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>-</sup></th>
<th>b<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.1503</td>
<td>126.0788</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>382.1907</td>
<td>191.5990</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>439.2122</td>
<td>220.1097</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>553.2551</td>
<td>277.1312</td>
<td>536.2286</td>
<td>268.6179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>702.2520</td>
<td>351.6297</td>
<td>685.2255</td>
<td>343.1164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>773.2891</td>
<td>387.1482</td>
<td>756.2626</td>
<td>378.6349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>902.3317</td>
<td>451.6695</td>
<td>885.3052</td>
<td>443.1562</td>
<td>884.3212</td>
<td>442.6462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1016.3747</td>
<td>508.6910</td>
<td>999.3481</td>
<td>500.1777</td>
<td>998.3641</td>
<td>499.6857</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1117.4223</td>
<td>559.2148</td>
<td>1109.3958</td>
<td>550.7015</td>
<td>1099.4118</td>
<td>550.2095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1188.4595</td>
<td>594.7334</td>
<td>1171.4329</td>
<td>586.2201</td>
<td>1170.4489</td>
<td>585.7281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>189.1234</td>
<td>95.0653</td>
<td>172.0968</td>
<td>86.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(calc): 1419.5581
Fixed modifications: **M+H** (C) (apply to specified residues or termi only)
Variable modifications: **K12** : m/z C02 (H), with neutral loss 43.0000
Ions Score: 32 Expect: 0.0079
Matches: 17/106 fragment ions using 92 most intense peaks (help)
MS/MS Fragmentation of \textbf{LEDLIKDVGLTDVYNK}

Found in Q8Z21. Acetyl-CoA acetyltransferase, mitochondrial GS-Mus musculus GN=Acat1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Cr: Plot from 200 to 2000 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide \textbf{Mr(calc)}: 1964.784
Fixed modifications: MET2 (C) (apply to specified residues or termini only)
Variable modifications:
K7 - \textit{N}$_2$H$_2$CO$_2$ (H$_2$O, with neutral loss 44.003)
Ions Score: 59 Expect: 2.1e+05
Matches: 13/133 fragment ions using 18 most intense peaks (help)

<table>
<thead>
<tr>
<th>y</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b''''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0613</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td>225.1223</td>
<td>113.0653</td>
<td>E</td>
<td>1763.9082</td>
<td>682.4567</td>
<td>1746.8796</td>
<td>873.9435</td>
<td>1745.8956</td>
<td>873.4514</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>358.1609</td>
<td>179.3413</td>
<td>340.1503</td>
<td>170.5708</td>
<td>D</td>
<td>1634.8692</td>
<td>817.9341</td>
<td>1617.8370</td>
<td>809.4222</td>
<td>1616.8530</td>
<td>808.9201</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>471.2449</td>
<td>235.1216</td>
<td>453.2347</td>
<td>227.1208</td>
<td>L</td>
<td>1519.8386</td>
<td>760.4220</td>
<td>1502.8101</td>
<td>751.9087</td>
<td>1501.8261</td>
<td>751.4167</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>585.3290</td>
<td>292.6581</td>
<td>566.3184</td>
<td>283.6602</td>
<td>I</td>
<td>1406.7526</td>
<td>703.7899</td>
<td>1389.7269</td>
<td>695.3687</td>
<td>1388.7420</td>
<td>694.8746</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>693.3974</td>
<td>342.2023</td>
<td>665.3869</td>
<td>333.1971</td>
<td>V</td>
<td>1292.6685</td>
<td>647.3379</td>
<td>1276.6420</td>
<td>638.8216</td>
<td>1275.6579</td>
<td>638.3326</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>793.5029</td>
<td>372.2551</td>
<td>763.4765</td>
<td>418.7149</td>
<td>K</td>
<td>1194.6901</td>
<td>597.8037</td>
<td>1177.7753</td>
<td>589.2994</td>
<td>1176.7995</td>
<td>588.7984</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>868.5299</td>
<td>424.7866</td>
<td>951.5933</td>
<td>476.2553</td>
<td>D</td>
<td>1074.4946</td>
<td>512.7569</td>
<td>1057.4680</td>
<td>504.2376</td>
<td>1056.4840</td>
<td>503.7465</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>905.5514</td>
<td>513.7293</td>
<td>1008.5246</td>
<td>504.7660</td>
<td>G</td>
<td>949.4576</td>
<td>465.3375</td>
<td>922.4411</td>
<td>446.7242</td>
<td>919.4517</td>
<td>446.2322</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1138.6354</td>
<td>569.8213</td>
<td>1121.6089</td>
<td>561.3081</td>
<td>L</td>
<td>852.4462</td>
<td>426.7267</td>
<td>835.4196</td>
<td>418.2134</td>
<td>834.4356</td>
<td>417.7214</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>1259.6831</td>
<td>620.3452</td>
<td>1222.6587</td>
<td>611.8139</td>
<td>I</td>
<td>739.3627</td>
<td>370.1847</td>
<td>723.3555</td>
<td>361.6714</td>
<td>721.3515</td>
<td>361.1794</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>1324.7100</td>
<td>677.8387</td>
<td>1307.6832</td>
<td>669.2454</td>
<td>D</td>
<td>628.2144</td>
<td>319.6060</td>
<td>621.2879</td>
<td>311.1478</td>
<td>620.2059</td>
<td>310.6536</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>1453.7785</td>
<td>727.3929</td>
<td>1436.7169</td>
<td>718.8799</td>
<td>V</td>
<td>523.2873</td>
<td>262.1474</td>
<td>506.2609</td>
<td>253.6841</td>
<td>505.2687</td>
<td>253.1818</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1616.8488</td>
<td>806.9245</td>
<td>1599.8112</td>
<td>800.4113</td>
<td>V</td>
<td>424.2197</td>
<td>212.4613</td>
<td>407.1923</td>
<td>204.6999</td>
<td>423.2165</td>
<td>204.1132</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1759.8847</td>
<td>865.9460</td>
<td>1732.8382</td>
<td>857.4327</td>
<td>N</td>
<td>261.1537</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td>260.1259</td>
<td>122.0425</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>K</td>
<td>47.1128</td>
<td>74.0600</td>
<td>130.0803</td>
<td>E</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DGLTVDYNKIHMGNCANENTA\-

Found in Q6Q111, Acetyl-CoA acetyltransferase, mitochondrial Q8M481 mscore 20.1 L16.1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
- **PRE time:** 200 to 1800 Da
- **Full range**

Label all possible matches \[\textit{Label matches used for scoring}\]

Neurotrophic factors (NFToms): 2430, 8845

Fixed modifications: NMT (O) apply to specified residues or terminal only.
Variable modifications:
- **E:** m/z 202, H, with neutral loss 40, 95, 98

Ion score: 59, **Expect:** 0.0015

Matches: 22/222, fragment ions using 60 most intense peaks (z=2)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y**</th>
<th>y'''</th>
<th>y''''</th>
<th>n</th>
<th>2060.86</th>
<th>2080.86</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.1873</td>
<td>58.5207</td>
<td>59.0237</td>
<td>49.5155</td>
<td>21</td>
<td>173.0557</td>
<td>87.0315</td>
<td>35.0451</td>
<td>78.0262</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>286.1397</td>
<td>134.5755</td>
<td>134.5755</td>
<td>35.0451</td>
<td>78.0262</td>
<td>155.1769</td>
<td>185.0821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>387.1874</td>
<td>194.0974</td>
<td>194.0974</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>502.2144</td>
<td>251.6018</td>
<td>251.6018</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>601.2828</td>
<td>301.1450</td>
<td>301.1450</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>764.3461</td>
<td>382.6767</td>
<td>382.6767</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>878.3900</td>
<td>439.6082</td>
<td>439.6082</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1018.4969</td>
<td>509.2458</td>
<td>509.2458</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1161.8786</td>
<td>582.9290</td>
<td>582.9290</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1258.6575</td>
<td>629.8241</td>
<td>629.8241</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1429.6780</td>
<td>715.3427</td>
<td>715.3427</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1546.6995</td>
<td>743.8535</td>
<td>743.8535</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1604.7243</td>
<td>800.8148</td>
<td>800.8148</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1749.7593</td>
<td>872.3753</td>
<td>872.3753</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1820.7764</td>
<td>910.8919</td>
<td>910.8919</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1949.8190</td>
<td>975.4352</td>
<td>975.4352</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2063.8630</td>
<td>1032.4364</td>
<td>1032.4364</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2164.9096</td>
<td>1082.8585</td>
<td>1082.8585</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2335.9468</td>
<td>1181.4770</td>
<td>1181.4770</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2472.9770</td>
<td>1236.9885</td>
<td>1236.9885</td>
<td></td>
</tr>
</tbody>
</table>

DGLTVDYNKIHMGNCANENTAK
QATLGAGLPISTPCTTVNKVCASGMK
<table>
<thead>
<tr>
<th>Z</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>(y'''''')</th>
<th>(y'''''''')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>56.2518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129.6659</td>
<td>65.0366</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>242.1499</td>
<td>121.5786</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>359.2027</td>
<td>170.1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>407.5797</td>
<td>254.1667</td>
<td>406.5711</td>
<td>325.6392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>506.5402</td>
<td>304.0781</td>
<td>579.3181</td>
<td>586.1805</td>
<td>578.3357</td>
<td>330.1885</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>755.1328</td>
<td>565.3181</td>
<td>763.1651</td>
<td>306.8818</td>
<td>767.7725</td>
<td>334.1589</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>924.4112</td>
<td>612.7933</td>
<td>807.4249</td>
<td>401.3610</td>
<td>506.4407</td>
<td>407.7240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>994.5585</td>
<td>689.7820</td>
<td>992.9302</td>
<td>489.3888</td>
<td>976.5445</td>
<td>483.7767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1123.5904</td>
<td>563.0300</td>
<td>1120.2718</td>
<td>553.9000</td>
<td>1101.5887</td>
<td>539.5326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1222.6878</td>
<td>618.6757</td>
<td>1221.6451</td>
<td>603.3543</td>
<td>1204.6672</td>
<td>602.8332</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1382.7313</td>
<td>693.3082</td>
<td>1382.3969</td>
<td>564.8379</td>
<td>1382.7720</td>
<td>564.8379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1516.7761</td>
<td>793.4784</td>
<td>1410.9081</td>
<td>756.5702</td>
<td>1407.7115</td>
<td>420.8941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1573.5912</td>
<td>827.4400</td>
<td>1556.9651</td>
<td>778.8505</td>
<td>1555.3225</td>
<td>778.0946</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1687.8580</td>
<td>844.4215</td>
<td>1670.8024</td>
<td>853.0804</td>
<td>1690.8354</td>
<td>835.1163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1756.6044</td>
<td>890.8158</td>
<td>1760.8777</td>
<td>885.4425</td>
<td>1761.8958</td>
<td>844.5056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1909.6835</td>
<td>956.4979</td>
<td>1882.8510</td>
<td>942.9456</td>
<td>1881.0770</td>
<td>941.4026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2028.6670</td>
<td>1005.5277</td>
<td>2001.0521</td>
<td>996.6190</td>
<td>2016.0635</td>
<td>996.5019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2082.6053</td>
<td>1042.4099</td>
<td>2073.6942</td>
<td>1040.7730</td>
<td>2094.0228</td>
<td>872.6272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2142.0000</td>
<td>1071.5483</td>
<td>2132.0155</td>
<td>1063.6391</td>
<td>2142.5294</td>
<td>821.4040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2271.3218</td>
<td>1128.0883</td>
<td>2244.1060</td>
<td>1127.5360</td>
<td>2244.1060</td>
<td>785.5794</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2330.5140</td>
<td>1166.5807</td>
<td>2311.1725</td>
<td>1165.6674</td>
<td>2310.1475</td>
<td>1155.5774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2454.5510</td>
<td>1223.0894</td>
<td>2437.0419</td>
<td>1222.3162</td>
<td>2438.0419</td>
<td>1222.3162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2527.2497</td>
<td>1284.4138</td>
<td>2510.1479</td>
<td>1283.1259</td>
<td>2510.1479</td>
<td>1283.1259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2722.3502</td>
<td>1369.1787</td>
<td>2704.3282</td>
<td>1354.8949</td>
<td>2707.1591</td>
<td>1424.1724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Ms(0) = 1742.8444
Fixed modifications: Cys-CO \(\text{NH} \), Acetyl-\(\text{N} \), Glu-\(\text{C} \)
Variable modifications: 13C

Matches: 17/25; frequent loss using 28 most intense peaks **Table:**
MS/MS Fragmentation of **GATPYGGVKLEDLV**K

Found in **OSOZTI.** Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus GN=Acat1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or Plot from 200 to 1700 D Full range

Label all possible matches © Label matches used for scoring ®

Monoisotopic mass of neutral peptide \(\text{Mr(calc.): 1764.6247} \)

Fixed modifications: 8073 (C) (apply to specified residues or termini only)

Variable modifications:

- K - m/z CO2 (+) , with neutral loss 44.0209

Ions Score: 21 Impact: 0.01

Matches: 27/152 fragment ions using 28 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b</th>
<th>b+1*</th>
<th>b+2**</th>
<th>b+3***</th>
<th>y</th>
<th>y+1*</th>
<th>y+2**</th>
<th>y+3***</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>120.0569</td>
<td>A</td>
<td>1644.9207</td>
<td>822.8460</td>
<td></td>
<td>1627.8942</td>
<td>814.4207</td>
<td>1626.9101</td>
<td>813.9387</td>
</tr>
<tr>
<td>3</td>
<td>230.1135</td>
<td>T</td>
<td>1573.8836</td>
<td>787.4454</td>
<td></td>
<td>1556.8270</td>
<td>778.9322</td>
<td>1555.8730</td>
<td>778.4401</td>
</tr>
<tr>
<td>4</td>
<td>327.1663</td>
<td>P</td>
<td>1723.8359</td>
<td>736.9216</td>
<td></td>
<td>1745.8594</td>
<td>728.4083</td>
<td>1644.8253</td>
<td>737.9163</td>
</tr>
<tr>
<td>5</td>
<td>490.2296</td>
<td>Y</td>
<td>1373.7817</td>
<td>688.3952</td>
<td></td>
<td>1388.7568</td>
<td>679.8819</td>
<td>1357.7726</td>
<td>679.3899</td>
</tr>
<tr>
<td>6</td>
<td>547.2311</td>
<td>V</td>
<td>1131.7194</td>
<td>590.6551</td>
<td></td>
<td>1191.6993</td>
<td>598.3703</td>
<td>1104.7093</td>
<td>597.8583</td>
</tr>
<tr>
<td>7</td>
<td>604.2726</td>
<td>G</td>
<td>1155.6986</td>
<td>578.3528</td>
<td></td>
<td>1138.6718</td>
<td>568.3963</td>
<td>1137.6878</td>
<td>569.2475</td>
</tr>
<tr>
<td>8</td>
<td>703.3419</td>
<td></td>
<td>685.3304</td>
<td>343.1668</td>
<td></td>
<td>1098.6769</td>
<td>549.8421</td>
<td>1081.6503</td>
<td>541.3288</td>
</tr>
<tr>
<td>9</td>
<td>873.4485</td>
<td></td>
<td>856.4199</td>
<td>428.7136</td>
<td></td>
<td>853.4559</td>
<td>428.2216</td>
<td>852.3819</td>
<td>491.7946</td>
</tr>
<tr>
<td>10</td>
<td>986.5306</td>
<td></td>
<td>986.5306</td>
<td>485.2556</td>
<td></td>
<td>968.2020</td>
<td>484.7628</td>
<td>912.4784</td>
<td>406.7416</td>
</tr>
<tr>
<td>11</td>
<td>1115.7372</td>
<td></td>
<td>1098.2360</td>
<td>549.7769</td>
<td></td>
<td>1097.5626</td>
<td>548.2849</td>
<td>916.4189</td>
<td>358.7131</td>
</tr>
<tr>
<td>12</td>
<td>1230.6001</td>
<td></td>
<td>1213.5735</td>
<td>607.2004</td>
<td></td>
<td>1212.5859</td>
<td>606.7984</td>
<td>570.3497</td>
<td>285.6785</td>
</tr>
<tr>
<td>13</td>
<td>1343.8482</td>
<td></td>
<td>1326.6767</td>
<td>663.8334</td>
<td></td>
<td>1325.6736</td>
<td>663.3404</td>
<td>555.3228</td>
<td>228.1650</td>
</tr>
<tr>
<td>14</td>
<td>1456.7682</td>
<td></td>
<td>1439.7417</td>
<td>720.3743</td>
<td></td>
<td>1438.7577</td>
<td>719.8823</td>
<td>1389.2633</td>
<td>719.8823</td>
</tr>
<tr>
<td>15</td>
<td>1555.8566</td>
<td></td>
<td>1538.8101</td>
<td>769.9087</td>
<td></td>
<td>1537.8261</td>
<td>769.4167</td>
<td>1466.1812</td>
<td>769.4167</td>
</tr>
<tr>
<td>16</td>
<td>1647.1128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.6060</td>
<td>130.6063</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QATLGAGLPISTPCTTVNK

Found in Q8Q2T1. Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus GN=Acat1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Ch. **Start from** 200 to 1000 **Da** **Full range**

Label all possible matches **Label matches used for scoring**

Phenotypic mass of neutral peptide: 370.91704

Fixed modifications: MG (G) (apply to specified residues or termini only)

Variable modifications:

X! 3.m+1.30, 4.005, with neutral loss 48.0588

Tune Score: 18 **Expect**: 5.17

Matches: 14/228 fragment ions using 21 most intense peaks (100%)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b**++**</th>
<th>y**+**</th>
<th>y**++**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y**++**</th>
<th>y**++**</th>
<th>y**+++**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>63.0366</td>
<td>112.0393</td>
<td>56.2233</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>200.1050</td>
<td>100.5331</td>
<td>183.0764</td>
<td>92.0418</td>
<td>A</td>
<td>1831.9292</td>
<td>916.4683</td>
<td>1841.9027</td>
<td>907.9350</td>
<td>1813.9187</td>
<td>907.4670</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>301.1566</td>
<td>151.0708</td>
<td>284.1241</td>
<td>142.5657</td>
<td>283.1401</td>
<td>142.0737</td>
<td>T</td>
<td>1760.8921</td>
<td>880.9407</td>
<td>1743.8556</td>
<td>872.4564</td>
<td>1742.8816</td>
</tr>
<tr>
<td>4</td>
<td>414.2347</td>
<td>207.6210</td>
<td>397.2082</td>
<td>199.1077</td>
<td>396.2241</td>
<td>198.6157</td>
<td>L</td>
<td>1659.8484</td>
<td>880.4259</td>
<td>1642.8179</td>
<td>821.9126</td>
<td>1641.8393</td>
</tr>
<tr>
<td>5</td>
<td>471.2622</td>
<td>235.1317</td>
<td>454.2296</td>
<td>227.6183</td>
<td>453.2450</td>
<td>227.1264</td>
<td>G</td>
<td>1546.7604</td>
<td>773.8838</td>
<td>1529.7333</td>
<td>765.3706</td>
<td>1528.7489</td>
</tr>
<tr>
<td>6</td>
<td>542.3033</td>
<td>271.6508</td>
<td>525.3667</td>
<td>263.1370</td>
<td>524.2827</td>
<td>262.6450</td>
<td>A</td>
<td>1489.7389</td>
<td>743.3731</td>
<td>1472.7124</td>
<td>736.8558</td>
<td>1471.7384</td>
</tr>
<tr>
<td>7</td>
<td>599.3148</td>
<td>300.1610</td>
<td>582.2882</td>
<td>291.6477</td>
<td>581.3042</td>
<td>291.1357</td>
<td>G</td>
<td>1418.7018</td>
<td>709.8345</td>
<td>1401.6753</td>
<td>701.3413</td>
<td>1400.6912</td>
</tr>
<tr>
<td>8</td>
<td>712.3983</td>
<td>356.7030</td>
<td>695.3723</td>
<td>348.1998</td>
<td>694.3883</td>
<td>347.6978</td>
<td>L</td>
<td>1361.6803</td>
<td>681.3438</td>
<td>1344.6538</td>
<td>672.8305</td>
<td>1343.6698</td>
</tr>
<tr>
<td>9</td>
<td>809.4516</td>
<td>405.2294</td>
<td>792.4250</td>
<td>398.7162</td>
<td>791.4410</td>
<td>397.2241</td>
<td>P</td>
<td>1248.5963</td>
<td>624.8018</td>
<td>1231.5697</td>
<td>616.2853</td>
<td>1230.5875</td>
</tr>
<tr>
<td>10</td>
<td>922.5356</td>
<td>461.7715</td>
<td>805.5091</td>
<td>453.2582</td>
<td>804.5241</td>
<td>452.7662</td>
<td>I</td>
<td>1151.5433</td>
<td>576.2754</td>
<td>1134.5170</td>
<td>567.7621</td>
<td>1133.5329</td>
</tr>
<tr>
<td>11</td>
<td>1009.6277</td>
<td>503.2873</td>
<td>922.5411</td>
<td>496.7742</td>
<td>911.5371</td>
<td>495.2822</td>
<td>S</td>
<td>1038.4594</td>
<td>510.7334</td>
<td>1021.4292</td>
<td>511.2021</td>
<td>1020.4499</td>
</tr>
<tr>
<td>12</td>
<td>1110.6154</td>
<td>555.8118</td>
<td>1093.5888</td>
<td>547.2080</td>
<td>1092.6084</td>
<td>546.8060</td>
<td>T</td>
<td>951.4274</td>
<td>476.2173</td>
<td>934.4009</td>
<td>467.7041</td>
<td>933.4169</td>
</tr>
<tr>
<td>14</td>
<td>1356.6650</td>
<td>671.8361</td>
<td>1339.6335</td>
<td>670.3229</td>
<td>1338.6545</td>
<td>669.8309</td>
<td>C</td>
<td>753.3270</td>
<td>377.1761</td>
<td>736.3040</td>
<td>368.6539</td>
<td>735.3164</td>
</tr>
<tr>
<td>15</td>
<td>1457.7127</td>
<td>729.3600</td>
<td>1440.8682</td>
<td>720.8467</td>
<td>1439.7021</td>
<td>720.3547</td>
<td>T</td>
<td>604.3310</td>
<td>302.6687</td>
<td>587.3035</td>
<td>284.1554</td>
<td>586.3193</td>
</tr>
<tr>
<td>16</td>
<td>1558.7064</td>
<td>779.8383</td>
<td>1541.7338</td>
<td>771.3706</td>
<td>1540.7490</td>
<td>770.8785</td>
<td>T</td>
<td>501.2824</td>
<td>252.1448</td>
<td>486.2558</td>
<td>245.6161</td>
<td>485.2718</td>
</tr>
<tr>
<td>17</td>
<td>1657.8388</td>
<td>829.4180</td>
<td>1640.8022</td>
<td>820.9048</td>
<td>1639.8182</td>
<td>820.4128</td>
<td>V</td>
<td>402.2427</td>
<td>201.6210</td>
<td>385.4002</td>
<td>193.1077</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>1771.8771</td>
<td>886.4985</td>
<td>1754.9425</td>
<td>878.9262</td>
<td>1753.8612</td>
<td>877.4342</td>
<td>N</td>
<td>303.1663</td>
<td>152.0868</td>
<td>286.1397</td>
<td>143.5735</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>189.1234</td>
<td>95.6563</td>
<td>172.9689</td>
<td>86.5520</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVVKLEGDNK

Monoisotopic mass of neutral peptide Mr(calc): 1157.5928
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K4 : oxid-Cys (K), with neutral loss 48.0108
Ions Score: 44 Expect: 0.00066
Matches : 24/50 fragment ions using 54 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
<td>1043.5732</td>
<td>522.2902</td>
<td>1026.5465</td>
<td>513.7769</td>
<td>1025.5626</td>
<td>513.2849</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>V</td>
<td></td>
<td>547.5047</td>
<td>472.7580</td>
<td>927.4782</td>
<td>464.2427</td>
<td>926.4942</td>
<td>463.7507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>270.1512</td>
<td>135.5942</td>
<td>V</td>
<td></td>
<td>547.5047</td>
<td>472.7580</td>
<td>927.4782</td>
<td>464.2427</td>
<td>926.4942</td>
<td>463.7507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>446.2867</td>
<td>220.6470</td>
<td>220.6470</td>
<td>212.1337</td>
<td>547.5047</td>
<td>472.7580</td>
<td>927.4782</td>
<td>464.2427</td>
<td>926.4942</td>
<td>463.7507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>553.3708</td>
<td>277.1890</td>
<td>536.3443</td>
<td>268.0758</td>
<td>547.5047</td>
<td>472.7580</td>
<td>927.4782</td>
<td>464.2427</td>
<td>926.4942</td>
<td>463.7507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>759.5349</td>
<td>370.2211</td>
<td>722.4083</td>
<td>361.7078</td>
<td>721.4243</td>
<td>361.2158</td>
<td>543.2041</td>
<td>281.1057</td>
<td>546.1776</td>
<td>280.5924</td>
<td>545.1936</td>
<td>280.1004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>854.4618</td>
<td>427.7345</td>
<td>837.4353</td>
<td>419.2213</td>
<td>836.4512</td>
<td>418.7293</td>
<td>576.1827</td>
<td>288.5950</td>
<td>559.1561</td>
<td>288.0817</td>
<td>558.1721</td>
<td>279.5897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>966.5947</td>
<td>484.7560</td>
<td>951.4782</td>
<td>476.2427</td>
<td>950.4942</td>
<td>475.7507</td>
<td>576.1827</td>
<td>288.5950</td>
<td>559.1561</td>
<td>288.0817</td>
<td>558.1721</td>
<td>279.5897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1127</td>
<td>74.6060</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVVKLEGDNK
MS/MS Fragmentation of GVSEIVHEGKK
Found in F32710. Fatty acid-binding protein, liver OS=Mus musculus GN=Fslp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da Full range
Label all possible matches Label matches used for scoring

GVSEIVHEGKK

Monocistopic mass of neutral peptide M(r)calculated: 1267.6408
Fixed modifications: M(2) (C) (apply to specified residues or termini only)
Variable modifications:
K10 : m1(O)2 (K), with neutral loss 42.0068
Ion Score: 35 Expect: 0.0000
Matches: 21/92 fragment ions using 30 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'++</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'++</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.1072</td>
<td>79.0522</td>
<td></td>
<td></td>
<td>V</td>
<td>1167.6368</td>
<td>84.3220</td>
<td>1159.6103</td>
<td>575.8088</td>
</tr>
<tr>
<td>3</td>
<td>244.1292</td>
<td>122.5682</td>
<td>226.1186</td>
<td>113.5626</td>
<td>S</td>
<td>1068.5684</td>
<td>534.7878</td>
<td>1051.5419</td>
<td>526.2746</td>
</tr>
<tr>
<td>4</td>
<td>373.1718</td>
<td>187.0895</td>
<td>355.1612</td>
<td>178.0842</td>
<td>E</td>
<td>981.5236</td>
<td>491.2718</td>
<td>964.5058</td>
<td>482.7585</td>
</tr>
<tr>
<td>5</td>
<td>486.2558</td>
<td>243.6316</td>
<td>468.2453</td>
<td>234.6263</td>
<td>I</td>
<td>852.4938</td>
<td>426.7505</td>
<td>835.4672</td>
<td>418.2373</td>
</tr>
<tr>
<td>6</td>
<td>583.3243</td>
<td>293.1618</td>
<td>567.3137</td>
<td>284.1605</td>
<td>V</td>
<td>739.4097</td>
<td>370.2065</td>
<td>722.3822</td>
<td>361.6052</td>
</tr>
<tr>
<td>7</td>
<td>722.3832</td>
<td>361.6912</td>
<td>704.3726</td>
<td>352.6899</td>
<td>H</td>
<td>640.5413</td>
<td>320.6743</td>
<td>623.3148</td>
<td>312.1610</td>
</tr>
<tr>
<td>8</td>
<td>851.4258</td>
<td>426.2165</td>
<td>833.4152</td>
<td>417.2112</td>
<td>F</td>
<td>503.2824</td>
<td>252.1448</td>
<td>486.2558</td>
<td>243.6316</td>
</tr>
<tr>
<td>9</td>
<td>908.4472</td>
<td>454.7272</td>
<td>890.4367</td>
<td>445.7202</td>
<td>G</td>
<td>374.2399</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
</tr>
<tr>
<td>10</td>
<td>1078.5627</td>
<td>539.7800</td>
<td>1061.5262</td>
<td>531.2667</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1018</td>
<td>159.5059</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AIGLPEDLIQKGK

Found in P12710, Fatty acid-binding protein, liver OS=Mus musculus GN=Febp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Options:
- Plot from: 200 to 1400 Da (Full range)
- Label all possible matches
- Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1466.7880

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- K11 : std CO2H (K), with neutral loss 42.01068

Ions Score: 52 Expect: 8.0e-03

Matches: 26/104 fragment ions using 57 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>h0</th>
<th>h+</th>
<th>h+</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>y'''</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.4444</td>
<td>36.3525</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>185.1283</td>
<td>93.6579</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>242.1499</td>
<td>121.1785</td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>355.2346</td>
<td>178.1120</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>452.2867</td>
<td>226.4472</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>581.3292</td>
<td>291.1649</td>
<td>563.3188</td>
<td>282.1639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>696.5563</td>
<td>348.6815</td>
<td>678.5437</td>
<td>339.5795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>809.4403</td>
<td>405.2238</td>
<td>791.4298</td>
<td>396.2183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>922.5244</td>
<td>461.4623</td>
<td>904.5121</td>
<td>452.7660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>1035.5816</td>
<td>517.7463</td>
<td>917.7399</td>
<td>458.7605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>11</td>
<td>1120.6885</td>
<td>560.8471</td>
<td>1023.8670</td>
<td>511.8329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>12</td>
<td>1277.7160</td>
<td>639.3568</td>
<td>1150.6884</td>
<td>575.3442</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Total charge: 2
MS/MS Fragmentation of \textbf{LEGDNKMVTTFK}

Found in P12710, Fatty acid-binding protein, liver OS=Mus musculus GN=Fabp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1500 Da [Full range]

Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide Mr(calc): 1467.0915

Fixed modifications: MTMT (C) \textbf{apply to specified residues or termini only}

Variable modifications:

K6 : \textbf{MeCO2 (K), with neutral loss 48.0598}

Ions Score: 52 Expect: 9.6e-06

Matches to 10/118 fragment ions using 12 most intense peaks ([help])

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1394.5984</td>
<td>647.8028</td>
<td>1293.6144</td>
<td>647.3108</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>243.1330</td>
<td>122.0706</td>
<td>225.1324</td>
<td>113.0653</td>
<td>F</td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1394.5984</td>
<td>647.8028</td>
<td>1293.6144</td>
<td>647.3108</td>
</tr>
<tr>
<td>3</td>
<td>309.1354</td>
<td>153.0726</td>
<td>282.1348</td>
<td>141.5761</td>
<td>G</td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1394.5984</td>
<td>647.8028</td>
<td>1293.6144</td>
<td>647.3108</td>
</tr>
<tr>
<td>4</td>
<td>415.1825</td>
<td>208.0948</td>
<td>397.1718</td>
<td>199.0983</td>
<td>D</td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1394.5984</td>
<td>647.8028</td>
<td>1293.6144</td>
<td>647.3108</td>
</tr>
<tr>
<td>5</td>
<td>529.2253</td>
<td>265.1163</td>
<td>512.1987</td>
<td>256.0203</td>
<td>N</td>
<td>1010.5339</td>
<td>505.7106</td>
<td>993.5074</td>
<td>497.2573</td>
<td>992.5234</td>
<td>496.7652</td>
</tr>
<tr>
<td>6</td>
<td>699.3308</td>
<td>350.1620</td>
<td>681.3022</td>
<td>341.1638</td>
<td>K</td>
<td>896.4910</td>
<td>448.7491</td>
<td>879.6465</td>
<td>440.3359</td>
<td>878.4004</td>
<td>439.7459</td>
</tr>
<tr>
<td>7</td>
<td>830.3713</td>
<td>415.6893</td>
<td>813.3447</td>
<td>407.1760</td>
<td>M</td>
<td>726.3855</td>
<td>363.6964</td>
<td>709.5389</td>
<td>355.1831</td>
<td>708.3749</td>
<td>354.6911</td>
</tr>
<tr>
<td>8</td>
<td>929.4397</td>
<td>465.2235</td>
<td>912.4131</td>
<td>456.7102</td>
<td>V</td>
<td>595.3450</td>
<td>298.1761</td>
<td>578.3184</td>
<td>289.8629</td>
<td>577.3344</td>
<td>289.1709</td>
</tr>
<tr>
<td>9</td>
<td>1039.4874</td>
<td>515.7471</td>
<td>1013.4608</td>
<td>507.2340</td>
<td>T</td>
<td>496.2766</td>
<td>248.6419</td>
<td>479.2500</td>
<td>240.1287</td>
<td>478.2600</td>
<td>239.5366</td>
</tr>
<tr>
<td>11</td>
<td>1278.6085</td>
<td>638.8024</td>
<td>1261.5709</td>
<td>631.2821</td>
<td>F</td>
<td>294.1812</td>
<td>147.3942</td>
<td>277.1547</td>
<td>139.0819</td>
<td>277.1547</td>
<td>139.0819</td>
</tr>
<tr>
<td>12</td>
<td>1414.6217</td>
<td>697.3109</td>
<td>1397.5840</td>
<td>690.7937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[help]
MS/MS Fragmentation of **LEGDNKMVTTFK**

Found in P12710, Fatty acid-binding protein, liver OS=Mus musculus GN=Fabp1 PE=1 SV=2

Monoisotopic mass of neutral peptide Mr(calc): 1685.6865

Fixed modifications: M(57) (C) (apply to specified residues or term only)

Variable modifications:

- K6 : deamidation (K), with neutral loss 0.9888
- N7 : Oxidation (M), with neutral losses 0.9800 (shown in table), 0.0080

Ions Score: 47 Expect: 0.069877

Matches toFragment ions using 22 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b-</th>
<th>y+</th>
<th>y-</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y-</th>
<th>y+</th>
<th>y-</th>
<th>y+</th>
<th>y-</th>
<th>y+</th>
<th>y-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0912</td>
<td>57.5493</td>
<td>57.5493</td>
<td>113.0653</td>
<td>113.0653</td>
<td>L</td>
<td>1327.6198</td>
<td>664.3136</td>
<td>1310.5933</td>
<td>655.8003</td>
<td>1309.6093</td>
<td>655.6093</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td>122.0706</td>
<td>225.1234</td>
<td>225.1234</td>
<td>E</td>
<td>1188.5775</td>
<td>599.7923</td>
<td>1181.5307</td>
<td>591.2790</td>
<td>1180.5867</td>
<td>590.7870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300.1854</td>
<td>150.5813</td>
<td>150.5813</td>
<td>282.1448</td>
<td>282.1448</td>
<td>G</td>
<td>1141.5358</td>
<td>571.2815</td>
<td>1144.2292</td>
<td>562.7693</td>
<td>1125.3452</td>
<td>562.7928</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>415.1823</td>
<td>208.0948</td>
<td>208.0948</td>
<td>397.1718</td>
<td>397.1718</td>
<td>D</td>
<td>1026.5288</td>
<td>513.7681</td>
<td>1009.5023</td>
<td>505.2584</td>
<td>1008.5183</td>
<td>504.7628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>746.3662</td>
<td>373.3831</td>
<td>373.3831</td>
<td>729.3202</td>
<td>729.3202</td>
<td>M</td>
<td>742.3804</td>
<td>371.6938</td>
<td>725.3538</td>
<td>363.1806</td>
<td>724.3698</td>
<td>363.6886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>945.4546</td>
<td>472.2299</td>
<td>472.2299</td>
<td>928.4081</td>
<td>928.4081</td>
<td>V</td>
<td>595.3450</td>
<td>298.1761</td>
<td>578.3184</td>
<td>289.6629</td>
<td>577.3444</td>
<td>289.1795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1068.4823</td>
<td>533.7448</td>
<td>533.7448</td>
<td>1052.4377</td>
<td>1052.4377</td>
<td>T</td>
<td>496.2766</td>
<td>248.4149</td>
<td>479.2300</td>
<td>240.1287</td>
<td>478.2600</td>
<td>239.6398</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1147.5300</td>
<td>574.2686</td>
<td>574.2686</td>
<td>1130.5034</td>
<td>1130.5034</td>
<td>I</td>
<td>395.2289</td>
<td>198.1181</td>
<td>378.2023</td>
<td>189.6048</td>
<td>377.2183</td>
<td>189.1128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1294.5884</td>
<td>647.8028</td>
<td>647.8028</td>
<td>1277.5718</td>
<td>1277.5718</td>
<td>F</td>
<td>294.1812</td>
<td>147.9427</td>
<td>277.1574</td>
<td>139.0810</td>
<td>294.1812</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1471.5923</td>
<td>740.8028</td>
<td>740.8028</td>
<td>1454.5718</td>
<td>1454.5718</td>
<td>K</td>
<td>147.1123</td>
<td>74.0600</td>
<td>139.0853</td>
<td>65.5463</td>
<td>147.1123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DIGKDVSEIVHEGK

Found in P12710, Fatty acid-binding protein, liver OS=Mus musculus GN=Fetbp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or [Flat from] 200 to 1500 Da [Full range]

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1485.7513

Fixed modifications: MMO2 (C) (apply to specified residues or termini only)
Variable modifications:
K3 : +15.99491 (K), with neutral loss 49.02698

Ion Score: 81 Expect: 0.0007

Matches : 29/136 fragment ions using 65 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y''''</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.2207</td>
<td>98.0237</td>
<td>49.5135</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>229.1189</td>
<td>115.0628</td>
<td>211.1077</td>
<td>106.0575</td>
<td>I</td>
<td>1237.7423</td>
<td>569.3748</td>
<td>1220.7158</td>
<td>669.6515</td>
<td>1319.7318</td>
</tr>
<tr>
<td>3</td>
<td>359.2258</td>
<td>200.1155</td>
<td>382.1973</td>
<td>191.6025</td>
<td>R</td>
<td>1224.6358</td>
<td>512.8328</td>
<td>1207.6517</td>
<td>504.3195</td>
<td>1206.6777</td>
</tr>
<tr>
<td>4</td>
<td>455.2452</td>
<td>228.6263</td>
<td>439.2187</td>
<td>220.1130</td>
<td>H</td>
<td>1054.5529</td>
<td>527.7800</td>
<td>1037.5262</td>
<td>519.2067</td>
<td>1036.5422</td>
</tr>
<tr>
<td>5</td>
<td>555.3137</td>
<td>278.1605</td>
<td>538.2871</td>
<td>269.6472</td>
<td>V</td>
<td>997.5313</td>
<td>499.2693</td>
<td>980.5057</td>
<td>490.7506</td>
<td>979.5207</td>
</tr>
<tr>
<td>6</td>
<td>642.3457</td>
<td>321.6765</td>
<td>625.3192</td>
<td>313.1632</td>
<td>S</td>
<td>898.4629</td>
<td>449.7351</td>
<td>881.4363</td>
<td>441.2118</td>
<td>880.4573</td>
</tr>
<tr>
<td>7</td>
<td>771.3883</td>
<td>396.1978</td>
<td>751.3618</td>
<td>377.8452</td>
<td>E</td>
<td>811.4608</td>
<td>406.2191</td>
<td>794.4043</td>
<td>397.7028</td>
<td>793.4203</td>
</tr>
<tr>
<td>8</td>
<td>884.4724</td>
<td>442.7398</td>
<td>867.4458</td>
<td>434.2266</td>
<td>I</td>
<td>682.3803</td>
<td>341.6978</td>
<td>665.3617</td>
<td>333.1845</td>
<td>664.3777</td>
</tr>
<tr>
<td>9</td>
<td>983.5407</td>
<td>492.2740</td>
<td>966.5142</td>
<td>483.7608</td>
<td>V</td>
<td>569.3042</td>
<td>285.1557</td>
<td>552.2776</td>
<td>278.6425</td>
<td>551.2936</td>
</tr>
<tr>
<td>10</td>
<td>1120.5997</td>
<td>560.8035</td>
<td>1103.5732</td>
<td>552.2902</td>
<td>L</td>
<td>470.2358</td>
<td>235.6215</td>
<td>453.2092</td>
<td>227.1083</td>
<td>452.2252</td>
</tr>
<tr>
<td>11</td>
<td>1249.6422</td>
<td>625.3248</td>
<td>1222.6137</td>
<td>616.8115</td>
<td>K</td>
<td>333.1769</td>
<td>167.0921</td>
<td>316.1503</td>
<td>158.7388</td>
<td>315.1663</td>
</tr>
<tr>
<td>12</td>
<td>1366.6638</td>
<td>653.8335</td>
<td>1289.6372</td>
<td>645.2222</td>
<td>G</td>
<td>304.1343</td>
<td>102.5708</td>
<td>307.1077</td>
<td>94.0575</td>
<td>306.2663</td>
</tr>
</tbody>
</table>

DIGKDVSEIVHEGK
MS/MS Fragmentation of GKDVKVSEIVREGK
Found in P12710, fatty acid-binding protein, liver OS=Mus musculus GN=FABP1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
On/Off Plot from 100 to 1700 Da
Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(m/z): 1863.6332
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K
mass CO2 (M), with neutral loss 48.0595
Inc. Score: 27 Expect: 0.012
Matches: 64/188 fragment ions using 70 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>m/z</th>
<th>b</th>
<th>b**</th>
<th>b+</th>
<th>b+</th>
<th>b**</th>
<th>b**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y+</th>
<th>y+</th>
<th>y**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.0287</td>
<td>20.5180</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>186.1237</td>
<td>93.5615</td>
<td>169.0972</td>
<td>83.0522</td>
<td>K</td>
<td>1350.8462</td>
<td>790.9358</td>
<td>1363.8377</td>
<td>782.4223</td>
<td>1562.8357</td>
<td>781.9203</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>301.1596</td>
<td>151.0790</td>
<td>284.1241</td>
<td>142.3637</td>
<td>142.1401</td>
<td>142.0737</td>
<td>D</td>
<td>1452.7693</td>
<td>726.8845</td>
<td>1435.7627</td>
<td>718.7350</td>
<td>1445.7578</td>
<td>714.7830</td>
<td>1479.7578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>414.2347</td>
<td>207.6210</td>
<td>397.2082</td>
<td>199.1077</td>
<td>396.2241</td>
<td>196.6157</td>
<td>I</td>
<td>1337.7423</td>
<td>669.3748</td>
<td>1320.7158</td>
<td>660.8815</td>
<td>1319.7318</td>
<td>660.3495</td>
<td>1343.7338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>584.3402</td>
<td>292.6738</td>
<td>567.3137</td>
<td>284.1605</td>
<td>566.3297</td>
<td>283.6683</td>
<td>K</td>
<td>1224.6538</td>
<td>612.8238</td>
<td>1207.6171</td>
<td>604.3105</td>
<td>1206.6477</td>
<td>603.8276</td>
<td>1230.6476</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>641.3617</td>
<td>321.1845</td>
<td>624.3352</td>
<td>312.6712</td>
<td>623.3511</td>
<td>312.7922</td>
<td>G</td>
<td>1054.5332</td>
<td>527.7801</td>
<td>1037.5262</td>
<td>519.2667</td>
<td>1036.5242</td>
<td>518.7747</td>
<td>1060.5246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>740.4301</td>
<td>370.7187</td>
<td>722.4038</td>
<td>365.2034</td>
<td>722.4196</td>
<td>361.7134</td>
<td>V</td>
<td>997.5313</td>
<td>499.2699</td>
<td>980.5047</td>
<td>490.7580</td>
<td>979.5207</td>
<td>490.2640</td>
<td>999.5207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>827.4621</td>
<td>414.2497</td>
<td>810.4526</td>
<td>405.7214</td>
<td>809.4518</td>
<td>405.2394</td>
<td>S</td>
<td>895.4629</td>
<td>449.7351</td>
<td>884.4518</td>
<td>444.2218</td>
<td>880.4523</td>
<td>440.7298</td>
<td>894.4523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>956.5047</td>
<td>478.7560</td>
<td>939.4782</td>
<td>470.3247</td>
<td>938.4942</td>
<td>469.7507</td>
<td>E</td>
<td>811.4398</td>
<td>406.2191</td>
<td>794.4043</td>
<td>397.7058</td>
<td>793.4203</td>
<td>397.2138</td>
<td>816.4203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1069.5888</td>
<td>535.2900</td>
<td>1052.5623</td>
<td>526.7848</td>
<td>1051.5782</td>
<td>526.2928</td>
<td>I</td>
<td>682.3889</td>
<td>341.6978</td>
<td>665.3617</td>
<td>333.1845</td>
<td>664.3777</td>
<td>332.6925</td>
<td>686.3777</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1168.6572</td>
<td>584.3832</td>
<td>1151.6307</td>
<td>576.3190</td>
<td>1150.6466</td>
<td>575.8270</td>
<td>V</td>
<td>569.2043</td>
<td>283.1557</td>
<td>552.2760</td>
<td>276.6423</td>
<td>551.2936</td>
<td>276.1204</td>
<td>575.2936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1205.7161</td>
<td>653.3617</td>
<td>1188.6928</td>
<td>644.8841</td>
<td>1187.7076</td>
<td>644.3654</td>
<td>H</td>
<td>470.2258</td>
<td>235.6213</td>
<td>453.2092</td>
<td>227.1083</td>
<td>452.2252</td>
<td>226.6162</td>
<td>462.2252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1491.7802</td>
<td>746.3937</td>
<td>1474.7536</td>
<td>737.8805</td>
<td>1473.7696</td>
<td>737.3884</td>
<td>G</td>
<td>286.1242</td>
<td>142.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td>186.5675</td>
<td>94.0575</td>
<td>196.5675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1540.8067</td>
<td>779.4003</td>
<td>1523.7800</td>
<td>771.8268</td>
<td>1522.7966</td>
<td>771.3346</td>
<td>K</td>
<td>147.1123</td>
<td>74.0600</td>
<td>139.0853</td>
<td>65.4683</td>
<td>138.5853</td>
<td>65.0683</td>
<td>148.5853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **MVTTFKGIK**

Found in **P12710**, Fatty acid-binding protein, liver OS=Mus musculus GN=Fabp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot from] 150 to 1100 Da [Full range]
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1125.5740

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- M1 : Oxidation (M), with neutral losses 0.0000 (shown in table), 61.9883
- K5 : mal_C02 (K), with neutral loss 43.9898

Ions Score: 38 Expect: 0.0013

Matches : 9/106 fragment ions using 9 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b0</th>
<th>b0'</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0427</td>
<td>74.5250</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1111</td>
<td>124.0592</td>
<td>V</td>
<td>935.5560</td>
<td>468.2817</td>
<td>918.5295</td>
<td>459.7684</td>
<td>459.7684</td>
<td>459.7684</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>348.1588</td>
<td>174.3830</td>
<td>T</td>
<td>836.4876</td>
<td>418.7473</td>
<td>819.4601</td>
<td>410.2342</td>
<td>410.2342</td>
<td>410.2342</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>449.2064</td>
<td>225.1069</td>
<td>T</td>
<td>735.4400</td>
<td>388.2236</td>
<td>718.4134</td>
<td>359.7103</td>
<td>717.4294</td>
<td>359.2183</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>596.2749</td>
<td>298.6411</td>
<td>F</td>
<td>634.3923</td>
<td>317.6998</td>
<td>617.3657</td>
<td>309.1865</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>766.3804</td>
<td>383.6938</td>
<td>749.3538</td>
<td>375.1806</td>
<td>748.3698</td>
<td>374.6858</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>823.4019</td>
<td>412.2046</td>
<td>806.3753</td>
<td>403.6913</td>
<td>805.3913</td>
<td>403.1993</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>936.4859</td>
<td>468.7466</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>147.1128</td>
<td>74.0600</td>
<td>I</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **LTITYGPKVVR**

Found in **P12710**, Fatty acid-binding protein, liver OS=**Mus musculus** GN=**Fabp1** PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Ch From: 200 to 1300 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1351.7445

Fixed modifications: **NMTES(C)** (apply to specified residues or termini only)

Variable modifications:

K9 : m/z C02 (K), with neutral loss 43.96898

Ions Score: 34 Expect: 0.0014

Matches: 16/50 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^2</th>
<th>b^3</th>
<th>b^4</th>
<th>b^5</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^2</th>
<th>y^3</th>
<th>y^4</th>
<th>y^5</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.0731</td>
<td>197.1285</td>
<td>90.0679</td>
<td>T</td>
<td>1175.6783</td>
<td>588.3428</td>
<td>1158.6517</td>
<td>579.8295</td>
<td>1157.6677</td>
<td>579.3375</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>328.2231</td>
<td>164.6152</td>
<td>310.2125</td>
<td>155.6099</td>
<td>I</td>
<td>1074.6306</td>
<td>537.8180</td>
<td>1057.6041</td>
<td>529.3057</td>
<td>1056.6200</td>
<td>528.8137</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>426.2708</td>
<td>215.1800</td>
<td>411.2602</td>
<td>206.1357</td>
<td>T</td>
<td>961.5465</td>
<td>481.2769</td>
<td>944.5200</td>
<td>472.7656</td>
<td>472.3276</td>
<td>943.3360</td>
<td>472.7216</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>592.3284</td>
<td>296.6707</td>
<td>574.3235</td>
<td>287.6564</td>
<td>Y</td>
<td>860.4989</td>
<td>430.7331</td>
<td>843.4723</td>
<td>422.2398</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>649.3556</td>
<td>325.1814</td>
<td>631.3450</td>
<td>316.1761</td>
<td>G</td>
<td>607.4535</td>
<td>349.2214</td>
<td>680.4090</td>
<td>340.7081</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>746.4083</td>
<td>373.7078</td>
<td>728.3978</td>
<td>364.7025</td>
<td>P</td>
<td>640.4141</td>
<td>320.7107</td>
<td>623.3875</td>
<td>312.1974</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>916.5138</td>
<td>458.7606</td>
<td>899.4873</td>
<td>450.2473</td>
<td>898.5033</td>
<td>449.7553</td>
<td>K</td>
<td>543.3613</td>
<td>272.1843</td>
<td>526.3348</td>
<td>263.6710</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1015.5823</td>
<td>508.2948</td>
<td>988.5557</td>
<td>499.7815</td>
<td>997.5717</td>
<td>499.2895</td>
<td>V</td>
<td>373.2558</td>
<td>187.1315</td>
<td>356.2292</td>
<td>178.6183</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1114.6507</td>
<td>557.8290</td>
<td>1097.6241</td>
<td>549.3157</td>
<td>1096.6401</td>
<td>548.8237</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YQQLIKENLK

Found in O6EQ20, Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial OS=Mus musculus GN=Aldh6a1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1361.7190

Fixed modifications: MNES (C) (apply to specified residues or termini only)

Variable modifications:

K6 : m1_C02 (K), with neutral loss 43.0098

Ions Score: 9 Expect: 0.0017

Matches to 29/98 fragment ions using 62 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b***</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y***</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td>275.1026</td>
<td>138.0550</td>
<td>Q</td>
<td>1155.6732</td>
<td>578.3402</td>
<td>1138.6467</td>
<td>569.8270</td>
<td>1137.6626</td>
<td>569.3350</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>232.1292</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>210.5975</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>323.6216</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>646.3559</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>533.5218</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>486.3614</td>
<td>516.2453</td>
<td>358.6268</td>
<td>267.1396</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.5295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>945.5049</td>
<td>1042.5204</td>
<td>521.7638</td>
<td>1041.5364</td>
<td>521.2718</td>
<td>734.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1172.6310</td>
<td>1155.6045</td>
<td>578.3059</td>
<td>1154.6204</td>
<td>577.8139</td>
<td>734.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>586.8191</td>
<td>1155.6045</td>
<td>578.3059</td>
<td>1154.6204</td>
<td>577.8139</td>
<td>734.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KWLPHELVD**
Found in **Q0E2Q0**, Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial OS=Mus musculus GN=Aldh6a1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 150 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1240.6452
Fixed modifications: **MNIS** (C) (apply to specified residues or termini only)
Variable modifications:
K: **mal_CO2** (K), with neutral loss 43.9898

Ions Score: 20 Expect: 0.078 Matches: 15/56 fragment ions using 62 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>357.1921</td>
<td>179.0997</td>
<td>340.1656</td>
<td>170.5864</td>
<td>W</td>
<td>1027.5571</td>
<td>514.2822</td>
<td>1010.5306</td>
<td>505.7689</td>
<td>1009.5465</td>
<td>505.2769</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>470.2762</td>
<td>235.6417</td>
<td>453.2496</td>
<td>227.1285</td>
<td>L</td>
<td>841.4778</td>
<td>421.2425</td>
<td>824.4512</td>
<td>412.7293</td>
<td>823.4672</td>
<td>412.2373</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>567.3289</td>
<td>284.1681</td>
<td>550.3024</td>
<td>275.6548</td>
<td>P</td>
<td>728.3937</td>
<td>364.7005</td>
<td>711.3672</td>
<td>356.1872</td>
<td>710.3832</td>
<td>355.6952</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>809.4556</td>
<td>405.2314</td>
<td>792.4291</td>
<td>396.7182</td>
<td>791.4450</td>
<td>396.2262</td>
<td>L</td>
<td>502.2984</td>
<td>251.6528</td>
<td>485.2718</td>
<td>243.1395</td>
<td>484.2878</td>
</tr>
<tr>
<td>7</td>
<td>908.5240</td>
<td>454.7656</td>
<td>891.4975</td>
<td>446.2524</td>
<td>890.5135</td>
<td>445.7604</td>
<td>V</td>
<td>389.2143</td>
<td>195.1108</td>
<td>372.1878</td>
<td>186.5975</td>
<td>371.2037</td>
</tr>
<tr>
<td>8</td>
<td>1023.5510</td>
<td>512.2791</td>
<td>1006.5244</td>
<td>503.7658</td>
<td>1005.5404</td>
<td>503.2738</td>
<td>D</td>
<td>290.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0635</td>
<td>272.1353</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ENLKEIAR
Found in O9EO20. Methylenecetone-semialdehyde dehydrogenase [full length], mitochondrial OS=Mus musculus GN=Aldh6a1 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 950 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calo): 1057.5405
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:

Peaks matched using neutral loss 43.9898
Score: 29 Expect: 0.62
Matches: 7/76 fragment ions using 16 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b-</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y-</th>
<th>y++</th>
<th>y0</th>
<th>y++0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>224.0928</td>
<td>112.5500</td>
<td>227.0662</td>
<td>114.0368</td>
<td>226.0822</td>
<td>113.5448</td>
<td>N</td>
<td>885.5132</td>
<td>443.2613</td>
<td>868.4887</td>
<td>434.7480</td>
</tr>
<tr>
<td>4</td>
<td>452.2824</td>
<td>256.1448</td>
<td>510.2558</td>
<td>255.6316</td>
<td>509.2718</td>
<td>255.1395</td>
<td>K</td>
<td>658.3893</td>
<td>329.6798</td>
<td>641.3617</td>
<td>321.1845</td>
</tr>
<tr>
<td>5</td>
<td>566.3250</td>
<td>328.6661</td>
<td>639.2984</td>
<td>320.1529</td>
<td>638.3144</td>
<td>319.6608</td>
<td>E</td>
<td>468.3827</td>
<td>244.6450</td>
<td>471.2562</td>
<td>236.1317</td>
</tr>
<tr>
<td>6</td>
<td>679.4090</td>
<td>385.2082</td>
<td>752.3825</td>
<td>376.6949</td>
<td>751.3985</td>
<td>376.2029</td>
<td>I</td>
<td>359.2401</td>
<td>180.1237</td>
<td>342.2136</td>
<td>171.6104</td>
</tr>
<tr>
<td>7</td>
<td>780.4462</td>
<td>420.7267</td>
<td>823.4196</td>
<td>412.2134</td>
<td>822.4356</td>
<td>411.7214</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AEMDAAVESCKR**
Found in OMP20 Methionylamino-acidichloridohydrodizosomase factorine1 mitochondrial OS=Mus musculus GN=Aldehyde PF-1 SV-1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calo) : 1440.5683
Fixed modifications: MMTS (C) [apply to specified residues or termini only]
Variable modifications:
K11 : m+1(O2) (K), with neutral loss 44.0198
Trend Score: 34 Expect: 0.0081
Matches : 10/104 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.0870</td>
<td>101.0471</td>
<td>183.0764</td>
<td>92.0418</td>
<td>F</td>
<td>1326.5487</td>
<td>663.7780</td>
<td>1309.5221</td>
<td>655.2647</td>
<td>1308.5381</td>
</tr>
<tr>
<td>3</td>
<td>332.1275</td>
<td>166.5675</td>
<td>314.1619</td>
<td>157.5601</td>
<td>M</td>
<td>1197.5061</td>
<td>599.2386</td>
<td>1180.4795</td>
<td>590.7434</td>
<td>1179.4953</td>
</tr>
<tr>
<td>4</td>
<td>447.1544</td>
<td>224.0809</td>
<td>429.1438</td>
<td>215.0736</td>
<td>D</td>
<td>1066.4656</td>
<td>553.7364</td>
<td>1049.4590</td>
<td>525.2232</td>
<td>1048.4550</td>
</tr>
<tr>
<td>5</td>
<td>518.1015</td>
<td>259.5994</td>
<td>500.1810</td>
<td>250.5941</td>
<td>A</td>
<td>932.4386</td>
<td>476.2250</td>
<td>934.4121</td>
<td>467.7097</td>
<td>933.4281</td>
</tr>
<tr>
<td>6</td>
<td>589.2286</td>
<td>295.1180</td>
<td>571.2181</td>
<td>286.1127</td>
<td>A</td>
<td>880.4015</td>
<td>440.7044</td>
<td>863.3750</td>
<td>432.1911</td>
<td>862.3910</td>
</tr>
<tr>
<td>7</td>
<td>688.2971</td>
<td>344.6522</td>
<td>670.2865</td>
<td>355.6469</td>
<td>V</td>
<td>809.3644</td>
<td>405.1838</td>
<td>792.3379</td>
<td>396.6726</td>
<td>791.3339</td>
</tr>
<tr>
<td>8</td>
<td>817.3396</td>
<td>409.1735</td>
<td>799.3291</td>
<td>400.1682</td>
<td>E</td>
<td>710.2960</td>
<td>355.6516</td>
<td>693.2659</td>
<td>347.1384</td>
<td>692.2854</td>
</tr>
<tr>
<td>9</td>
<td>904.3771</td>
<td>452.6805</td>
<td>886.3611</td>
<td>443.6442</td>
<td>S</td>
<td>581.2534</td>
<td>291.1303</td>
<td>564.2269</td>
<td>282.6171</td>
<td>563.2428</td>
</tr>
<tr>
<td>10</td>
<td>1033.3806</td>
<td>527.1879</td>
<td>1035.3580</td>
<td>518.1826</td>
<td>C</td>
<td>394.2214</td>
<td>247.6143</td>
<td>477.1948</td>
<td>239.1011</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1223.4741</td>
<td>612.2407</td>
<td>1206.4476</td>
<td>603.7274</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>138.0924</td>
<td>75.9498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of CMASTAILVGEAKK

Found in Q6EQ02, Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial OS=Mus musculus GN=Aldh6a1 PE=1 SV=1

Click and mouse within plot area to zoom in by factor of two about that point

Or Plot from 200 to 1600 Da Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Ne(u-amide): 1681.8086

Fixed modifications: NMTS (C) (apply to specified residues or termini only)

Variable modifications:

K2 : Oxidation (M) with neutral losses 0.0000 (shown in table), el. 4652
K4 : mal-002 (E) with neutral loss 48.9839

Ion Score: 14 Exp. Score: 0.692

Matches: 15/152 fragment ions using 05 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>y^0</th>
<th>y^0**</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0044</td>
<td>75.5057</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>297.0396</td>
<td>149.0194</td>
<td></td>
<td>M</td>
<td>1439.8294</td>
<td>745.4184</td>
<td>1472.8029</td>
<td>736.9051</td>
<td>1471.8189</td>
<td>735.4131</td>
</tr>
<tr>
<td>3</td>
<td>368.0767</td>
<td>184.5420</td>
<td></td>
<td>A</td>
<td>1342.7940</td>
<td>671.9007</td>
<td>1352.7617</td>
<td>663.3874</td>
<td>1344.7815</td>
<td>662.8954</td>
</tr>
<tr>
<td>4</td>
<td>451.1603</td>
<td>241.0840</td>
<td></td>
<td>L</td>
<td>1271.7569</td>
<td>656.3821</td>
<td>1294.7599</td>
<td>642.7680</td>
<td>1252.7544</td>
<td>627.3768</td>
</tr>
<tr>
<td>5</td>
<td>550.1822</td>
<td>281.6000</td>
<td></td>
<td>S</td>
<td>1158.6729</td>
<td>579.8401</td>
<td>1164.6463</td>
<td>571.3268</td>
<td>1149.6623</td>
<td>570.8348</td>
</tr>
<tr>
<td>6</td>
<td>609.2405</td>
<td>335.1239</td>
<td></td>
<td>T</td>
<td>1071.6408</td>
<td>536.3241</td>
<td>1094.6143</td>
<td>527.8108</td>
<td>1053.6303</td>
<td>527.3180</td>
</tr>
<tr>
<td>7</td>
<td>749.2776</td>
<td>370.6424</td>
<td></td>
<td>A</td>
<td>970.5932</td>
<td>485.8002</td>
<td>953.5666</td>
<td>477.3869</td>
<td>938.5824</td>
<td>476.7949</td>
</tr>
<tr>
<td>8</td>
<td>835.3416</td>
<td>427.1845</td>
<td></td>
<td>I</td>
<td>859.5560</td>
<td>450.2517</td>
<td>822.5295</td>
<td>441.7684</td>
<td>815.5452</td>
<td>441.2764</td>
</tr>
<tr>
<td>9</td>
<td>966.4457</td>
<td>483.7265</td>
<td></td>
<td>L</td>
<td>786.4720</td>
<td>393.7396</td>
<td>769.4454</td>
<td>385.2364</td>
<td>756.4614</td>
<td>384.7343</td>
</tr>
<tr>
<td>10</td>
<td>1065.5141</td>
<td>533.2607</td>
<td></td>
<td>V</td>
<td>672.3879</td>
<td>357.1976</td>
<td>656.3614</td>
<td>352.8685</td>
<td>655.3774</td>
<td>352.8192</td>
</tr>
<tr>
<td>11</td>
<td>1122.5336</td>
<td>561.7114</td>
<td></td>
<td>G</td>
<td>574.3195</td>
<td>287.6634</td>
<td>557.2930</td>
<td>279.1501</td>
<td>556.3089</td>
<td>278.6581</td>
</tr>
<tr>
<td>12</td>
<td>1251.5782</td>
<td>620.2927</td>
<td></td>
<td>F</td>
<td>517.2980</td>
<td>259.1527</td>
<td>500.2715</td>
<td>250.6394</td>
<td>499.2873</td>
<td>250.1474</td>
</tr>
<tr>
<td>13</td>
<td>1322.6153</td>
<td>661.8113</td>
<td></td>
<td>A</td>
<td>388.2554</td>
<td>194.6314</td>
<td>371.2280</td>
<td>186.1181</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1492.7208</td>
<td>745.8540</td>
<td>1475.6943</td>
<td>738.3508</td>
<td>1474.7103</td>
<td>737.8298</td>
<td>1470.7103</td>
<td>737.8298</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0883</td>
<td>65.5486</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VQANMGAKNHGVVMPDANK

Found in QHEQ29, Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial Os-Mus musculus GN=Aldh5a1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Pixel from 200 to 900

Label all possible matches **Label matches used for scoring**

Non-consensus area of native peptide (Percent): 2010.82%

Fixed modifications:
- **NHSE** (C): apply to specified residues or termini only

Variable modifications:
- **MT** : oxidation (M), with neutral losses 5.0000 Da (found in table), 62.9528
- **KS** : mod. Cys (K), with neutral losses 0.9848

Ion Score: 11 **Expect:** 0.06

Matches: 46 (454) Fragment ions using 77 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>y0</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq.</th>
<th>y+</th>
<th>y''+</th>
<th>y'''+</th>
<th>y''''+</th>
<th>y0</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5678</td>
<td>211.1077</td>
<td>106.0575</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>299.1714</td>
<td>150.0893</td>
<td>282.1448</td>
<td>141.5761</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>412.2143</td>
<td>207.1108</td>
<td>396.1678</td>
<td>195.5975</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>560.2497</td>
<td>280.1268</td>
<td>542.2322</td>
<td>272.1152</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>617.2711</td>
<td>309.1392</td>
<td>600.2446</td>
<td>300.6260</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>688.3083</td>
<td>344.6578</td>
<td>671.2817</td>
<td>355.1445</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>818.4138</td>
<td>429.7105</td>
<td>804.3673</td>
<td>421.1973</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>972.4567</td>
<td>486.7230</td>
<td>955.4302</td>
<td>478.2187</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1169.5157</td>
<td>555.2615</td>
<td>1092.4691</td>
<td>546.7482</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1166.5371</td>
<td>583.7722</td>
<td>1149.5106</td>
<td>575.2589</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1255.6051</td>
<td>625.3061</td>
<td>1238.5700</td>
<td>615.2731</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1354.6763</td>
<td>682.8406</td>
<td>1347.6474</td>
<td>674.3273</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1496.7164</td>
<td>748.3699</td>
<td>1487.6885</td>
<td>729.8276</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1592.7697</td>
<td>796.8873</td>
<td>1577.7406</td>
<td>788.3740</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1677.7941</td>
<td>854.4007</td>
<td>1660.7676</td>
<td>845.8874</td>
<td>1589.7816</td>
<td>845.1054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1778.8318</td>
<td>889.9193</td>
<td>1761.8647</td>
<td>881.4060</td>
<td>1760.8207</td>
<td>880.9140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1892.8741</td>
<td>966.9407</td>
<td>1873.8476</td>
<td>958.4257</td>
<td>1874.8566</td>
<td>957.9354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VQANMGA KNHGVVMPDANK
MS/MS Fragmentation of ITTSTLEKEASK

Found in Q9DBM12, Peroxinsomal bifunctional enzyme OS=Mus musculus GN=Ehhadh PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1400 Da Full range

Label all possible matches ☑️ Label matches used for scoring ☑️

Monoisotopic mass of neutral peptide Mr(calc): 1604.7348
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
KM : +57.02144 Da, with neutral loss 48.06688

Matches: 22 Expect: 0.023
Matches : 19/112 fragment ions using 56 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'''</th>
<th>b*</th>
<th>b''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y'''</th>
<th>y*</th>
<th>y''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>I</td>
<td>I</td>
<td>1231.6416</td>
<td>616.3245</td>
<td>1230.6576</td>
<td>615.8324</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>1248.6682</td>
<td>624.8377</td>
<td>1231.6416</td>
<td>616.3245</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>328.2231</td>
<td>164.6152</td>
<td></td>
<td></td>
<td>310.2125</td>
<td>155.6099</td>
<td>T</td>
<td>1135.5841</td>
<td>568.2957</td>
<td>1118.5576</td>
<td>559.7824</td>
<td>1117.5735</td>
<td>559.2904</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>415.2551</td>
<td>208.1312</td>
<td></td>
<td></td>
<td>397.2445</td>
<td>190.1259</td>
<td>T</td>
<td>1033.5364</td>
<td>517.7719</td>
<td>1017.5009</td>
<td>508.2586</td>
<td>1016.5259</td>
<td>508.7666</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>516.3028</td>
<td>258.6550</td>
<td></td>
<td></td>
<td>498.2822</td>
<td>249.6498</td>
<td>T</td>
<td>947.5044</td>
<td>474.2558</td>
<td>930.4779</td>
<td>465.7426</td>
<td>929.4038</td>
<td>465.2506</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>629.3860</td>
<td>315.1971</td>
<td></td>
<td></td>
<td>611.3763</td>
<td>306.1918</td>
<td>L</td>
<td>846.4567</td>
<td>423.7320</td>
<td>829.4302</td>
<td>415.2187</td>
<td>826.4462</td>
<td>414.7267</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>758.4249</td>
<td>379.7184</td>
<td></td>
<td></td>
<td>740.4189</td>
<td>370.7131</td>
<td>F</td>
<td>735.3727</td>
<td>367.1900</td>
<td>716.3461</td>
<td>538.6767</td>
<td>715.3621</td>
<td>538.1847</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1057.5776</td>
<td>529.2924</td>
<td>1040.5510</td>
<td>520.7791</td>
<td>1039.5670</td>
<td>520.2871</td>
<td>F</td>
<td>434.2245</td>
<td>217.6159</td>
<td>417.1980</td>
<td>209.1026</td>
<td>414.2140</td>
<td>208.6106</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1128.6147</td>
<td>564.8110</td>
<td>1111.5881</td>
<td>556.2977</td>
<td>1110.6041</td>
<td>555.8057</td>
<td>A</td>
<td>305.1819</td>
<td>153.0946</td>
<td>288.1554</td>
<td>144.5813</td>
<td>287.1714</td>
<td>144.0893</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1215.6467</td>
<td>608.3270</td>
<td>1198.6202</td>
<td>599.8137</td>
<td>1197.6361</td>
<td>599.3217</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
<td>108.5708</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GWYQYDKPLGR

Found in O9DRB12

Proteasomal bifunctional enzyme OS=Mus musculus GN=Fhnd3 PF=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point

Ori. Plot from 200 to 1400 Da [Full range]

Label all possible matches [] Label matches used for scoring [**]

Monoisotopic mass of neutral peptide Mr(calc): 1487.4783

Fixed modifications: NOmods (NOmods) (apply to specified residues or termini only)

Variable modifications:

| K7 | ma_G3 (K) | neutral loss 43.0989 |

Ions Score: 57 **Expect:** 0.001

Matches: 17/94 fragment ions using 34 most intense peaks ([Help])

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b++</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y+++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>244.1081</td>
<td>122.5577</td>
<td></td>
<td></td>
<td>W</td>
<td>1367.6743</td>
<td>684.3403</td>
<td>1350.6477</td>
<td>675.8275</td>
<td>1349.6637</td>
<td>675.3355</td>
</tr>
<tr>
<td>3</td>
<td>407.1711</td>
<td>204.0893</td>
<td></td>
<td></td>
<td>Y</td>
<td>1181.5930</td>
<td>591.3011</td>
<td>1164.5684</td>
<td>582.7875</td>
<td>1163.5844</td>
<td>582.2958</td>
</tr>
<tr>
<td>4</td>
<td>555.2300</td>
<td>268.1180</td>
<td>518.2034</td>
<td>259.6053</td>
<td>Q</td>
<td>1018.5316</td>
<td>509.7694</td>
<td>1001.5051</td>
<td>501.2562</td>
<td>1000.5211</td>
<td>500.7612</td>
</tr>
<tr>
<td>5</td>
<td>698.2923</td>
<td>349.6503</td>
<td>681.2657</td>
<td>341.1370</td>
<td>Y</td>
<td>896.4730</td>
<td>445.7402</td>
<td>873.4465</td>
<td>437.2269</td>
<td>872.4625</td>
<td>436.7369</td>
</tr>
<tr>
<td>7</td>
<td>953.4258</td>
<td>492.2165</td>
<td>966.3992</td>
<td>483.7032</td>
<td>955.4152</td>
<td>483.2112</td>
<td>K</td>
<td>612.3828</td>
<td>506.6950</td>
<td>595.3562</td>
<td>298.1817</td>
</tr>
<tr>
<td>8</td>
<td>1080.4785</td>
<td>540.7429</td>
<td>1063.4520</td>
<td>532.2296</td>
<td>1062.4680</td>
<td>531.7376</td>
<td>P</td>
<td>442.2772</td>
<td>221.6423</td>
<td>425.2507</td>
<td>213.1290</td>
</tr>
<tr>
<td>9</td>
<td>1193.5626</td>
<td>597.2849</td>
<td>1176.5360</td>
<td>588.7717</td>
<td>1175.5520</td>
<td>588.2796</td>
<td>L</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
</tr>
<tr>
<td>10</td>
<td>1250.5841</td>
<td>625.7957</td>
<td>1233.5575</td>
<td>617.2824</td>
<td>1232.5735</td>
<td>616.7904</td>
<td>G</td>
<td>232.1404</td>
<td>116.5738</td>
<td>215.1130</td>
<td>108.0060</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KIITSTLEKEASK**
Found in Q9DBM2, Peroxiredoxin bifunctional enzyme OS=Mus musculus GN=Erhahad PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or, [Full range] 200 to 1500
Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide Mr(calc): 1552.8237
Fixed modifications: NH3 (C) (apply to specified residues or terminal only)
Variable modifications:
K8 : acetyl (K), with neutral loss 48.0109
Ions Score: 55 Expect: 0.00001
Matches: 14/136 fragment ions using 25 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y0</th>
<th>y0''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128.1022</td>
<td>65.0548</td>
<td>112.0767</td>
<td>56.5415</td>
<td></td>
<td></td>
<td>K</td>
<td>681.3798</td>
<td>1344.7257</td>
<td>672.4434</td>
<td>1243.7417</td>
</tr>
<tr>
<td>2</td>
<td>242.1863</td>
<td>121.5988</td>
<td>223.1598</td>
<td>113.0835</td>
<td></td>
<td></td>
<td>I</td>
<td>1361.7522</td>
<td>2635.7456</td>
<td>1344.7257</td>
<td>672.4434</td>
</tr>
<tr>
<td>3</td>
<td>355.2704</td>
<td>178.1388</td>
<td>338.2438</td>
<td>169.6255</td>
<td></td>
<td></td>
<td>I</td>
<td>1248.6682</td>
<td>2642.6682</td>
<td>1231.6416</td>
<td>616.3245</td>
</tr>
<tr>
<td>4</td>
<td>456.3180</td>
<td>228.6627</td>
<td>439.2915</td>
<td>220.1494</td>
<td></td>
<td></td>
<td>T</td>
<td>1115.5811</td>
<td>2230.5811</td>
<td>1118.5578</td>
<td>559.7824</td>
</tr>
<tr>
<td>5</td>
<td>543.3501</td>
<td>272.1787</td>
<td>326.3235</td>
<td>263.6654</td>
<td></td>
<td></td>
<td>S</td>
<td>1034.5364</td>
<td>2068.5364</td>
<td>1017.5099</td>
<td>509.2580</td>
</tr>
<tr>
<td>6</td>
<td>644.3978</td>
<td>322.7025</td>
<td>427.3712</td>
<td>314.1892</td>
<td></td>
<td></td>
<td>I</td>
<td>947.5044</td>
<td>1894.5044</td>
<td>930.4779</td>
<td>465.7426</td>
</tr>
<tr>
<td>7</td>
<td>757.4818</td>
<td>379.2445</td>
<td>540.4553</td>
<td>370.7313</td>
<td></td>
<td></td>
<td>T</td>
<td>846.4567</td>
<td>1692.4567</td>
<td>829.4302</td>
<td>415.2187</td>
</tr>
<tr>
<td>8</td>
<td>886.5244</td>
<td>443.7659</td>
<td>689.4979</td>
<td>435.2526</td>
<td></td>
<td></td>
<td>E</td>
<td>733.3727</td>
<td>1466.7454</td>
<td>716.3461</td>
<td>358.8767</td>
</tr>
<tr>
<td>9</td>
<td>1056.6299</td>
<td>528.8186</td>
<td>1039.6034</td>
<td>520.3053</td>
<td></td>
<td></td>
<td>K</td>
<td>604.3391</td>
<td>1208.6782</td>
<td>587.3035</td>
<td>294.1554</td>
</tr>
<tr>
<td>10</td>
<td>1185.6725</td>
<td>593.3399</td>
<td>1163.6460</td>
<td>584.8265</td>
<td></td>
<td></td>
<td>E</td>
<td>434.2245</td>
<td>868.4490</td>
<td>417.1980</td>
<td>209.1026</td>
</tr>
<tr>
<td>11</td>
<td>1256.7096</td>
<td>628.8585</td>
<td>1239.6831</td>
<td>620.3452</td>
<td></td>
<td></td>
<td>A</td>
<td>365.1819</td>
<td>730.3638</td>
<td>382.1554</td>
<td>144.5813</td>
</tr>
<tr>
<td>12</td>
<td>1343.7417</td>
<td>672.3745</td>
<td>1326.7151</td>
<td>663.8612</td>
<td></td>
<td></td>
<td>S</td>
<td>234.1448</td>
<td>468.2896</td>
<td>217.1183</td>
<td>109.0628</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

K8 : acetyl (K), with neutral loss 48.0109
MS/MS Fragmentation of **SANKWSTPSGASWK**
Found in Q9DBM2, Peroxidase bifunctional enzyme OS=Mus musculus GN=Ehbadh PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da
Label all possible matches ✓ Label matches used for scoring ✓

Monoisotopic mass of neutral peptide M(zero): 1591.7267
Fixed modifications: NMT (C) (apply to specified residues or termini only)
Variable modifications:
K4 : m/z 202 (K), with neutral loss 43.0088
Ions Score: 20 Expect: 0.0080
Matches: 20/145 fragment ions using 52 most intense peaks

i	b	b**	h**	k**	Seg	y	y**	y^+	y^++	y^+++			
---	---	-----	-----	-----	-----	---	-----	-----	------	-------			
1	88.0393	44.5233	70.0287	35.5100	S	1451.7121	731.3597	1444.6856	722.8464	1443.7015	722.3544		
2	159.0764	80.0418	141.0659	71.0566	A	1451.7121	731.3597	1444.6856	722.8464	1443.7015	722.3544		
3	273.1193	137.0633	236.0928	123.5360	223.1088	128.0580	N	1390.6720	699.8411	1373.6484	687.3279	1372.5644	686.8359
4	443.2249	222.1161	426.1983	213.6928	422.2143	213.1108	K	1276.6281	638.8197	1259.6033	630.3064	1258.5215	629.8144
5	629.3042	315.1577	612.2776	306.6423	611.2958	306.1504	W	1106.5265	553.7669	1089.5000	545.2236	1088.5160	544.7616
6	716.3562	358.8171	699.2907	350.1383	698.3256	349.6665	S	920.4472	460.7272	903.4207	452.2140	902.4367	451.7220
7	817.3839	409.1956	800.2573	400.8623	799.3733	400.1903	T	832.4152	417.2112	816.3585	408.6980	815.4946	408.2090
8	914.4367	457.7220	897.4101	449.2087	896.4621	448.7167	P	732.3675	356.8874	715.3410	358.1741	714.3589	357.8621
9	1001.4873	501.2330	984.4421	492.7124	983.4951	492.2327	S	655.3148	318.1810	638.2582	319.6777	637.3042	319.1557
10	1058.4601	559.7487	1041.4566	521.2354	1040.4799	520.7434	G	548.2827	274.6720	531.2560	266.1317	530.2722	265.6397
11	1125.5274	605.2673	1112.5007	556.7310	1111.5136	556.2620	A	491.2813	246.1343	474.2347	237.6210	473.2507	237.1290
13	1402.6386	701.8929	1385.8612	693.3907	1384.8280	692.8177	W	333.1921	167.0997	316.1656	158.5864	315.6863	158.0684
14	K	147.1128	74.0500	139.0583	65.5468	1							
MS/MS Fragmentation of KGQGLTGPSLPPGTPTR
Found in Q9DBM2, Peroxidase bifunctional enzyme OS=Mus musculus GN=Ehbad PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or: Plot from 300 to 1500 Da Full range
Label all possible matches © Label matches used for scoring •

Monoisotopic mass of neutral peptide: M mono = 1743.9007
Fixed modifications: M673 (C) (apply to specified residues or termini only)
Variable modifications:
 X1 Carbamidomethyl (C), with neutral loss 48.0055
 Ion Score: 40 Exp Ions: 0.00082
Matches: 20/100 fragment ions using 0+ most intense peaks (G离子)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>h</th>
<th>y</th>
<th>h+2</th>
<th>b+2</th>
<th>Seq</th>
<th>y+2</th>
<th>y+3</th>
<th>y+4</th>
<th>y+5</th>
<th>y+6</th>
<th>y+7</th>
<th>y+8</th>
<th>y+9</th>
<th>y+10</th>
<th>y+11</th>
<th>y+12</th>
<th>y+13</th>
<th>y+14</th>
<th>y+15</th>
<th>y+16</th>
<th>y+17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0375</td>
<td>G</td>
<td>1535.8176</td>
<td>768.4125</td>
<td>1518.7911</td>
<td>759.8992</td>
<td>1517.8071</td>
<td>759.4072</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>356.1928</td>
<td>178.6001</td>
<td>339.1663</td>
<td>170.0868</td>
<td>Q</td>
<td>1478.7962</td>
<td>739.9901</td>
<td>1461.7696</td>
<td>731.3884</td>
<td>1460.7686</td>
<td>730.8964</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>413.2143</td>
<td>207.1108</td>
<td>396.1878</td>
<td>198.2975</td>
<td>G</td>
<td>1330.7878</td>
<td>675.8794</td>
<td>1313.7710</td>
<td>667.3592</td>
<td>1312.7720</td>
<td>666.8602</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>526.2994</td>
<td>265.8528</td>
<td>509.2718</td>
<td>253.1396</td>
<td>L</td>
<td>1292.7861</td>
<td>647.5817</td>
<td>1276.6890</td>
<td>638.8484</td>
<td>1275.7058</td>
<td>638.3594</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>627.3451</td>
<td>314.1707</td>
<td>610.3195</td>
<td>305.6634</td>
<td>T</td>
<td>1180.6221</td>
<td>590.8197</td>
<td>1163.6053</td>
<td>582.3064</td>
<td>1162.0215</td>
<td>581.8142</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>684.3675</td>
<td>342.8674</td>
<td>667.3410</td>
<td>334.1471</td>
<td>666.3370</td>
<td>333.6821</td>
<td>G</td>
<td>1079.5846</td>
<td>540.2938</td>
<td>1062.3578</td>
<td>531.8726</td>
<td>1061.7578</td>
<td>531.2903</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>781.4203</td>
<td>391.2138</td>
<td>764.3937</td>
<td>382.7005</td>
<td>763.4097</td>
<td>382.2085</td>
<td>P</td>
<td>1027.5679</td>
<td>511.7811</td>
<td>1005.5364</td>
<td>503.2718</td>
<td>1004.5524</td>
<td>502.7798</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>868.4523</td>
<td>434.7298</td>
<td>851.4258</td>
<td>426.2165</td>
<td>S</td>
<td>925.5102</td>
<td>463.2587</td>
<td>908.4836</td>
<td>454.7454</td>
<td>907.4966</td>
<td>454.2524</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>981.5364</td>
<td>491.2718</td>
<td>964.5098</td>
<td>482.7585</td>
<td>L</td>
<td>813.4781</td>
<td>419.7427</td>
<td>812.4516</td>
<td>411.2294</td>
<td>820.4676</td>
<td>410.7374</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1078.5891</td>
<td>539.7982</td>
<td>1061.5626</td>
<td>531.2849</td>
<td>1060.5768</td>
<td>530.7929</td>
<td>P</td>
<td>725.3941</td>
<td>363.2007</td>
<td>708.3675</td>
<td>354.6574</td>
<td>707.3835</td>
<td>354.1954</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1175.6419</td>
<td>588.3246</td>
<td>1158.5184</td>
<td>580.8113</td>
<td>1157.6313</td>
<td>579.3193</td>
<td>P</td>
<td>623.3413</td>
<td>314.6713</td>
<td>614.3148</td>
<td>305.1610</td>
<td>610.3307</td>
<td>305.6690</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1322.6624</td>
<td>616.8533</td>
<td>1315.6369</td>
<td>608.3220</td>
<td>1314.6228</td>
<td>607.8300</td>
<td>G</td>
<td>531.2833</td>
<td>266.1470</td>
<td>514.2260</td>
<td>257.6346</td>
<td>513.2790</td>
<td>257.1424</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1531.8115</td>
<td>766.4094</td>
<td>1514.7849</td>
<td>757.8961</td>
<td>1513.8009</td>
<td>757.4041</td>
<td>T</td>
<td>276.1668</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>258.1561</td>
<td>129.5813</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>R</td>
<td>175.1190</td>
<td>88.0611</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VGIPVAVESDPKQLDTAK

Found in **Q9DBM2**, Peroxidase bifunctional enzyme OS=Mus musculus GN=Eladho PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1900 Da Full range

Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(peptide): 2051.0787

Fixed modifications: MT15 (C) (apply to specified residues or termini only)

Variable modifications:

- K13 : +5.982 Da with neutral loss 58.0098

Ion Score: 82 Expect: 5.4e-09

Matches: 21/172 fragment ions using 27 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b++</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>G</td>
<td>1909.0277</td>
<td>935.0175</td>
<td>1892.0011</td>
<td>946.5042</td>
<td>1891.0171</td>
<td>946.0222</td>
</tr>
<tr>
<td>2</td>
<td>157.0972</td>
<td>79.0222</td>
<td>I</td>
<td>1822.0602</td>
<td>926.5067</td>
<td>1814.0797</td>
<td>917.9935</td>
<td>1833.9957</td>
<td>917.5015</td>
</tr>
<tr>
<td>3</td>
<td>270.1812</td>
<td>135.5902</td>
<td>P</td>
<td>1721.0226</td>
<td>860.9642</td>
<td>1720.0118</td>
<td>860.9594</td>
<td>1720.0118</td>
<td>860.9594</td>
</tr>
<tr>
<td>4</td>
<td>367.2340</td>
<td>184.1206</td>
<td>V</td>
<td>1641.8684</td>
<td>821.4383</td>
<td>1652.8428</td>
<td>812.9291</td>
<td>1623.8388</td>
<td>812.4331</td>
</tr>
<tr>
<td>5</td>
<td>466.3024</td>
<td>233.6546</td>
<td>V</td>
<td>1542.8019</td>
<td>771.9041</td>
<td>1523.7744</td>
<td>763.3909</td>
<td>1524.7904</td>
<td>762.8988</td>
</tr>
<tr>
<td>6</td>
<td>565.3708</td>
<td>283.1890</td>
<td>A</td>
<td>1444.7376</td>
<td>722.3699</td>
<td>1446.7060</td>
<td>713.8556</td>
<td>1425.7220</td>
<td>713.3646</td>
</tr>
<tr>
<td>7</td>
<td>658.4079</td>
<td>318.7076</td>
<td>V</td>
<td>1332.6955</td>
<td>685.8114</td>
<td>1355.6699</td>
<td>678.3381</td>
<td>1354.6849</td>
<td>677.8461</td>
</tr>
<tr>
<td>8</td>
<td>735.4763</td>
<td>368.2418</td>
<td>E</td>
<td>1273.6370</td>
<td>637.3172</td>
<td>1256.6005</td>
<td>638.0839</td>
<td>1255.6165</td>
<td>628.3119</td>
</tr>
<tr>
<td>9</td>
<td>864.5189</td>
<td>432.7631</td>
<td>D</td>
<td>1087.5524</td>
<td>529.2798</td>
<td>1040.5259</td>
<td>520.7666</td>
<td>1039.5419</td>
<td>520.2746</td>
</tr>
<tr>
<td>10</td>
<td>951.5510</td>
<td>476.2781</td>
<td>S</td>
<td>1144.5844</td>
<td>572.7839</td>
<td>1127.5759</td>
<td>564.2862</td>
<td>1126.5739</td>
<td>563.7906</td>
</tr>
<tr>
<td>11</td>
<td>1066.5779</td>
<td>533.9726</td>
<td>P</td>
<td>943.5355</td>
<td>471.7664</td>
<td>925.4980</td>
<td>465.2531</td>
<td>924.5140</td>
<td>462.7611</td>
</tr>
<tr>
<td>12</td>
<td>1163.6097</td>
<td>582.3190</td>
<td>S</td>
<td>1141.6201</td>
<td>573.5137</td>
<td>1141.6201</td>
<td>573.5137</td>
<td>1141.6201</td>
<td>573.5137</td>
</tr>
<tr>
<td>13</td>
<td>1333.7362</td>
<td>667.3717</td>
<td>K</td>
<td>845.4727</td>
<td>423.2400</td>
<td>828.4462</td>
<td>414.7567</td>
<td>827.4642</td>
<td>414.2347</td>
</tr>
<tr>
<td>14</td>
<td>1461.7484</td>
<td>731.4010</td>
<td>Q</td>
<td>675.3672</td>
<td>338.1872</td>
<td>658.3064</td>
<td>329.6740</td>
<td>657.3566</td>
<td>329.1819</td>
</tr>
<tr>
<td>15</td>
<td>1547.8748</td>
<td>787.9431</td>
<td>L</td>
<td>547.3086</td>
<td>274.1579</td>
<td>530.2821</td>
<td>265.6447</td>
<td>529.2980</td>
<td>265.1527</td>
</tr>
<tr>
<td>16</td>
<td>1689.9018</td>
<td>845.4565</td>
<td>D</td>
<td>434.2243</td>
<td>217.6159</td>
<td>417.1908</td>
<td>209.1026</td>
<td>416.2140</td>
<td>208.6190</td>
</tr>
<tr>
<td>17</td>
<td>1790.9315</td>
<td>919.9804</td>
<td>T</td>
<td>218.1409</td>
<td>109.5766</td>
<td>202.1344</td>
<td>101.0653</td>
<td>201.1870</td>
<td>151.0972</td>
</tr>
<tr>
<td>18</td>
<td>1861.9906</td>
<td>951.4509</td>
<td>A</td>
<td>1444.7376</td>
<td>722.3699</td>
<td>1446.7060</td>
<td>713.8556</td>
<td>1425.7220</td>
<td>713.3646</td>
</tr>
</tbody>
</table>
| 19 | 1471.1282 | 74.0660 | | | | | | | | 1
MS/MS Fragmentation of KIITSTLEK
Found in OGDH
Provisional bin functional enzyme OS=Mus musculus GN=Fhbath PF=1 SV=4
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1650 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1117.6230
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K1 : m/z CO2 (K), with neutral loss 43.0098
Ions Score: 20 Expect: 0.16
Matches : 8/98 fragment ions using 10 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>b+</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td>452.7711</td>
<td>887.5084</td>
<td>444.2579</td>
<td>885.5244</td>
<td>443.7658</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>I</td>
<td>904.5550</td>
<td></td>
<td>395.2291</td>
<td>774.4244</td>
<td>387.7158</td>
<td>773.4403</td>
<td>387.2238</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>397.2809</td>
<td>199.1441</td>
<td>380.2544</td>
<td>190.6308</td>
<td>I</td>
<td>791.4590</td>
<td></td>
<td>395.2291</td>
<td>774.4244</td>
<td>387.7158</td>
<td>773.4403</td>
<td>387.2238</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>498.3266</td>
<td>249.6679</td>
<td>481.3021</td>
<td>241.1547</td>
<td>T</td>
<td>675.3668</td>
<td></td>
<td>339.8871</td>
<td>661.3403</td>
<td>331.1738</td>
<td>660.3563</td>
<td>330.6818</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>585.3666</td>
<td>293.1840</td>
<td>568.3341</td>
<td>284.5707</td>
<td>S</td>
<td>577.3192</td>
<td></td>
<td>289.1632</td>
<td>560.2926</td>
<td>280.6496</td>
<td>559.3086</td>
<td>280.1576</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>686.4083</td>
<td>343.7078</td>
<td>669.3818</td>
<td>335.1945</td>
<td>T</td>
<td>490.2871</td>
<td></td>
<td>245.6472</td>
<td>473.2606</td>
<td>237.1339</td>
<td>472.2766</td>
<td>236.6419</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>799.4624</td>
<td>400.2498</td>
<td>782.4658</td>
<td>391.7566</td>
<td>L</td>
<td>389.2395</td>
<td></td>
<td>195.1234</td>
<td>372.2129</td>
<td>186.6101</td>
<td>371.2289</td>
<td>186.1181</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>928.5350</td>
<td>464.7711</td>
<td>911.5084</td>
<td>456.2579</td>
<td>E</td>
<td>276.1554</td>
<td></td>
<td>138.3813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KATQEA FMK
Found in O91Y07 Fructose-bisphosphate aldolase B OS=Mus musculus GN=Aladah PF=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1144.8278
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K: mal, CO2 (K), with neutral loss 43.0000
M: Oxidation (M), with neutral losses 0.0000(shown in table), 62.9999
Ions Score: 18 Expect: 0.04
Matches: 27/128 fragment ions using 74 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b***</th>
<th>b+</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>80.0860</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>941.4397</td>
<td>471.2235</td>
<td>924.4311</td>
<td>462.7102</td>
<td>923.4291</td>
<td>462.2182</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0633</td>
<td>A</td>
<td>870.4026</td>
<td>439.7049</td>
<td>853.3760</td>
<td>427.1917</td>
<td>852.3920</td>
<td>426.6996</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>345.3122</td>
<td>172.1024</td>
<td>236.1710</td>
<td>163.5892</td>
<td>T</td>
<td>769.3549</td>
<td>385.1811</td>
<td>752.3284</td>
<td>376.6678</td>
<td>751.3434</td>
<td>376.1758</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>471.2562</td>
<td>236.1317</td>
<td>454.2296</td>
<td>227.6185</td>
<td>Q</td>
<td>641.2863</td>
<td>321.1518</td>
<td>624.2698</td>
<td>312.8358</td>
<td>623.2858</td>
<td>312.1465</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>600.2988</td>
<td>300.6530</td>
<td>583.2722</td>
<td>292.1397</td>
<td>E</td>
<td>512.2537</td>
<td>256.6305</td>
<td>495.2272</td>
<td>248.1172</td>
<td>494.2166</td>
<td>242.9872</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>671.3559</td>
<td>336.1716</td>
<td>654.3083</td>
<td>327.6583</td>
<td>A</td>
<td>294.1482</td>
<td>147.5777</td>
<td>277.1217</td>
<td>139.0645</td>
<td>294.4131</td>
<td>148.8131</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>818.4043</td>
<td>408.7058</td>
<td>801.3777</td>
<td>401.1925</td>
<td>F</td>
<td>137.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>137.1128</td>
<td>74.0600</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **FPALTPEQKK**

Found in CoI1V07 Protonemus proctori acl12483 R OS=Musrumusculus GN=Ab400 PF=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da

Label all possible matches Label matches used for scoring

Monsiatomic mass of neutral peptide Mr(calc): 1343.6448

Fixed modifications: M(S) (C) (apply to specified residues or termini only)
Variable modifications:
K9 : m+1 CO2 (K), with neutral loss 43.0050

Ions Score: 32 Expect: 0.047
Matches: 9/80 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^-</th>
<th>b^+++</th>
<th>b0</th>
<th>b^0+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^-</th>
<th>y^+++</th>
<th>y0</th>
<th>y^0+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td>1053.5939</td>
<td>527.3006</td>
<td>1036.5673</td>
<td>518.7873</td>
<td>1035.5833</td>
<td>518.2953</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>245.1285</td>
<td>123.0679</td>
<td>P</td>
<td>956.5411</td>
<td>478.7742</td>
<td>939.5146</td>
<td>470.2609</td>
<td>938.5306</td>
<td>469.7689</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>316.1656</td>
<td>158.5864</td>
<td>A</td>
<td>883.5040</td>
<td>443.2556</td>
<td>868.4775</td>
<td>434.7424</td>
<td>867.4934</td>
<td>434.2504</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>530.2973</td>
<td>265.6523</td>
<td>T</td>
<td>627.3501</td>
<td>314.1787</td>
<td>609.3395</td>
<td>305.1734</td>
<td>607.3173</td>
<td>304.1673</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>627.3501</td>
<td>314.1787</td>
<td>P</td>
<td>756.3927</td>
<td>378.7000</td>
<td>738.3821</td>
<td>369.6947</td>
<td>737.3627</td>
<td>368.6827</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>884.4512</td>
<td>442.7293</td>
<td>Q</td>
<td>1051.5568</td>
<td>527.7820</td>
<td>1037.5302</td>
<td>510.2688</td>
<td>1036.5462</td>
<td>518.7767</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>147.1128</td>
<td>74.0600</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>125.0975</td>
<td>62.5488</td>
<td>K</td>
<td>125.0975</td>
<td>62.5488</td>
<td>118.0720</td>
<td>55.5284</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>103.0822</td>
<td>51.5411</td>
<td>K</td>
<td>103.0822</td>
<td>51.5411</td>
<td>96.0566</td>
<td>48.5220</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **FPALTPEQKK**
- **Monsiatomic mass of neutral peptide Mr(calc): 1343.6448**
- **Fixed modifications:** M(S) (C)
- **Variable modifications:** K9 : m+1 CO2 (K), with neutral loss 43.0050
- **Ions Score: 32 Expect: 0.047**
- **Matches: 9/80 fragment ions using 11 most intense peaks**
MS/MS Fragmentation of ALQASALAAWGGKAANK
Found in O61Y97. Fructose-bisphosphate aldolase B Os=Mas musculus GN=Aldol PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or [Plot from] 200 to 1700 Da [Full range]
Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide Mr(calc): 1712.5540
Fixed modifications: NMT (C) (Apply to specified residues or terminal only)
Variable modifications: K3 : m/z 0.02 (K), with neutral loss 44.0549

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b²</th>
<th>b+++</th>
<th>b++</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y²</th>
<th>y+++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>72</td>
<td>36</td>
<td>2558</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>185</td>
<td>93</td>
<td>6579</td>
<td></td>
<td></td>
<td>L</td>
<td>1598</td>
<td>8549</td>
<td>799</td>
<td>9361</td>
<td>1581</td>
<td>8384</td>
<td>791</td>
</tr>
<tr>
<td>3</td>
<td>313</td>
<td>313</td>
<td>157</td>
<td>9072</td>
<td>296</td>
<td>1605</td>
<td>148</td>
<td>3539</td>
<td>Q</td>
<td>1432</td>
<td>7809</td>
<td>743</td>
<td>3941</td>
<td>1168</td>
</tr>
<tr>
<td>4</td>
<td>384</td>
<td>384</td>
<td>192</td>
<td>6157</td>
<td>367</td>
<td>1976</td>
<td>184</td>
<td>1024</td>
<td>A</td>
<td>1357</td>
<td>7223</td>
<td>679</td>
<td>3648</td>
<td>1340</td>
</tr>
<tr>
<td>5</td>
<td>471</td>
<td>471</td>
<td>235</td>
<td>1317</td>
<td>454</td>
<td>2296</td>
<td>227</td>
<td>6183</td>
<td>S</td>
<td>1256</td>
<td>6852</td>
<td>643</td>
<td>8462</td>
<td>1269</td>
</tr>
<tr>
<td>6</td>
<td>543</td>
<td>543</td>
<td>271</td>
<td>6503</td>
<td>252</td>
<td>2687</td>
<td>263</td>
<td>1370</td>
<td>A</td>
<td>1199</td>
<td>6531</td>
<td>600</td>
<td>3302</td>
<td>1182</td>
</tr>
<tr>
<td>7</td>
<td>653</td>
<td>653</td>
<td>328</td>
<td>1923</td>
<td>653</td>
<td>5078</td>
<td>319</td>
<td>6790</td>
<td>L</td>
<td>1128</td>
<td>6160</td>
<td>564</td>
<td>8116</td>
<td>1115</td>
</tr>
<tr>
<td>8</td>
<td>726</td>
<td>726</td>
<td>363</td>
<td>7109</td>
<td>709</td>
<td>3879</td>
<td>355</td>
<td>1976</td>
<td>L</td>
<td>708</td>
<td>4039</td>
<td>354</td>
<td>7066</td>
<td>1015</td>
</tr>
<tr>
<td>9</td>
<td>797</td>
<td>797</td>
<td>399</td>
<td>2294</td>
<td>780</td>
<td>4290</td>
<td>390</td>
<td>7162</td>
<td>A</td>
<td>944</td>
<td>4048</td>
<td>472</td>
<td>7111</td>
<td>927</td>
</tr>
<tr>
<td>10</td>
<td>983</td>
<td>983</td>
<td>492</td>
<td>2681</td>
<td>966</td>
<td>5043</td>
<td>483</td>
<td>7558</td>
<td>W</td>
<td>873</td>
<td>4577</td>
<td>437</td>
<td>2325</td>
<td>836</td>
</tr>
<tr>
<td>11</td>
<td>1194</td>
<td>1194</td>
<td>590</td>
<td>7708</td>
<td>1023</td>
<td>2358</td>
<td>512</td>
<td>2263</td>
<td>G</td>
<td>687</td>
<td>3784</td>
<td>344</td>
<td>1928</td>
<td>607</td>
</tr>
<tr>
<td>12</td>
<td>1397</td>
<td>1397</td>
<td>689</td>
<td>3090</td>
<td>1080</td>
<td>5473</td>
<td>540</td>
<td>7773</td>
<td>G</td>
<td>630</td>
<td>3570</td>
<td>313</td>
<td>6621</td>
<td>631</td>
</tr>
<tr>
<td>13</td>
<td>1367</td>
<td>1367</td>
<td>634</td>
<td>3413</td>
<td>1250</td>
<td>6358</td>
<td>625</td>
<td>8300</td>
<td>G</td>
<td>625</td>
<td>3330</td>
<td>287</td>
<td>1714</td>
<td>556</td>
</tr>
<tr>
<td>14</td>
<td>1433</td>
<td>1433</td>
<td>669</td>
<td>8619</td>
<td>1321</td>
<td>0989</td>
<td>601</td>
<td>3486</td>
<td>G</td>
<td>602</td>
<td>2300</td>
<td>202</td>
<td>1186</td>
<td>386</td>
</tr>
<tr>
<td>15</td>
<td>1499</td>
<td>1499</td>
<td>705</td>
<td>3804</td>
<td>1292</td>
<td>7270</td>
<td>696</td>
<td>8672</td>
<td>A</td>
<td>352</td>
<td>1928</td>
<td>186</td>
<td>9001</td>
<td>215</td>
</tr>
<tr>
<td>16</td>
<td>1523</td>
<td>1523</td>
<td>766</td>
<td>4019</td>
<td>1506</td>
<td>7700</td>
<td>753</td>
<td>8856</td>
<td>M</td>
<td>261</td>
<td>1857</td>
<td>131</td>
<td>0815</td>
<td>244</td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>1128</td>
<td>74</td>
<td>0600</td>
<td>130</td>
<td>0863</td>
<td>65</td>
<td>3486</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALQASALAAWGGKAANKK

Found in Q81Y97, Fructose-bisphosphate aldolase B OS=Mos musculus GN=Alb2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da
Label all possible matches □ Label matches used for scoring □

Non-identic mass of neutral peptide Mr(calc): 1640.9756
Fixed modifications: MG25 (C) (apply to specified residues or termini only)
Variable modifications:
K25 : +1.000 (K), with neutral loss 41.0107
Ion Score: 52 Expect: 6.3e-308
Matched: 22/185 fragment ions using 41 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>183.1283</td>
<td>93.0649</td>
<td>L</td>
<td>1726.9599</td>
<td>863.9836</td>
<td>1709.9333</td>
<td>855.4703</td>
<td>1708.9493</td>
<td>854.9783</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>156.0935</td>
<td>Q</td>
<td>1613.8758</td>
<td>807.4415</td>
<td>1596.8493</td>
<td>798.8283</td>
<td>1595.8653</td>
<td>798.4363</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>384.2241</td>
<td>192.6157</td>
<td>A</td>
<td>1485.8172</td>
<td>743.4123</td>
<td>1468.7907</td>
<td>734.8990</td>
<td>1467.8087</td>
<td>734.4070</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>471.2552</td>
<td>235.1317</td>
<td>A</td>
<td>1414.8001</td>
<td>707.8937</td>
<td>1397.7556</td>
<td>699.3804</td>
<td>1396.7696</td>
<td>698.8884</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>543.2983</td>
<td>271.8503</td>
<td>525.2667</td>
<td>263.1370</td>
<td>524.8287</td>
<td>262.8450</td>
<td>A</td>
<td>1337.7481</td>
<td>664.3777</td>
<td>1310.7215</td>
</tr>
<tr>
<td>7</td>
<td>653.3774</td>
<td>328.1923</td>
<td>653.3508</td>
<td>319.6790</td>
<td>657.3968</td>
<td>319.1870</td>
<td>L</td>
<td>1356.7110</td>
<td>628.8591</td>
<td>1329.6844</td>
</tr>
<tr>
<td>8</td>
<td>726.4143</td>
<td>363.7109</td>
<td>709.3879</td>
<td>353.1976</td>
<td>706.4039</td>
<td>354.7056</td>
<td>A</td>
<td>1143.6269</td>
<td>572.3171</td>
<td>1126.6004</td>
</tr>
<tr>
<td>9</td>
<td>797.4516</td>
<td>399.2284</td>
<td>780.4259</td>
<td>390.7162</td>
<td>779.4410</td>
<td>390.2241</td>
<td>A</td>
<td>1072.5985</td>
<td>536.7985</td>
<td>1053.5063</td>
</tr>
<tr>
<td>10</td>
<td>983.5309</td>
<td>492.2691</td>
<td>966.5043</td>
<td>483.7538</td>
<td>965.5203</td>
<td>483.2638</td>
<td>W</td>
<td>1061.5327</td>
<td>591.2800</td>
<td>984.5261</td>
</tr>
<tr>
<td>11</td>
<td>1104.5524</td>
<td>520.7798</td>
<td>1023.5258</td>
<td>512.2665</td>
<td>1022.5418</td>
<td>511.7174</td>
<td>G</td>
<td>815.4734</td>
<td>408.2403</td>
<td>798.4468</td>
</tr>
<tr>
<td>12</td>
<td>1097.5738</td>
<td>549.2965</td>
<td>1080.5473</td>
<td>540.7773</td>
<td>1079.5633</td>
<td>540.2853</td>
<td>G</td>
<td>758.4519</td>
<td>379.7296</td>
<td>741.4254</td>
</tr>
<tr>
<td>13</td>
<td>1267.6723</td>
<td>634.3433</td>
<td>1250.6528</td>
<td>625.8300</td>
<td>1249.6888</td>
<td>625.3380</td>
<td>K</td>
<td>701.4304</td>
<td>351.2189</td>
<td>684.4039</td>
</tr>
<tr>
<td>14</td>
<td>1338.7165</td>
<td>669.8519</td>
<td>1321.8099</td>
<td>661.3468</td>
<td>1320.7059</td>
<td>660.8566</td>
<td>A</td>
<td>531.3249</td>
<td>266.1661</td>
<td>514.2984</td>
</tr>
<tr>
<td>15</td>
<td>1499.7536</td>
<td>705.3802</td>
<td>1402.7207</td>
<td>696.8672</td>
<td>1391.7430</td>
<td>696.3751</td>
<td>A</td>
<td>460.2873</td>
<td>230.6475</td>
<td>443.2613</td>
</tr>
<tr>
<td>16</td>
<td>1522.7965</td>
<td>726.4019</td>
<td>1506.7700</td>
<td>713.8586</td>
<td>1505.7339</td>
<td>713.3966</td>
<td>N</td>
<td>380.2307</td>
<td>192.1290</td>
<td>372.2241</td>
</tr>
<tr>
<td>17</td>
<td>1651.8915</td>
<td>826.4484</td>
<td>1634.8649</td>
<td>817.9561</td>
<td>1633.8809</td>
<td>817.4441</td>
<td>K</td>
<td>275.2078</td>
<td>138.1075</td>
<td>238.1812</td>
</tr>
<tr>
<td>18</td>
<td>K</td>
<td>147.1128</td>
<td>74.0000</td>
<td>130.0663</td>
<td>65.5648</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GIVVGIKLDQGGAPLAGTNK

Found in Q11977. Fructose-1,6-bisphosphate aldolase B 03762/001 mouse

Click mouse within plot area to zoom in by factor of two about that point

Or [Fit Full range] 100 to 1900 [Da] Full range

Label all possible matches ✔ Label matches used for scoring ☐

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>+</sup></th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>+</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>I</td>
<td>185.0304</td>
<td>94.0743</td>
<td>187.0253</td>
<td>937.5306</td>
<td>197.0698</td>
</tr>
<tr>
<td>3</td>
<td>270.1812</td>
<td>135.5942</td>
<td>V</td>
<td>179.2963</td>
<td>89.5018</td>
<td>176.2999</td>
<td>881.9835</td>
<td>1761.9858</td>
</tr>
<tr>
<td>4</td>
<td>369.2496</td>
<td>185.1285</td>
<td>V</td>
<td>163.0129</td>
<td>94.9676</td>
<td>1661.9014</td>
<td>832.4343</td>
<td>1662.9173</td>
</tr>
<tr>
<td>5</td>
<td>426.2711</td>
<td>213.6392</td>
<td>G</td>
<td>1281.8195</td>
<td>791.4334</td>
<td>1564.8329</td>
<td>782.9201</td>
<td>1563.8489</td>
</tr>
<tr>
<td>6</td>
<td>519.3532</td>
<td>270.1812</td>
<td>I</td>
<td>1224.8380</td>
<td>762.9227</td>
<td>1307.8115</td>
<td>754.4904</td>
<td>1508.8272</td>
</tr>
<tr>
<td>7</td>
<td>789.4697</td>
<td>355.2340</td>
<td>692.4341</td>
<td>346.7207</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>822.5448</td>
<td>411.7760</td>
<td>805.5181</td>
<td>403.2627</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>957.5717</td>
<td>469.2825</td>
<td>520.5435</td>
<td>460.2042</td>
<td>919.5611</td>
<td>460.2042</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>1085.6592</td>
<td>533.8188</td>
<td>1048.9587</td>
<td>524.8025</td>
<td>1047.6197</td>
<td>524.3135</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>1122.6517</td>
<td>561.8285</td>
<td>1105.6523</td>
<td>553.3162</td>
<td>1104.6412</td>
<td>555.8242</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1179.6733</td>
<td>590.3402</td>
<td>1162.6467</td>
<td>581.8270</td>
<td>1161.6526</td>
<td>581.3530</td>
<td>G</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>1236.709</td>
<td>625.8588</td>
<td>1235.8838</td>
<td>619.8345</td>
<td>1232.9497</td>
<td>616.8233</td>
<td>A</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>1297.768</td>
<td>664.8452</td>
<td>1305.7483</td>
<td>665.8497</td>
<td>1302.7523</td>
<td>665.3799</td>
<td>P</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>1360.847</td>
<td>709.3272</td>
<td>1443.8206</td>
<td>722.4319</td>
<td>1442.8366</td>
<td>721.9219</td>
<td>L</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>1451.884</td>
<td>766.4458</td>
<td>1514.8577</td>
<td>757.9325</td>
<td>1513.8737</td>
<td>757.4401</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>1558.9057</td>
<td>794.9656</td>
<td>1617.8792</td>
<td>786.4442</td>
<td>1570.8932</td>
<td>785.9212</td>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>1639.9534</td>
<td>845.4802</td>
<td>1726.9269</td>
<td>836.9671</td>
<td>1761.9428</td>
<td>836.4751</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>1703.9965</td>
<td>892.0101</td>
<td>1786.9698</td>
<td>893.9885</td>
<td>1785.9858</td>
<td>893.4965</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>1747.1128</td>
<td>94.0743</td>
<td>1806.0838</td>
<td>94.0743</td>
<td>1797.0698</td>
<td>937.5306</td>
<td>1787.0253</td>
<td>937.0886</td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(m/z): 1692.0944

Fixed modifications: NMT (C) (apply to specified residues or termini only)

Variable modifications:

PD: ma_l02 (E), with neutral loss 53.0500

Lys Score: 66 **Impact:** 2.6e-06

Matches: 12/156 fragment ions using 15 most intense peaks

GIVVGIKLDQGGAPLAGTNK
MS/MS Fragmentation of KYTPEQVAMATVTLHR

Found in Q9V8Y7, Fructose-1,6-bisphosphate aldolase B OS=Mus musculus GN=AlbPh PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or Plot from 100 to 1500 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr (calc.): 2000.9508

Fixed modifications: MET (C) (apply to specified residues or term only)

Variable modifications:
E1: mal-002 (R), with neutral loss 48.9936

Ions Source: 2S **Expected**: 0.0026
Matches: 24/120 fragment ions using 52 most intense peaks **(hills)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>b'</th>
<th>y''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1126</td>
<td>86.0800</td>
<td>154.0683</td>
<td>77.5468</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>167.7517</td>
<td>317.1496</td>
<td>159.0764</td>
<td></td>
<td></td>
<td>Y</td>
<td>1787.9109</td>
<td>694.4591</td>
<td>1770.8843</td>
<td>885.9458</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>435.2538</td>
<td>218.1159</td>
<td>418.1732</td>
<td>209.6023</td>
<td>417.2132</td>
<td>209.1103</td>
<td>T</td>
<td>1624.8476</td>
<td>812.9276</td>
<td>1607.8210</td>
<td>804.4141</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>532.2766</td>
<td>266.6419</td>
<td>515.2500</td>
<td>258.1287</td>
<td>514.2668</td>
<td>257.6166</td>
<td>P</td>
<td>1523.7999</td>
<td>624.4036</td>
<td>1506.7733</td>
<td>753.8903</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>661.3192</td>
<td>331.6162</td>
<td>644.2926</td>
<td>322.6499</td>
<td>643.3086</td>
<td>322.1579</td>
<td>E</td>
<td>1426.7471</td>
<td>713.8772</td>
<td>1409.7206</td>
<td>705.3639</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>888.4492</td>
<td>444.7267</td>
<td>871.4109</td>
<td>435.2134</td>
<td>870.4356</td>
<td>435.7214</td>
<td>V</td>
<td>1169.6194</td>
<td>585.3266</td>
<td>1152.6194</td>
<td>578.8133</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>959.4633</td>
<td>480.2423</td>
<td>942.4657</td>
<td>471.7320</td>
<td>941.4727</td>
<td>471.2400</td>
<td>A</td>
<td>1070.5775</td>
<td>535.7924</td>
<td>1053.5510</td>
<td>527.2791</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>1090.5238</td>
<td>545.7653</td>
<td>1073.4072</td>
<td>537.2522</td>
<td>1072.5132</td>
<td>536.7602</td>
<td>M</td>
<td>999.5454</td>
<td>500.2738</td>
<td>982.3139</td>
<td>491.7606</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1161.5690</td>
<td>581.3281</td>
<td>1144.5401</td>
<td>574.7708</td>
<td>1143.5503</td>
<td>573.2781</td>
<td>A</td>
<td>888.4699</td>
<td>434.7536</td>
<td>871.4734</td>
<td>426.2403</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1262.6084</td>
<td>631.8079</td>
<td>1245.5820</td>
<td>623.2946</td>
<td>1244.5980</td>
<td>622.8026</td>
<td>T</td>
<td>797.4628</td>
<td>399.2530</td>
<td>789.4636</td>
<td>390.7218</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1361.6770</td>
<td>681.3421</td>
<td>1344.6504</td>
<td>672.8288</td>
<td>1343.6661</td>
<td>672.3368</td>
<td>V</td>
<td>695.4153</td>
<td>348.7112</td>
<td>677.3886</td>
<td>340.1979</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>1462.7246</td>
<td>731.8660</td>
<td>1445.6981</td>
<td>723.3527</td>
<td>1444.7141</td>
<td>722.8607</td>
<td>T</td>
<td>597.3457</td>
<td>299.1770</td>
<td>589.3202</td>
<td>290.6637</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1533.7618</td>
<td>787.3845</td>
<td>1516.7532</td>
<td>778.8712</td>
<td>1515.7712</td>
<td>778.3792</td>
<td>A</td>
<td>406.7900</td>
<td>246.8532</td>
<td>407.7275</td>
<td>240.1399</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1646.8458</td>
<td>832.9365</td>
<td>1629.8193</td>
<td>814.4133</td>
<td>1628.8353</td>
<td>814.9213</td>
<td>L</td>
<td>425.2619</td>
<td>213.1346</td>
<td>418.2354</td>
<td>204.6213</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>1783.9047</td>
<td>892.4560</td>
<td>1766.8782</td>
<td>883.9427</td>
<td>1765.8942</td>
<td>883.4507</td>
<td>H</td>
<td>312.1779</td>
<td>156.5926</td>
<td>295.1513</td>
<td>148.0793</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>1783.9047</td>
<td>892.4560</td>
<td>1766.8782</td>
<td>883.9427</td>
<td>1765.8942</td>
<td>883.4507</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0820</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KELSEIAQR**

Found in **O31Y97**. Fructose-bisphosphatase aldolase B OS=**Mus musculus** GN=Aldob PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or. **Plot from** 100 to 1200 Da **Full range**

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1198.5880

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K1: m/z CO2 (K), with neutral loss 43.01508

Ions Score: 34 **Expect:** 0.056

Matches: 14/26 fragment ions using 27 most intense peaks

#	m/z	b	b−1	b+	b−2	b0	b+1	Seq.	y	y−1	y+	y−2	y0	y+1	y−2	y0+1	#		
1	171.1128	86.0600	154.0863	77.5468	K													9	
2	300.1554	150.5811	283.1288	142.0681	282.1448	141.5761	E		945.5000	473.2536	928.4734	464.7404	927.4894	464.2483	1				
3	313.2395	207.1234	396.2129	198.6101	395.2289	198.1181	L	816.4574	408.7323	799.4308	400.2191	798.4468	399.7271	7					
4	500.2715	250.6364	483.2449	242.1261	482.2609	241.6341	S	763.5733	352.1903	685.3468	343.6770	685.3628	343.1830	6					
5	629.3141	315.1507	612.2875	306.6474	611.3035	306.1554	E	616.3413	308.8743	599.3148	300.1610	598.3307	299.6690	5					
6	742.3981	371.7027	725.3716	363.1894	724.3876	362.6974	I	487.2987	244.1530	470.2722	235.6397						4		
7	813.4353	407.2213	796.4087	398.7080	795.4247	398.2160	A	374.2146	187.6110	357.1881	179.0977						3		
8	941.4938	471.2506	924.4673	462.7373	923.4833	462.2453	Q	303.1775	152.0924	280.1510	143.5791						2		
9									R	175.1190	88.0631	158.0924	79.5498						1
MS/MS Fragmentation of MVKGTPPPSDQEK

Found in O9EP89. Serine beta-lactamase-like protein LACTB. mitochondrial OS=Mus musculus GN=Lactb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M (calc): 1495.6974
Fixed modifications: NMTS (apply to specified residues or termini only)
Variable modifications:
K3 : mzd_COOH (K), with neutral loss 43.0589

Ions Source: 26 Repeats: 0.025

Matches: 12/100 fragment ions using 20 most intense peaks
<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**</th>
<th>b6**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y6**</th>
<th>y0</th>
<th>y6**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>65.5277</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>333.3333</td>
<td>118.0801</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>201.1145</td>
<td>384.1952</td>
<td>192.6012</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>458.2432</td>
<td>229.6252</td>
<td>221.119</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>280.1461</td>
<td>532.3453</td>
<td>271.6348</td>
<td>271.1483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>238.6754</td>
<td>238.6754</td>
<td>238.6754</td>
<td>238.6754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>735.3858</td>
<td>735.3858</td>
<td>735.3858</td>
<td>735.3858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>832.3436</td>
<td>832.3436</td>
<td>832.3436</td>
<td>832.3436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>919.4706</td>
<td>919.4706</td>
<td>919.4706</td>
<td>919.4706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1034.4875</td>
<td>1034.4875</td>
<td>1034.4875</td>
<td>1034.4875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1126.5001</td>
<td>1126.5001</td>
<td>1126.5001</td>
<td>1126.5001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>1201.5987</td>
<td>1201.5987</td>
<td>1201.5987</td>
<td>1201.5987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1295.6688</td>
<td>1295.6688</td>
<td>1295.6688</td>
<td>1295.6688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ASGYKLYDYMQK

Found in: COF39

Some heme-lactemoine-like protein 1. LCTR mitochondrial OS=Mus musculus GN=Lacthm PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1600 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M': 1587.6864

Fixed modifications: MGPT (C) (apply to specified residues or termini only)

Variable modifications:

K5 : workflow (K), with neutral loss 48.01993

M10 : Oxidation (M), with neutral losses 0.980007 (shown in table). 63.99689

Ion Score: 65 Expect: 0.0018

Matches: 20/176 fragment ions using 30 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b++'</th>
<th>h0</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y'</th>
<th>y++'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>141.0659</td>
<td>71.0365</td>
<td>S</td>
<td>1453.6668</td>
<td>727.3370</td>
<td>1456.6402</td>
<td>718.8238</td>
<td>1453.6562</td>
</tr>
<tr>
<td>2</td>
<td>150.0764</td>
<td>80.0418</td>
<td>300.1528</td>
<td>160.0836</td>
<td>G</td>
<td>1366.6548</td>
<td>683.3210</td>
<td>1349.6082</td>
<td>675.3077</td>
<td>1348.6242</td>
</tr>
<tr>
<td>3</td>
<td>216.0879</td>
<td>108.5526</td>
<td>432.1753</td>
<td>216.0879</td>
<td>T</td>
<td>1209.8133</td>
<td>655.3103</td>
<td>1229.5888</td>
<td>646.7970</td>
<td>1229.6027</td>
</tr>
<tr>
<td>4</td>
<td>379.1612</td>
<td>190.0842</td>
<td>568.2454</td>
<td>280.1226</td>
<td>Y</td>
<td>1146.5390</td>
<td>573.7786</td>
<td>1129.5234</td>
<td>565.2654</td>
<td>1129.5394</td>
</tr>
<tr>
<td>5</td>
<td>549.2667</td>
<td>275.1370</td>
<td>823.3027</td>
<td>429.2063</td>
<td>K</td>
<td>976.4444</td>
<td>488.7259</td>
<td>959.4179</td>
<td>480.2126</td>
<td>958.4239</td>
</tr>
<tr>
<td>6</td>
<td>712.3201</td>
<td>356.6687</td>
<td>695.3053</td>
<td>548.1825</td>
<td>P</td>
<td>813.3881</td>
<td>407.1942</td>
<td>796.3546</td>
<td>398.6809</td>
<td>795.3706</td>
</tr>
<tr>
<td>7</td>
<td>852.4514</td>
<td>426.2257</td>
<td>808.3876</td>
<td>404.6974</td>
<td>L</td>
<td>799.2971</td>
<td>480.2126</td>
<td>782.1802</td>
<td>374.6459</td>
<td>782.2126</td>
</tr>
<tr>
<td>8</td>
<td>948.4411</td>
<td>470.7242</td>
<td>923.4145</td>
<td>462.2109</td>
<td>D</td>
<td>709.2971</td>
<td>350.6522</td>
<td>683.2705</td>
<td>342.1389</td>
<td>682.2865</td>
</tr>
<tr>
<td>9</td>
<td>1103.3044</td>
<td>552.2538</td>
<td>1085.4779</td>
<td>543.7426</td>
<td>E</td>
<td>858.7011</td>
<td>393.1387</td>
<td>838.2436</td>
<td>384.6254</td>
<td>838.2436</td>
</tr>
<tr>
<td>10</td>
<td>1250.3598</td>
<td>625.7725</td>
<td>1233.5133</td>
<td>617.2603</td>
<td>T</td>
<td>422.3968</td>
<td>407.1942</td>
<td>405.1802</td>
<td>203.0928</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1378.5984</td>
<td>689.8028</td>
<td>1361.5718</td>
<td>681.2896</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>238.1448</td>
<td>129.5761</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0600</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KNDFEQGELYLK

Found in ODEP89, Serine beta-lectamase-like protein LACTB, mitochondrial OS=Mus musculus GN=Lactb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1600 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc) : 1569.7083
Fixed modifications: N-term (C) (apply to specified residues or termini only)
Variable modifications:
K : methyl_COOH (N) , with neutral loss 40.0092

Ions Scanned: 74 Isotopic Peaks: 2.3e+06
Matches : 10/120 fragment ions using 26 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'++</th>
<th>b0</th>
<th>b'++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'++</th>
<th>y+</th>
<th>y''</th>
<th>y'++</th>
<th>y0</th>
<th>y''</th>
<th>y'++</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5168</td>
<td>K</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>285.1557</td>
<td>143.0812</td>
<td>268.1292</td>
<td>134.5682</td>
<td>N</td>
<td>1353.6478</td>
<td>678.3272</td>
<td>1338.6212</td>
<td>689.8143</td>
<td>1337.6372</td>
<td>689.3222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>400.1827</td>
<td>200.3950</td>
<td>383.1561</td>
<td>192.0817</td>
<td>382.1721</td>
<td>191.3897</td>
<td>D</td>
<td>1241.6048</td>
<td>621.3061</td>
<td>1224.5783</td>
<td>612.7928</td>
<td>1223.5943</td>
<td>612.3008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>547.2511</td>
<td>274.1292</td>
<td>530.2245</td>
<td>265.6159</td>
<td>529.2405</td>
<td>265.1239</td>
<td>F</td>
<td>1126.5779</td>
<td>563.7926</td>
<td>1109.5514</td>
<td>555.2793</td>
<td>1108.5673</td>
<td>554.7873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676.2927</td>
<td>338.6505</td>
<td>659.2671</td>
<td>330.1372</td>
<td>658.2831</td>
<td>329.6452</td>
<td>E</td>
<td>979.5085</td>
<td>490.2584</td>
<td>962.4829</td>
<td>481.7451</td>
<td>961.4989</td>
<td>481.2531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>804.3523</td>
<td>402.6798</td>
<td>787.3257</td>
<td>394.1665</td>
<td>786.3471</td>
<td>393.6745</td>
<td>Q</td>
<td>850.4669</td>
<td>425.7371</td>
<td>833.4403</td>
<td>417.2233</td>
<td>832.4563</td>
<td>416.7318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>861.3737</td>
<td>431.1905</td>
<td>844.3472</td>
<td>422.6772</td>
<td>843.3632</td>
<td>422.1852</td>
<td>G</td>
<td>722.4082</td>
<td>361.7078</td>
<td>705.3818</td>
<td>353.1945</td>
<td>704.3978</td>
<td>352.7025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>990.4163</td>
<td>495.7118</td>
<td>973.3888</td>
<td>487.1985</td>
<td>972.4058</td>
<td>486.7063</td>
<td>F</td>
<td>655.3869</td>
<td>333.1971</td>
<td>648.3603</td>
<td>324.6838</td>
<td>647.3753</td>
<td>324.1918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1103.5004</td>
<td>552.2538</td>
<td>1086.4738</td>
<td>543.7406</td>
<td>1085.4898</td>
<td>543.2483</td>
<td>L</td>
<td>536.3443</td>
<td>268.6758</td>
<td>519.3177</td>
<td>260.1625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1266.5637</td>
<td>633.7825</td>
<td>1249.5372</td>
<td>625.2722</td>
<td>1248.5531</td>
<td>624.7802</td>
<td>Y</td>
<td>423.2602</td>
<td>212.1337</td>
<td>406.2336</td>
<td>203.6205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1379.6478</td>
<td>690.3273</td>
<td>1352.6212</td>
<td>681.8143</td>
<td>1351.6372</td>
<td>681.3222</td>
<td>L</td>
<td>260.1609</td>
<td>130.6201</td>
<td>243.1703</td>
<td>122.9888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.9060</td>
<td>130.0865</td>
<td>65.5468</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KKNDFEQGELYLKL**
Found in **Q9EP89**, Serine beta-lactamase-like protein LACTB, mitochondrial OS=Mus musculus GN=Lctb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 1664.8328
Fixed modifications: MMTF (C) (apply to specified residues or termini only)
Variable modifications:
E8 : m/z 202 (K), with neutral loss 10.0000

Found sequence, 26 Expect: 0.0004
Matches: 17/120 fragment ions using 25 most intense peaks (help)

<table>
<thead>
<tr>
<th>m/z</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>b6</th>
<th>Seq</th>
<th>y</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>y+4</th>
<th>y+5</th>
<th>y+6</th>
<th>y+7</th>
<th>y+8</th>
<th>y+9</th>
<th>y+10</th>
<th>y+11</th>
<th>y+12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12999.464</td>
<td>85.0548</td>
<td>112.0757</td>
<td>58.5415</td>
<td>K</td>
<td>1535.7333</td>
<td>763.3803</td>
<td>1508.7268</td>
<td>754.8670</td>
<td>1507.7427</td>
<td>754.3750</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>299.2078</td>
<td>150.1075</td>
<td>282.1812</td>
<td>141.5942</td>
<td>K</td>
<td>1535.7333</td>
<td>763.3803</td>
<td>1508.7268</td>
<td>754.8670</td>
<td>1507.7427</td>
<td>754.3750</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>413.2507</td>
<td>207.1290</td>
<td>396.2241</td>
<td>199.6157</td>
<td>N</td>
<td>1355.6478</td>
<td>678.3275</td>
<td>1338.6212</td>
<td>669.8143</td>
<td>1337.6372</td>
<td>669.3222</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>528.2776</td>
<td>264.6425</td>
<td>511.2511</td>
<td>234.1292</td>
<td>D</td>
<td>1241.6048</td>
<td>621.3061</td>
<td>1224.5783</td>
<td>612.7928</td>
<td>1223.5943</td>
<td>612.3008</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675.3461</td>
<td>338.1767</td>
<td>658.3195</td>
<td>329.6634</td>
<td>F</td>
<td>1126.5779</td>
<td>563.7926</td>
<td>1109.5514</td>
<td>555.2793</td>
<td>1108.5673</td>
<td>554.7873</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>804.3806</td>
<td>402.6980</td>
<td>787.3421</td>
<td>394.1847</td>
<td>E</td>
<td>979.5095</td>
<td>490.2584</td>
<td>492.4829</td>
<td>481.7451</td>
<td>961.4899</td>
<td>481.2531</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>932.4572</td>
<td>466.7772</td>
<td>915.4207</td>
<td>459.2140</td>
<td>Q</td>
<td>850.4669</td>
<td>425.7371</td>
<td>833.4403</td>
<td>417.2338</td>
<td>812.4563</td>
<td>416.7318</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>989.4887</td>
<td>495.2380</td>
<td>972.4421</td>
<td>488.2747</td>
<td>G</td>
<td>722.4083</td>
<td>361.7078</td>
<td>703.3818</td>
<td>353.1943</td>
<td>704.3978</td>
<td>352.7028</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1118.5113</td>
<td>559.7855</td>
<td>1104.4847</td>
<td>551.2460</td>
<td>T</td>
<td>665.3869</td>
<td>335.1971</td>
<td>648.3603</td>
<td>324.6838</td>
<td>647.3763</td>
<td>324.1918</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1231.5953</td>
<td>616.3013</td>
<td>1214.5883</td>
<td>607.7800</td>
<td>L</td>
<td>536.3443</td>
<td>268.6738</td>
<td>519.3177</td>
<td>260.1625</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1364.6387</td>
<td>697.8330</td>
<td>1357.6321</td>
<td>689.3197</td>
<td>Y</td>
<td>423.2602</td>
<td>212.1137</td>
<td>406.2336</td>
<td>203.6203</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.0863</td>
<td>65.5415</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.0863</td>
<td>65.5415</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KKNDFEQGELYLK**

Found in OERPHD Serum beta-haemolytic streptococci, Boa constrictor, Guinea pig, Periplaneta

Click mouse within plot area to zoom in by factor of two about that point

Or **D**a **F**ull range

Label all possible matches Label matches used for scoring

KKNDFEQGELYLK

Monoisotopic mass of neutral peptide (Mr(mass)): 1752.8312

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

X1 : +210.00 (K), +210.00 (E), with neutral loss 48.0590

X2 : +210.00 (K), +210.00 (E), with neutral loss 48.0590

Ions Score: 39 **Expect**: 0.0021

Matches: 12/180 fragment ions using 15 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^-</th>
<th>b^+</th>
<th>b^--</th>
<th>b^+</th>
<th>y</th>
<th>y^-</th>
<th>y^+</th>
<th>y^--</th>
<th>y^+</th>
<th>y^--</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1125</td>
<td>586.0600</td>
<td>134.0865</td>
<td>77.5487</td>
<td>77.5487</td>
<td>K</td>
<td>152.7535</td>
<td>763.3803</td>
<td>1508.7268</td>
<td>754.8670</td>
<td>1507.7427</td>
<td>754.3750</td>
</tr>
<tr>
<td>2</td>
<td>341.2183</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>162.5995</td>
<td>K</td>
<td>152.7535</td>
<td>763.3803</td>
<td>1508.7268</td>
<td>754.8670</td>
<td>1507.7427</td>
<td>754.3750</td>
</tr>
<tr>
<td>3</td>
<td>455.2613</td>
<td>228.1344</td>
<td>483.2347</td>
<td>219.6210</td>
<td>219.6210</td>
<td>N</td>
<td>1355.6478</td>
<td>678.3275</td>
<td>1338.6212</td>
<td>669.9142</td>
<td>1337.6372</td>
<td>669.3222</td>
</tr>
<tr>
<td>4</td>
<td>570.2882</td>
<td>285.6477</td>
<td>553.2617</td>
<td>277.1345</td>
<td>277.1345</td>
<td>D</td>
<td>1241.6048</td>
<td>621.3061</td>
<td>1224.783</td>
<td>612.7923</td>
<td>1223.5943</td>
<td>612.3008</td>
</tr>
<tr>
<td>5</td>
<td>717.3565</td>
<td>358.1919</td>
<td>700.3301</td>
<td>350.6667</td>
<td>350.6667</td>
<td>F</td>
<td>1126.5779</td>
<td>563.7926</td>
<td>1109.5514</td>
<td>555.2793</td>
<td>1108.5673</td>
<td>554.7873</td>
</tr>
<tr>
<td>6</td>
<td>846.3909</td>
<td>423.7032</td>
<td>829.3727</td>
<td>415.1900</td>
<td>415.1900</td>
<td>E</td>
<td>979.5095</td>
<td>490.2381</td>
<td>962.4829</td>
<td>481.7431</td>
<td>961.4969</td>
<td>481.2351</td>
</tr>
<tr>
<td>7</td>
<td>974.4579</td>
<td>487.7305</td>
<td>957.4312</td>
<td>479.2193</td>
<td>479.2193</td>
<td>Q</td>
<td>850.4669</td>
<td>425.7771</td>
<td>833.4403</td>
<td>417.2338</td>
<td>823.4565</td>
<td>416.7318</td>
</tr>
<tr>
<td>8</td>
<td>1051.4793</td>
<td>516.2431</td>
<td>1014.4527</td>
<td>507.7300</td>
<td>507.7300</td>
<td>G</td>
<td>722.4683</td>
<td>361.7078</td>
<td>705.3818</td>
<td>553.1945</td>
<td>704.3978</td>
<td>552.7025</td>
</tr>
<tr>
<td>10</td>
<td>1273.6059</td>
<td>637.3066</td>
<td>1256.5794</td>
<td>628.7933</td>
<td>628.7933</td>
<td>L</td>
<td>536.3443</td>
<td>268.6758</td>
<td>519.3177</td>
<td>260.1625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1436.6692</td>
<td>718.8381</td>
<td>1419.6427</td>
<td>710.3250</td>
<td>710.3250</td>
<td>Y</td>
<td>422.2602</td>
<td>212.1337</td>
<td>406.2336</td>
<td>201.6205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1549.7553</td>
<td>775.3802</td>
<td>1532.7268</td>
<td>766.8670</td>
<td>766.8670</td>
<td>L</td>
<td>260.1969</td>
<td>130.0621</td>
<td>243.1703</td>
<td>122.0888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.8634</td>
<td>65.5648</td>
<td>65.5648</td>
<td>K</td>
<td>152.7535</td>
<td>763.3803</td>
<td>1508.7268</td>
<td>754.8670</td>
<td>1507.7427</td>
<td>754.3750</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ASGYKYLDMQK

Found in Q9F889, Serine beta-lactamase-like protein LACTB, mitochondrial OS=Mus musculus GN=Lactb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from ___ Da to ___ Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1651.6018
Fixed modifications: NMTSS (C) (apply to specified residues or termini only)
Variable modifications:
K3 : mal_COO2 (K), with neutral loss 43.0598
Ion score: 20 Expect: 0.097
Matches : 17/134 fragment ions using 30 most intense peaks

<table>
<thead>
<tr>
<th>m/z</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>72.0444</td>
<td>36.5238</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td></td>
<td>S</td>
<td>141.0659</td>
<td>71.0366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>216.0979</td>
<td>108.5536</td>
<td></td>
<td>G</td>
<td>198.0873</td>
<td>99.5473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>379.1612</td>
<td>190.0842</td>
<td></td>
<td>Y</td>
<td>361.1596</td>
<td>181.0790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>549.2567</td>
<td>275.1370</td>
<td>532.2402</td>
<td>266.6237</td>
<td>531.2562</td>
<td>266.1317</td>
<td>K</td>
<td>1139.5351</td>
</tr>
<tr>
<td>6</td>
<td>712.3301</td>
<td>356.6887</td>
<td>693.3035</td>
<td>348.1554</td>
<td>694.3195</td>
<td>347.6694</td>
<td>Y</td>
<td>960.4495</td>
</tr>
<tr>
<td>7</td>
<td>825.4111</td>
<td>412.2107</td>
<td>808.3876</td>
<td>404.6974</td>
<td>807.4036</td>
<td>404.2034</td>
<td>L</td>
<td>797.3862</td>
</tr>
<tr>
<td>8</td>
<td>940.4411</td>
<td>470.2724</td>
<td>923.4145</td>
<td>462.2109</td>
<td>922.4303</td>
<td>461.7189</td>
<td>D</td>
<td>684.3021</td>
</tr>
<tr>
<td>9</td>
<td>1103.5044</td>
<td>552.2559</td>
<td>1086.4779</td>
<td>543.7426</td>
<td>1085.4938</td>
<td>543.2506</td>
<td>Y</td>
<td>569.2752</td>
</tr>
<tr>
<td>10</td>
<td>1224.5549</td>
<td>617.7761</td>
<td>1217.5183</td>
<td>609.2628</td>
<td>1216.5243</td>
<td>608.7708</td>
<td>M</td>
<td>406.2119</td>
</tr>
<tr>
<td>11</td>
<td>1362.6035</td>
<td>681.8054</td>
<td>1345.5769</td>
<td>673.2921</td>
<td>1344.5929</td>
<td>672.8001</td>
<td>Q</td>
<td>275.1714</td>
</tr>
<tr>
<td>12</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **FGTKFGLDLK**

Found in Q8BWT1, 3-ketoacyl-CoA thiolase, mitochondrial OS=Mus musculus GN=Aaa2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Ox Plot from 150 to 1150 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1210.6234

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K4 : mal-Co2 (K), with neutral loss 43.9898

Ions Score: 39 **Expected:** 0.0093

Matches: 9/94 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>y0</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>205.0972</td>
<td>103.0522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>1020.5724</td>
<td>510.7899</td>
<td>1003.5459</td>
<td>502.2766</td>
<td>1002.5619</td>
<td>501.7846</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>306.1448</td>
<td>153.5761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>963.5510</td>
<td>482.2791</td>
<td>946.5244</td>
<td>473.7058</td>
<td>495.5404</td>
<td>473.2738</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>476.2504</td>
<td>238.6288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>862.5033</td>
<td>431.7553</td>
<td>845.4767</td>
<td>423.2420</td>
<td>844.4927</td>
<td>422.7500</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>623.3188</td>
<td>312.1630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>692.3978</td>
<td>346.7025</td>
<td>675.3712</td>
<td>338.1892</td>
<td>674.3872</td>
<td>337.6972</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>680.3402</td>
<td>340.6738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>545.3293</td>
<td>273.1683</td>
<td>528.3028</td>
<td>264.6560</td>
<td>527.3188</td>
<td>264.1650</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>793.4243</td>
<td>397.2158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>488.3079</td>
<td>244.6576</td>
<td>471.2813</td>
<td>236.1443</td>
<td>470.2973</td>
<td>235.6523</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>908.4512</td>
<td>454.7293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>375.2238</td>
<td>188.1155</td>
<td>358.1973</td>
<td>179.6023</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1021.5353</td>
<td>511.2713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>269.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td>130.0863</td>
<td>65.5468</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LPMGMTAENLAAKYNISR

Found in QBWTL, 3-ketoacyl-CoA thiolase, mitochondrial OS=1, Mus musculus GN=Aca2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 300 to 1900 Da

Label all possible matches □ Label matches used for scoring □

Nonisotopic mass of neutral peptide M+calc: 2046.6972
Fixed modifications: HK (C) (apply to specified residues or termini only)
Variable modifications:
Rid : m+202 (K), with neutral loss 43.0209
Ion Score: T2 Expect: 0.000026
Matches: 20/146 fragment ions using 21 most intense peaks

<table>
<thead>
<tr>
<th>b</th>
<th>b+2</th>
<th>b+4</th>
<th>b+6</th>
<th>b+8</th>
<th>Seq.</th>
<th>y</th>
<th>y+2</th>
<th>y+4</th>
<th>y+6</th>
<th>y+8</th>
<th>y+0</th>
<th>y+2</th>
<th>y+4</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>1908.9306</td>
<td>554.5690</td>
<td>1891.9094</td>
<td>964.4527</td>
<td>1890.9201</td>
<td>945.9657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>211.1441</td>
<td>106.0757</td>
<td></td>
<td></td>
<td>P</td>
<td>1311.8779</td>
<td>960.4426</td>
<td>1794.5513</td>
<td>979.8293</td>
<td>1793.8873</td>
<td>987.4373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>342.1836</td>
<td>171.5929</td>
<td></td>
<td></td>
<td>M</td>
<td>1680.8372</td>
<td>840.9223</td>
<td>1663.8108</td>
<td>832.1401</td>
<td>1662.8283</td>
<td>831.9170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>359.2061</td>
<td>200.1067</td>
<td></td>
<td></td>
<td>G</td>
<td>1623.8159</td>
<td>812.4116</td>
<td>1606.7834</td>
<td>803.8983</td>
<td>1605.8084</td>
<td>804.4063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>539.2465</td>
<td>265.6259</td>
<td></td>
<td></td>
<td></td>
<td>613.2837</td>
<td>307.1455</td>
<td>T</td>
<td>1492.7754</td>
<td>746.8914</td>
<td>1475.7489</td>
<td>738.3781</td>
<td>1474.7649</td>
<td>737.8861</td>
</tr>
<tr>
<td>6</td>
<td>631.2942</td>
<td>316.1307</td>
<td></td>
<td></td>
<td></td>
<td>684.3208</td>
<td>242.6640</td>
<td>A</td>
<td>1391.7278</td>
<td>696.3675</td>
<td>1374.7012</td>
<td>507.8342</td>
<td>1373.7172</td>
<td>507.3622</td>
</tr>
<tr>
<td>7</td>
<td>702.3223</td>
<td>351.6693</td>
<td></td>
<td></td>
<td></td>
<td>813.3654</td>
<td>407.1833</td>
<td>E</td>
<td>1320.6906</td>
<td>660.8400</td>
<td>1303.6641</td>
<td>552.3257</td>
<td>1302.6801</td>
<td>651.8437</td>
</tr>
<tr>
<td>8</td>
<td>831.3729</td>
<td>416.1906</td>
<td></td>
<td></td>
<td></td>
<td>927.4063</td>
<td>464.2068</td>
<td>N</td>
<td>1191.6489</td>
<td>596.2737</td>
<td>1174.6215</td>
<td>587.8144</td>
<td>1173.6375</td>
<td>587.3224</td>
</tr>
<tr>
<td>9</td>
<td>945.4169</td>
<td>473.2121</td>
<td></td>
<td></td>
<td></td>
<td>927.4063</td>
<td>464.2068</td>
<td>N</td>
<td>1191.6489</td>
<td>596.2737</td>
<td>1174.6215</td>
<td>587.8144</td>
<td>1173.6375</td>
<td>587.3224</td>
</tr>
<tr>
<td>10</td>
<td>1058.5009</td>
<td>529.7541</td>
<td></td>
<td></td>
<td></td>
<td>1040.4903</td>
<td>530.7488</td>
<td>L</td>
<td>1077.6051</td>
<td>539.3062</td>
<td>1060.5766</td>
<td>530.7929</td>
<td>1059.5946</td>
<td>530.3009</td>
</tr>
<tr>
<td>11</td>
<td>1129.5380</td>
<td>585.2772</td>
<td></td>
<td></td>
<td></td>
<td>1131.5275</td>
<td>556.7594</td>
<td>1111.5275</td>
<td>556.2674</td>
<td>A</td>
<td>966.5311</td>
<td>482.7642</td>
<td>947.4945</td>
<td>474.2509</td>
</tr>
<tr>
<td>12</td>
<td>1200.5751</td>
<td>609.7912</td>
<td></td>
<td></td>
<td></td>
<td>1182.5646</td>
<td>591.7659</td>
<td>A</td>
<td>893.4839</td>
<td>447.2456</td>
<td>876.4754</td>
<td>438.7323</td>
<td>875.4743</td>
<td>438.2403</td>
</tr>
<tr>
<td>13</td>
<td>1270.6087</td>
<td>685.8440</td>
<td></td>
<td></td>
<td>K</td>
<td>1322.6701</td>
<td>677.3307</td>
<td>1305.6701</td>
<td>676.8387</td>
<td>K</td>
<td>822.1468</td>
<td>411.7271</td>
<td>805.4203</td>
<td>403.2183</td>
</tr>
<tr>
<td>14</td>
<td>1353.7414</td>
<td>767.7356</td>
<td></td>
<td></td>
<td></td>
<td>1351.7334</td>
<td>758.3704</td>
<td>Y</td>
<td>622.3413</td>
<td>326.6743</td>
<td>615.3148</td>
<td>318.1610</td>
<td>614.3075</td>
<td>317.6690</td>
</tr>
<tr>
<td>15</td>
<td>1647.7869</td>
<td>824.3971</td>
<td></td>
<td></td>
<td>N</td>
<td>1679.7664</td>
<td>815.8383</td>
<td>1662.7664</td>
<td>815.3181</td>
<td>N</td>
<td>489.7269</td>
<td>245.1426</td>
<td>472.2514</td>
<td>236.6293</td>
</tr>
<tr>
<td>16</td>
<td>1769.8710</td>
<td>891.9381</td>
<td></td>
<td></td>
<td></td>
<td>1742.8654</td>
<td>872.4259</td>
<td>I</td>
<td>1742.8654</td>
<td>872.4259</td>
<td>1742.8654</td>
<td>872.4259</td>
<td>1742.8654</td>
<td>872.4259</td>
</tr>
<tr>
<td>17</td>
<td>1847.9030</td>
<td>924.4515</td>
<td></td>
<td></td>
<td></td>
<td>1830.8765</td>
<td>915.3941</td>
<td>1829.8925</td>
<td>915.4499</td>
<td>S</td>
<td>262.1310</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0859</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1751.1590</td>
<td>88.0981</td>
<td>158.9024</td>
<td>79.5498</td>
<td>R</td>
<td>88.0981</td>
<td>158.9024</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LPGMGTAENLAAKYNISR
Found in OS:BTU1 L-betatubulin; mitochondrial OS:Mus musculus GN:Acac2 PF=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1800 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(m/z): 2080.9021
Fixed modifications: NEPH (C) (apply to specified residues or termini only)
Variable modifications:
M1 : Oxidation (M) with neutral loss 0.0203 (shown in table), 69.9500
M3 : Malonylation (O) with neutral loss 60.0589
Ion Score: 32 Expect: 0.0044
Matches: 80/200 fragment ions using G2 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b7</th>
<th>b8</th>
<th>b9</th>
<th>b10</th>
<th>b11</th>
<th>Seq.</th>
<th>y7</th>
<th>y8</th>
<th>y9</th>
<th>y10</th>
<th>y11</th>
<th>y12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>211.1441</td>
<td>106.0757</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>358.1795</td>
<td>179.5994</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>415.2010</td>
<td>208.1041</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>546.2415</td>
<td>273.6244</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>647.2851</td>
<td>324.1482</td>
<td>629.2736 315.1429 T</td>
<td>1492.7754</td>
<td>746.8914</td>
<td>1475.7189 733.3781</td>
<td>1474.7649</td>
<td>737.8361</td>
<td>1373.7172</td>
<td>697.3622</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>718.3262</td>
<td>359.6606</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>847.3668</td>
<td>424.1881</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>961.4118</td>
<td>481.2059</td>
<td>944.3823</td>
<td>472.6962</td>
<td>943.4012</td>
<td>472.2042 N</td>
<td>1191.6400</td>
<td>596.3277</td>
<td>1174.6215</td>
<td>587.8144</td>
<td>1173.6373</td>
<td>587.3224</td>
</tr>
<tr>
<td>10</td>
<td>1074.4598</td>
<td>537.7516</td>
<td>1037.4693</td>
<td>529.2383</td>
<td>1036.4833</td>
<td>528.7648 L</td>
<td>1077.6011</td>
<td>539.3002</td>
<td>1060.5766</td>
<td>530.7092</td>
<td>1059.5946</td>
<td>530.2099</td>
</tr>
<tr>
<td>11</td>
<td>1145.5329</td>
<td>573.2701</td>
<td>1128.5064</td>
<td>564.7658</td>
<td>1127.5224</td>
<td>564.2648 A</td>
<td>964.5311</td>
<td>482.7642</td>
<td>947.4947</td>
<td>474.2500</td>
<td>946.5103</td>
<td>473.7589</td>
</tr>
<tr>
<td>12</td>
<td>1216.5760</td>
<td>608.7887</td>
<td>1199.5453</td>
<td>600.2754</td>
<td>1198.5599</td>
<td>599.7834 A</td>
<td>893.4839</td>
<td>447.2456</td>
<td>876.4574</td>
<td>438.7323</td>
<td>875.4734</td>
<td>438.2403</td>
</tr>
<tr>
<td>13</td>
<td>1386.6576</td>
<td>693.8414</td>
<td>1369.6490</td>
<td>685.3262</td>
<td>1368.6590</td>
<td>684.8356 K</td>
<td>822.4648</td>
<td>411.7271</td>
<td>805.4026</td>
<td>403.2118</td>
<td>804.4563</td>
<td>402.7218</td>
</tr>
<tr>
<td>14</td>
<td>1459.7389</td>
<td>775.3731</td>
<td>1532.7124</td>
<td>766.8598</td>
<td>1531.7283</td>
<td>766.3676 Y</td>
<td>652.3413</td>
<td>326.6743</td>
<td>635.3418</td>
<td>318.1610</td>
<td>634.3007</td>
<td>317.6690</td>
</tr>
<tr>
<td>15</td>
<td>1651.8278</td>
<td>832.3946</td>
<td>1646.7533</td>
<td>823.8813</td>
<td>1645.7713</td>
<td>823.3893 N</td>
<td>489.2789</td>
<td>245.1426</td>
<td>472.2514</td>
<td>236.6292</td>
<td>471.2674</td>
<td>236.1737</td>
</tr>
<tr>
<td>16</td>
<td>1776.8609</td>
<td>888.9566</td>
<td>1759.8394</td>
<td>880.4233</td>
<td>1758.8553</td>
<td>879.9113 I</td>
<td>375.2350</td>
<td>188.1232</td>
<td>359.2081</td>
<td>179.6070</td>
<td>357.2245</td>
<td>178.1159</td>
</tr>
<tr>
<td>17</td>
<td>1861.9179</td>
<td>912.4526</td>
<td>1846.8714</td>
<td>921.9391</td>
<td>1845.8874</td>
<td>923.4473 S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1904</td>
<td>122.5738</td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>155.0292</td>
<td>79.5486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KHNFTPLAR
Found in Q8BWT1, 3-ketoacyl-CoA thiolase, mitochondrial OS=Mus musculus GN=Aca2a PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1165.5989
Fixed modifications: MMFS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : m/z CO2 (K), with neutral loss 43.00598
Ions Score: 18 Expect: 0.56
Matches : 17/80 fragment ions using 42 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^2+</th>
<th>b^0</th>
<th>b^0+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^2</th>
<th>y^0</th>
<th>y^0+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>308.1717</td>
<td>154.5855</td>
<td>291.1452</td>
<td>146.0762</td>
<td>H</td>
<td>95.5108</td>
<td>478.2591</td>
<td>938.4843</td>
<td>469.7458</td>
<td>937.5003</td>
<td>469.2538</td>
</tr>
<tr>
<td>3</td>
<td>422.2146</td>
<td>211.6110</td>
<td>405.1881</td>
<td>203.0977</td>
<td>N</td>
<td>818.4519</td>
<td>409.7296</td>
<td>801.4254</td>
<td>401.2163</td>
<td>800.4413</td>
<td>400.7243</td>
</tr>
<tr>
<td>4</td>
<td>509.2831</td>
<td>285.1452</td>
<td>552.2565</td>
<td>276.6319</td>
<td>F</td>
<td>704.4099</td>
<td>352.7061</td>
<td>687.3824</td>
<td>344.1949</td>
<td>686.3984</td>
<td>343.7028</td>
</tr>
<tr>
<td>5</td>
<td>670.3307</td>
<td>355.6690</td>
<td>653.3042</td>
<td>327.1557</td>
<td>652.3202</td>
<td>326.6637</td>
<td>T</td>
<td>557.3406</td>
<td>279.1739</td>
<td>540.3140</td>
<td>270.6607</td>
</tr>
<tr>
<td>6</td>
<td>767.3835</td>
<td>384.1954</td>
<td>750.3570</td>
<td>375.6821</td>
<td>749.3729</td>
<td>375.1901</td>
<td>P</td>
<td>456.2929</td>
<td>228.6501</td>
<td>439.2663</td>
<td>220.1368</td>
</tr>
<tr>
<td>7</td>
<td>880.4676</td>
<td>440.7374</td>
<td>863.4410</td>
<td>452.2241</td>
<td>862.4570</td>
<td>431.7321</td>
<td>L</td>
<td>359.2401</td>
<td>180.1237</td>
<td>342.2136</td>
<td>171.6104</td>
</tr>
<tr>
<td>8</td>
<td>951.5047</td>
<td>476.2560</td>
<td>934.4781</td>
<td>467.7427</td>
<td>933.4941</td>
<td>467.2507</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
</tr>
<tr>
<td>9</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fragmentation of AANEAGYFNEEMAPIEVKTK

Found in Q8BWT1, 3-hydroxyacyl-CoA thiolase, mitochondrial Orl-Mus musculus GN-Aca2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

On/Off plots [400 to 1900 Da] [Show range]

Label all possible matches [Label matches used for scoring] [1]

Monoisotopic mass of neutral peptide (m/z): 2213.0470

Fixed modifications: K (C) [apply to specified residues or termini only]
Variable modifications:
K22: Oxidation (M), with neutral losses 0.0000 (shown in table), 63.0293
K29: m/z 0.02 (R), with neutral loss 65.0268

Score: 55 Expect: 0.0000
Matched: 16/220 fragment ions using 22 most intense peaks (m/z)

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b+</th>
<th>b++</th>
<th>b++</th>
<th>b+++</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y++</th>
<th>y+++</th>
<th>y+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.6446</td>
<td>56.5255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>143.0815</td>
<td>72.0444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>257.1244</td>
<td>120.0659</td>
<td>210.0797</td>
<td>120.5552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>386.1670</td>
<td>193.5872</td>
<td>369.1405</td>
<td>185.0739</td>
<td>368.1565</td>
<td>184.5819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>547.2041</td>
<td>229.1057</td>
<td>440.7776</td>
<td>220.9524</td>
<td>439.1956</td>
<td>220.0404</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>514.2256</td>
<td>257.6164</td>
<td>497.1991</td>
<td>249.1032</td>
<td>496.2150</td>
<td>248.0152</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>567.2889</td>
<td>339.1481</td>
<td>660.2624</td>
<td>330.6348</td>
<td>659.2784</td>
<td>330.1428</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>824.6573</td>
<td>412.0823</td>
<td>807.3308</td>
<td>404.1690</td>
<td>805.3464</td>
<td>403.5770</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>938.4003</td>
<td>469.7008</td>
<td>911.3777</td>
<td>461.1905</td>
<td>912.3807</td>
<td>460.6985</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1067.4429</td>
<td>534.2251</td>
<td>1050.4163</td>
<td>528.7118</td>
<td>1049.4323</td>
<td>525.2190</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1156.4855</td>
<td>596.7445</td>
<td>1179.4549</td>
<td>590.3535</td>
<td>1178.4749</td>
<td>590.4771</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1354.5290</td>
<td>672.6261</td>
<td>1376.4943</td>
<td>665.7508</td>
<td>1375.5103</td>
<td>663.2588</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1314.6169</td>
<td>707.8726</td>
<td>1329.5534</td>
<td>699.2693</td>
<td>1328.4748</td>
<td>698.7773</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1561.6717</td>
<td>753.2900</td>
<td>1585.5542</td>
<td>747.7987</td>
<td>1583.6052</td>
<td>747.3087</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1452.6828</td>
<td>710.8150</td>
<td>1473.6830</td>
<td>704.3378</td>
<td>1474.6582</td>
<td>703.8458</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1785.7374</td>
<td>877.3723</td>
<td>1796.7108</td>
<td>858.5351</td>
<td>1795.7268</td>
<td>858.8671</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1825.8068</td>
<td>926.9065</td>
<td>1835.7793</td>
<td>918.9331</td>
<td>1834.7952</td>
<td>917.9013</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1908.9088</td>
<td>990.9540</td>
<td>1919.8472</td>
<td>982.4407</td>
<td>1918.8902</td>
<td>981.8947</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2202.8484</td>
<td>1042.4077</td>
<td>2212.9419</td>
<td>1032.9646</td>
<td>2204.9139</td>
<td>1032.4746</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
KDGTVTAGNASGVSDGAGAVIIASEDAVK
MS/MS Fragmentation of KFFVPR
Found in Q3UEJ6, Phosphorylase OS=Mus musculus GN=Pygl PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or: Plot from 100 to 900 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(r) (calc): 878.4650
Fixed modifications: NMT5 (C) (apply to specified residues or termini only)
Variable modifications:
 K1 : m+1 CO2 (+1), with neutral loss 43.0083
Ions Score: 30 Expect: 0.015
Matches: 7/40 fragment ions using 15 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b'2</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>85.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>301.1547</td>
<td>151.0810</td>
<td>F</td>
<td>665.3770</td>
<td>333.1921</td>
<td>648.3504</td>
<td>324.6788</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>465.2496</td>
<td>233.1285</td>
<td>448.2231</td>
<td>224.6152</td>
<td>F</td>
<td>518.3085</td>
<td>259.6579</td>
<td>501.2820</td>
<td>251.1446</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>564.3180</td>
<td>282.6621</td>
<td>547.2915</td>
<td>274.1494</td>
<td>V</td>
<td>371.2401</td>
<td>186.1237</td>
<td>354.2136</td>
<td>177.6104</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>661.3708</td>
<td>331.1890</td>
<td>644.3443</td>
<td>322.6758</td>
<td>P</td>
<td>272.1717</td>
<td>136.5895</td>
<td>255.1452</td>
<td>128.0762</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IVALFPKDISR

Found in OMMF16 Phasmidbace OS=Mus musculus GN=Pov1 PF=7 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1343.7449
Fixed modifications: NECS (C) (apply to specified residues or termini only)
Variable modifications:
K7 : me1_C02 (K), with neutral loss 43.9896
Ion Score: 81 Expect: 0.0023
Matches: 14/92 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>−</sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>0</sup><sup>−</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>−</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>−</sup><sup>+</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>−</sup><sup>0</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td></td>
<td></td>
<td>V</td>
<td>1187.6783</td>
<td>594.3428</td>
<td>1170.6517</td>
<td>585.8295</td>
<td>1169.6577</td>
<td>585.3375</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>254.1969</td>
<td>142.6021</td>
<td></td>
<td></td>
<td>A</td>
<td>1088.6099</td>
<td>544.8086</td>
<td>1071.5833</td>
<td>536.2953</td>
<td>1070.5993</td>
<td>535.8033</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>397.2809</td>
<td>199.1441</td>
<td></td>
<td></td>
<td>L</td>
<td>1017.5728</td>
<td>509.2900</td>
<td>1000.5462</td>
<td>500.7767</td>
<td>999.5622</td>
<td>500.2847</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>544.3493</td>
<td>272.6783</td>
<td></td>
<td></td>
<td>F</td>
<td>904.4887</td>
<td>452.7480</td>
<td>887.4621</td>
<td>444.2347</td>
<td>886.4781</td>
<td>443.7427</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>641.4021</td>
<td>321.2047</td>
<td></td>
<td></td>
<td>P</td>
<td>757.4203</td>
<td>379.2138</td>
<td>740.3937</td>
<td>370.7003</td>
<td>739.4097</td>
<td>370.2085</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>811.5076</td>
<td>406.2575</td>
<td></td>
<td></td>
<td>K</td>
<td>660.3675</td>
<td>330.6874</td>
<td>643.3410</td>
<td>322.1741</td>
<td>642.3570</td>
<td>321.6821</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>926.5349</td>
<td>463.7700</td>
<td></td>
<td></td>
<td>D</td>
<td>490.2620</td>
<td>245.6346</td>
<td>473.2354</td>
<td>237.1214</td>
<td>472.2514</td>
<td>236.6293</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1039.6186</td>
<td>520.3130</td>
<td></td>
<td></td>
<td>I</td>
<td>375.2350</td>
<td>188.1212</td>
<td>358.2085</td>
<td>179.6079</td>
<td>357.2245</td>
<td>179.1159</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1126.6507</td>
<td>563.8290</td>
<td></td>
<td></td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of CQEKVSQLYMNQK

Found in Q3UEJ6. Phosphorylation O-S-Mus musculus GN-Pyr1 PE-2 SV-1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1000 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Hs(salo): 5726.7672

Fixed modifications: M + 18 (C) (apply to specified residues or termini only)

Variable modifications:

- N4 : m/z Lys (K), with neutral loss 48.0895

Identified Score: 35 Expect: 5.9302

Matches : 26/124 fragment ions using 60 most intense peaks (salo)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b⁺</th>
<th>b²</th>
<th>b³</th>
<th>b⁴⁺</th>
<th>Seq</th>
<th>y</th>
<th>y⁺</th>
<th>y²</th>
<th>y³</th>
<th>y⁴⁺</th>
<th>y⁵</th>
<th>y⁶</th>
<th>y⁷</th>
<th>y⁸⁺</th>
<th>y⁹</th>
<th>y¹₀⁺</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0042</td>
<td>75.5037</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>278.0628</td>
<td>133.5130</td>
<td>321.0162</td>
<td>131.0217</td>
<td></td>
<td>Q</td>
<td>133.7679</td>
<td>769.3748</td>
<td>1220.7414</td>
<td>760.8743</td>
<td>1319.7573</td>
<td>780.3823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>407.1054</td>
<td>204.0569</td>
<td>390.0788</td>
<td>195.5430</td>
<td>389.0945</td>
<td>195.0510</td>
<td>E</td>
<td>1409.7093</td>
<td>705.3583</td>
<td>1393.6828</td>
<td>693.9405</td>
<td>1391.6988</td>
<td>693.3350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>577.2109</td>
<td>283.1091</td>
<td>560.1841</td>
<td>280.5958</td>
<td>559.2003</td>
<td>280.1038</td>
<td>K</td>
<td>1206.6667</td>
<td>640.8370</td>
<td>1263.6402</td>
<td>632.3237</td>
<td>1262.6562</td>
<td>631.8517</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676.2793</td>
<td>338.6313</td>
<td>659.2327</td>
<td>330.1300</td>
<td>638.2687</td>
<td>329.6380</td>
<td>V</td>
<td>1110.5612</td>
<td>555.7842</td>
<td>1099.3347</td>
<td>547.2710</td>
<td>1092.3306</td>
<td>546.7790</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>763.3113</td>
<td>382.1593</td>
<td>746.2848</td>
<td>373.6460</td>
<td>745.3008</td>
<td>373.1540</td>
<td>S</td>
<td>1011.4928</td>
<td>506.2500</td>
<td>994.4662</td>
<td>497.7568</td>
<td>993.4822</td>
<td>497.2448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>891.3695</td>
<td>446.1885</td>
<td>874.2434</td>
<td>437.6753</td>
<td>873.2932</td>
<td>437.1833</td>
<td>Q</td>
<td>924.4608</td>
<td>462.7340</td>
<td>907.4342</td>
<td>454.2207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1004.4440</td>
<td>502.7390</td>
<td>987.2674</td>
<td>494.2173</td>
<td>966.6434</td>
<td>493.7253</td>
<td>L</td>
<td>766.4023</td>
<td>398.7047</td>
<td>779.3756</td>
<td>390.1915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1167.5173</td>
<td>584.2623</td>
<td>1150.4901</td>
<td>575.7490</td>
<td>1149.5067</td>
<td>575.2570</td>
<td>Y</td>
<td>683.3181</td>
<td>342.1627</td>
<td>666.2916</td>
<td>333.6494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1298.5887</td>
<td>649.7823</td>
<td>1281.3312</td>
<td>641.2693</td>
<td>1280.3472</td>
<td>640.7772</td>
<td>M</td>
<td>520.2534</td>
<td>250.6303</td>
<td>230.2282</td>
<td>232.1178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1412.6007</td>
<td>695.8040</td>
<td>1393.5742</td>
<td>692.2907</td>
<td>1391.4591</td>
<td>697.7978</td>
<td>N</td>
<td>389.2143</td>
<td>195.1108</td>
<td>372.1878</td>
<td>186.9795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1540.6593</td>
<td>770.8333</td>
<td>1523.6237</td>
<td>762.2200</td>
<td>1522.6487</td>
<td>761.8280</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.8600</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **CQEKSQLYMNQK**

Found in Q3UJ6, Phosphorylase OS=Mus musculus GN=Pygl PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from **200** to **1000** Da

Label all possible matches ○ Label matches used for scoring @

Monoisotopic mass of neutral peptide \(m/(m+1) \): 1745.7422

Fixed modifications: Met5 (C) (apply to specified residues or termini only)

Variable modifications:

- N4: \(\text{m loadData(N4)} \), with neutral loss 48.0590

Mono: Oxidation (M), with neutral losses 0.0000 (shown in table), 60.0000

Ions Score: 22 Expect: 0.014

Matches: 82/100 fragment ions using 07 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>(b)</th>
<th>(y^-)</th>
<th>(b^+)</th>
<th>(y^{++})</th>
<th>(b^0)</th>
<th>(y^{00})</th>
<th>Seq.</th>
<th>(y^{-})</th>
<th>(y^{++})</th>
<th>(y^{0})</th>
<th>(y^{00})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0042</td>
<td>75.5057</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>278.0620</td>
<td>139.5350</td>
<td>261.0862</td>
<td>131.0217</td>
<td>Q</td>
<td>1553.7628</td>
<td>777.3850</td>
<td>1536.7363</td>
<td>768.8718</td>
<td>1535.7523</td>
<td>768.3798</td>
</tr>
<tr>
<td>3</td>
<td>401.1054</td>
<td>204.0563</td>
<td>390.0788</td>
<td>195.5430</td>
<td>389.0948</td>
<td>195.0550</td>
<td>E</td>
<td>1425.7042</td>
<td>713.3558</td>
<td>1408.6777</td>
<td>704.8425</td>
</tr>
<tr>
<td>4</td>
<td>577.2109</td>
<td>289.1091</td>
<td>560.1843</td>
<td>280.5958</td>
<td>559.2063</td>
<td>280.1038</td>
<td>K</td>
<td>1286.6610</td>
<td>648.3345</td>
<td>1279.6551</td>
<td>640.3212</td>
</tr>
<tr>
<td>5</td>
<td>676.7971</td>
<td>338.6433</td>
<td>659.5257</td>
<td>330.1130</td>
<td>658.2087</td>
<td>329.6380</td>
<td>V</td>
<td>1126.6561</td>
<td>561.7817</td>
<td>1109.5296</td>
<td>555.2684</td>
</tr>
<tr>
<td>6</td>
<td>761.3113</td>
<td>382.1593</td>
<td>746.2849</td>
<td>373.6460</td>
<td>745.3008</td>
<td>373.1540</td>
<td>S</td>
<td>1027.4977</td>
<td>514.2475</td>
<td>1010.4612</td>
<td>505.7342</td>
</tr>
<tr>
<td>7</td>
<td>891.3699</td>
<td>446.1836</td>
<td>874.4343</td>
<td>437.8753</td>
<td>873.3293</td>
<td>437.1833</td>
<td>Q</td>
<td>940.4557</td>
<td>470.7215</td>
<td>923.4291</td>
<td>462.2182</td>
</tr>
<tr>
<td>9</td>
<td>1167.5173</td>
<td>584.2623</td>
<td>1150.4907</td>
<td>575.7490</td>
<td>1149.5067</td>
<td>575.2570</td>
<td>V</td>
<td>699.2310</td>
<td>350.1602</td>
<td>682.2865</td>
<td>341.6469</td>
</tr>
<tr>
<td>10</td>
<td>1314.5527</td>
<td>657.7800</td>
<td>1297.5261</td>
<td>649.2667</td>
<td>1296.5421</td>
<td>648.7747</td>
<td>M</td>
<td>526.2497</td>
<td>268.6285</td>
<td>519.2232</td>
<td>260.1152</td>
</tr>
<tr>
<td>11</td>
<td>1428.5926</td>
<td>714.8014</td>
<td>1411.5681</td>
<td>706.2822</td>
<td>1410.5851</td>
<td>705.7992</td>
<td>N</td>
<td>386.2143</td>
<td>195.1108</td>
<td>372.1878</td>
<td>186.5975</td>
</tr>
<tr>
<td>12</td>
<td>1556.6542</td>
<td>778.8307</td>
<td>1539.6276</td>
<td>770.3175</td>
<td>1538.6436</td>
<td>769.8355</td>
<td>Q</td>
<td>275.1747</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0663</td>
<td>55.6468</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0663</td>
<td>55.6468</td>
<td>147.1128</td>
<td>74.0600</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GYEAKEYYEALPELK
Found in GJUEJ6. Phosphorylation O=S=Mus musculus GN=Pvd PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 0 to 1000 Dn Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide MW(m/z): 1887.9778
Fixed modifications: M(D) (C) (apply to specified residues or termini only)
Variable modifications:
K: *mal (C) (*), with neutral loss 43.0109
Ions Searched: 25 Exponent: 0.015
Matches: 26/502 fragment ions using 76 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b''</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>25.9580</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>221.0921</td>
<td>111.0497</td>
<td>Y</td>
<td>1787.8738</td>
<td>1844.4102</td>
<td>1770.8472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>385.1347</td>
<td>175.5710</td>
<td>332.1241</td>
<td>186.5657</td>
<td>E</td>
<td>1624.8105</td>
<td>812.9009</td>
<td>1607.7638</td>
<td>804.3536</td>
<td>1606.7999</td>
<td>801.9016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>421.1716</td>
<td>211.0895</td>
<td>403.1612</td>
<td>202.0842</td>
<td>A</td>
<td>1695.7679</td>
<td>738.3876</td>
<td>1478.7413</td>
<td>739.8743</td>
<td>1477.7573</td>
<td>739.3823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>591.2773</td>
<td>296.1123</td>
<td>574.2508</td>
<td>287.6200</td>
<td>573.2667</td>
<td>287.1370</td>
<td>K</td>
<td>1424.7608</td>
<td>712.8960</td>
<td>1407.7042</td>
<td>704.3558</td>
<td>1406.7202</td>
<td>701.8357</td>
</tr>
<tr>
<td>6</td>
<td>729.3109</td>
<td>380.6636</td>
<td>703.2933</td>
<td>352.1503</td>
<td>702.3091</td>
<td>351.6383</td>
<td>E</td>
<td>1254.6252</td>
<td>627.8165</td>
<td>1237.7097</td>
<td>619.3030</td>
<td>1236.6147</td>
<td>618.8110</td>
</tr>
<tr>
<td>7</td>
<td>883.3832</td>
<td>441.1895</td>
<td>856.3567</td>
<td>423.6820</td>
<td>855.3727</td>
<td>423.1800</td>
<td>Y</td>
<td>1125.5827</td>
<td>562.2590</td>
<td>1108.5581</td>
<td>554.7817</td>
<td>1107.5731</td>
<td>554.3897</td>
</tr>
<tr>
<td>8</td>
<td>1046.4466</td>
<td>525.7269</td>
<td>1029.4200</td>
<td>515.2136</td>
<td>1028.4300</td>
<td>514.7216</td>
<td>Y</td>
<td>962.5193</td>
<td>481.7033</td>
<td>945.6498</td>
<td>473.2590</td>
<td>944.5088</td>
<td>472.7580</td>
</tr>
<tr>
<td>9</td>
<td>1175.4891</td>
<td>588.2418</td>
<td>1158.4620</td>
<td>579.7349</td>
<td>1157.4786</td>
<td>579.2429</td>
<td>E</td>
<td>799.3560</td>
<td>400.2516</td>
<td>782.3294</td>
<td>391.7184</td>
<td>781.4454</td>
<td>391.2264</td>
</tr>
<tr>
<td>10</td>
<td>1246.5263</td>
<td>623.7668</td>
<td>1229.4997</td>
<td>615.2535</td>
<td>1228.5157</td>
<td>614.7615</td>
<td>A</td>
<td>670.4134</td>
<td>335.7103</td>
<td>653.3669</td>
<td>327.1971</td>
<td>652.4028</td>
<td>326.7051</td>
</tr>
<tr>
<td>11</td>
<td>1339.6103</td>
<td>680.3081</td>
<td>1312.5831</td>
<td>671.7955</td>
<td>1311.5998</td>
<td>671.3035</td>
<td>L</td>
<td>599.3763</td>
<td>300.1918</td>
<td>582.3497</td>
<td>291.6785</td>
<td>581.3673</td>
<td>291.1685</td>
</tr>
<tr>
<td>12</td>
<td>1456.6561</td>
<td>728.1332</td>
<td>1439.6357</td>
<td>720.3219</td>
<td>1438.6525</td>
<td>719.8299</td>
<td>P</td>
<td>486.2922</td>
<td>243.6408</td>
<td>469.6297</td>
<td>235.1365</td>
<td>468.2817</td>
<td>234.6415</td>
</tr>
<tr>
<td>13</td>
<td>1585.7957</td>
<td>793.3565</td>
<td>1568.7671</td>
<td>784.8432</td>
<td>1567.6951</td>
<td>784.3541</td>
<td>E</td>
<td>389.2395</td>
<td>195.1234</td>
<td>372.2128</td>
<td>186.6101</td>
<td>371.2389</td>
<td>185.6181</td>
</tr>
<tr>
<td>14</td>
<td>1698.7897</td>
<td>849.9885</td>
<td>1681.7632</td>
<td>841.3852</td>
<td>1680.7792</td>
<td>840.8932</td>
<td>L</td>
<td>260.1949</td>
<td>130.6020</td>
<td>243.1703</td>
<td>122.0588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1733.6417</td>
<td>883.9284</td>
<td>1716.6364</td>
<td>875.3251</td>
<td>1715.6519</td>
<td>874.8329</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>139.0856</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HLEIIYEINQKHLD

Monoisotopic mass of neutral peptide Mr(calc): 2065.0221
Fixed modifications: Met(S) (C) (apply to specified residues or term ends only)
Variable modifications:
K6 : m/z 20.00 Da, with neutral loss 18.0000
Tons Score: 2, Expect: 0.012
Matches: 20/146 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>y</th>
<th>y**</th>
<th>z</th>
<th>z**</th>
<th>a</th>
<th>y+a</th>
<th>y+z</th>
<th>y+z**</th>
<th>m/z</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>138.0662</td>
</tr>
</tbody>
</table>
| 2 | 251.1503 | 126.0788 | | | | | | | | | | L 1822.9807
| 3 | | | | | | | | | | | | 362.1823 |
| 4 | | | | | | | | | | | | 493.2769 |
| 5 | | | | | | | | | | | | 606.5161 |
| 6 | | | | | | | | | | | | 769.4243 |
| 7 | | | | | | | | | | | | 898.4669 |
| 8 | | | | | | | | | | | | 1011.5510 |
| 9 | | | | | | | | | | | | 1128.5939 |
| 10 | | | | | | | | | | | | 1235.6523 |
| 11 | | | | | | | | | | | | 1423.7580 |
| 12 | | | | | | | | | | | | 1506.8169 |
| 13 | | | | | | | | | | | | 1673.9010 |
| 14 | | | | | | | | | | | | 1788.9279 |
| 15 | | | | | | | | | | | | R 175.1190 |
MS/MS Fragmentation of **EKQTIHSVFR**

Found in P05096, ATP-binding cassette sub-family D member 3 OS-Mus musculus GN-Abcd3 PE-1 SV-2

Click mouse within plot area to zoom in by factor of two about that point

![Plot](image)

Label all possible matches ✨ Label matches used for scoring ✨

Monoisotopic mass of neutral peptide Mr(calc): 1329.6477

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K2 : mal-CO2 (K), with neutral loss 45.0050

Ions Score: 25 **Expect:** 0.026

Matches: 16/100 fragment ions using 32 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>300.1554</td>
<td>150.3813</td>
<td>283.1288</td>
<td>142.0681</td>
<td>282.1448</td>
<td>K</td>
<td>1157.6426</td>
<td>579.3249</td>
<td>1140.6160</td>
<td>570.8116</td>
<td>1139.6320</td>
<td>570.3196</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>428.2140</td>
<td>214.6106</td>
<td>411.1874</td>
<td>206.0974</td>
<td>410.2034</td>
<td>Q</td>
<td>987.5370</td>
<td>494.2722</td>
<td>970.5105</td>
<td>485.7589</td>
<td>969.5265</td>
<td>485.2669</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>529.2617</td>
<td>265.1345</td>
<td>512.2351</td>
<td>256.6212</td>
<td>511.2511</td>
<td>T</td>
<td>859.4785</td>
<td>430.2429</td>
<td>842.4519</td>
<td>421.7296</td>
<td>841.4679</td>
<td>421.2376</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>642.3457</td>
<td>321.6765</td>
<td>625.3192</td>
<td>313.1632</td>
<td>624.3352</td>
<td>I</td>
<td>758.4308</td>
<td>379.7190</td>
<td>741.4042</td>
<td>371.2058</td>
<td>740.4202</td>
<td>370.7137</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>779.4046</td>
<td>390.2060</td>
<td>762.3781</td>
<td>381.6927</td>
<td>761.3941</td>
<td>H</td>
<td>645.3467</td>
<td>323.1770</td>
<td>628.3202</td>
<td>314.6637</td>
<td>627.3362</td>
<td>314.1717</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>856.4367</td>
<td>433.7220</td>
<td>849.4101</td>
<td>425.2087</td>
<td>848.4261</td>
<td>S</td>
<td>508.2878</td>
<td>254.6475</td>
<td>491.2613</td>
<td>246.1343</td>
<td>490.2772</td>
<td>245.5423</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>905.5051</td>
<td>483.2562</td>
<td>948.4785</td>
<td>474.7429</td>
<td>947.9495</td>
<td>V</td>
<td>421.2358</td>
<td>211.1315</td>
<td>404.2292</td>
<td>202.6183</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1112.5735</td>
<td>556.7904</td>
<td>1095.5469</td>
<td>548.2771</td>
<td>1094.5629</td>
<td>F</td>
<td>322.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DQVIYPDGKEDQK

Found in P55096, ATP binding cassette sub-family D member 3 OS=Mus musculus GN=Abed3 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 500 to 1500 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(calc): 1416.7215

Fixed modifications: NMT (C) (apply to specified residues or termini only)

Variable modifications:
- K: 16.0215 (N), with neutral loss 48.0690
- Z: 4.0215 (C) Expected: 9.0462

Matches: 52/120 fragment ions using 94 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b++0</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y++</th>
<th>y0</th>
<th>y++0</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>244.0928</td>
<td>122.5300</td>
<td>227.0682</td>
<td>114.0368</td>
<td>Q</td>
<td>1461.7220</td>
<td>731.3646</td>
<td>1444.6055</td>
<td>722.3594</td>
<td>1443.7114</td>
<td>722.3594</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>343.1612</td>
<td>172.0842</td>
<td>326.1347</td>
<td>163.5710</td>
<td>V</td>
<td>1533.6634</td>
<td>667.3354</td>
<td>1516.5639</td>
<td>658.8221</td>
<td>1515.6529</td>
<td>658.8301</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>456.2457</td>
<td>228.6263</td>
<td>439.2187</td>
<td>220.1130</td>
<td>I</td>
<td>1234.5950</td>
<td>617.8011</td>
<td>1217.5683</td>
<td>609.2879</td>
<td>1216.5844</td>
<td>608.7959</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>619.3065</td>
<td>310.1579</td>
<td>602.3821</td>
<td>301.6447</td>
<td>Y</td>
<td>1121.8109</td>
<td>561.2591</td>
<td>1104.4844</td>
<td>552.7438</td>
<td>1103.5001</td>
<td>552.2538</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>716.3614</td>
<td>358.6844</td>
<td>699.3245</td>
<td>350.1710</td>
<td>F</td>
<td>958.4476</td>
<td>479.7274</td>
<td>941.4211</td>
<td>471.2142</td>
<td>940.4371</td>
<td>470.7222</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>888.6094</td>
<td>444.7085</td>
<td>871.3832</td>
<td>436.1953</td>
<td>G</td>
<td>746.3679</td>
<td>373.6876</td>
<td>729.3414</td>
<td>365.1743</td>
<td>728.3573</td>
<td>364.8623</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1058.5153</td>
<td>529.7963</td>
<td>1041.4888</td>
<td>512.2480</td>
<td>L</td>
<td>689.3464</td>
<td>345.1769</td>
<td>672.3199</td>
<td>336.8563</td>
<td>671.2399</td>
<td>336.1716</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1430.6434</td>
<td>715.8253</td>
<td>1413.6169</td>
<td>707.3121</td>
<td>D</td>
<td>375.1714</td>
<td>138.0893</td>
<td>358.1448</td>
<td>139.5761</td>
<td>359.1548</td>
<td>139.0761</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1471.1218</td>
<td>74.0890</td>
<td>1430.0863</td>
<td>65.5468</td>
<td>K</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MTIMEQKYEGEYR
Found in P55096, ATP-binding cassette sub-family D member 3 OS=Mus musculus GN=Abcd3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1800. Do Full range.
Label all possible matches. Label matches used for scoring.

Monoisotopic mass of neutral peptide M(M+H) = 776.7542
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
Ions Score: 60 Expect: 4.9e-006
Matches: 18/318 fragment ions using 26 most intense peaks.

<table>
<thead>
<tr>
<th>#</th>
<th>h</th>
<th>h²</th>
<th>h⁴</th>
<th>h²</th>
<th>Seq.</th>
<th>y</th>
<th>y²</th>
<th>y⁰</th>
<th>y⁴</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123.0478</td>
<td>66.5373</td>
<td>M</td>
<td>1588.7312</td>
<td>794.6692</td>
<td>1571.7046</td>
<td>766.5550</td>
<td>1570.7260</td>
<td>765.6659</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>233.0954</td>
<td>117.0514</td>
<td>T</td>
<td>1588.7312</td>
<td>794.6692</td>
<td>1571.7046</td>
<td>766.5550</td>
<td>1570.7260</td>
<td>765.6659</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>346.1793</td>
<td>173.5294</td>
<td>I</td>
<td>1487.6635</td>
<td>744.3454</td>
<td>1470.6570</td>
<td>725.3221</td>
<td>1469.6729</td>
<td>725.3401</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>477.2200</td>
<td>239.1136</td>
<td>M</td>
<td>1374.5994</td>
<td>687.8034</td>
<td>1357.5728</td>
<td>679.2903</td>
<td>1356.5880</td>
<td>679.7981</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>606.2626</td>
<td>303.6349</td>
<td>E</td>
<td>1243.5590</td>
<td>622.2831</td>
<td>1226.5324</td>
<td>613.7608</td>
<td>1223.5384</td>
<td>613.2778</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>734.3122</td>
<td>367.6642</td>
<td>Q</td>
<td>1114.5164</td>
<td>557.7618</td>
<td>1097.4885</td>
<td>549.2485</td>
<td>1096.5058</td>
<td>548.7565</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>904.4267</td>
<td>452.7170</td>
<td>K</td>
<td>956.4572</td>
<td>493.7125</td>
<td>960.4312</td>
<td>485.2193</td>
<td>960.4472</td>
<td>484.7272</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1067.4909</td>
<td>534.2486</td>
<td>Y</td>
<td>816.3522</td>
<td>408.6798</td>
<td>799.3257</td>
<td>400.1665</td>
<td>798.3417</td>
<td>399.6745</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1196.5326</td>
<td>598.7659</td>
<td>G</td>
<td>652.2889</td>
<td>327.1431</td>
<td>656.2624</td>
<td>318.6348</td>
<td>655.2784</td>
<td>318.1428</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1253.5841</td>
<td>627.2807</td>
<td>D</td>
<td>524.2463</td>
<td>262.0288</td>
<td>507.2198</td>
<td>254.1133</td>
<td>506.3258</td>
<td>253.6213</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1382.5997</td>
<td>691.9020</td>
<td>E</td>
<td>467.2249</td>
<td>234.1164</td>
<td>450.1993</td>
<td>222.6028</td>
<td>449.2143</td>
<td>222.1108</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5408</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MTIMEQKYEGEYR
MS/MS Fragmentation of MTIMEQKYEGEYR

Found in PS5096, ATP-bundate cassette sub-family D member 3 OS=Mus musculus GN=Abcd3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 300 to 1000 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(m/z): 2798.7402

Fixed modifications: MTG8(C) (apply to specified residues or termini only)

Variable modifications:

- M: Oxidation (M), with neutral losses 0.0600 (shown in table), 62.0685
- K: m/z 55 (K), with neutral loss 42.0685

Ions Score: 27 Expect: 0.011

Matched: 21/166 fragment ions using 46 most intense peaks

<table>
<thead>
<tr>
<th>m/z</th>
<th>b</th>
<th>y^6</th>
<th>y^8</th>
<th>y^10</th>
<th>Seq</th>
<th>y^6+1</th>
<th>y^8+1</th>
<th>y^10+1</th>
<th>Intens</th>
<th>Rel. Intens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>233.0994</td>
<td>117.0514</td>
<td>213.0949</td>
<td>108.0461</td>
<td>T</td>
<td>1604.7261</td>
<td>802.8687</td>
<td>1287.8996</td>
<td>794.2354</td>
<td>1586.7155</td>
</tr>
<tr>
<td>3</td>
<td>345.0795</td>
<td>173.0437</td>
<td>328.1859</td>
<td>164.0831</td>
<td>I</td>
<td>1505.6784</td>
<td>743.5248</td>
<td>1285.6519</td>
<td>743.2856</td>
<td>1485.6679</td>
</tr>
<tr>
<td>4</td>
<td>493.2149</td>
<td>247.1111</td>
<td>475.2943</td>
<td>238.1938</td>
<td>M</td>
<td>1390.5944</td>
<td>695.8008</td>
<td>1375.5678</td>
<td>687.2873</td>
<td>1372.5838</td>
</tr>
<tr>
<td>5</td>
<td>622.2575</td>
<td>311.6324</td>
<td>604.2469</td>
<td>302.6271</td>
<td>E</td>
<td>1243.5590</td>
<td>622.2831</td>
<td>1226.5324</td>
<td>613.7698</td>
<td>1225.5466</td>
</tr>
<tr>
<td>6</td>
<td>750.3616</td>
<td>375.6617</td>
<td>732.3895</td>
<td>367.1481</td>
<td>E</td>
<td>1114.5164</td>
<td>557.7618</td>
<td>1097.4898</td>
<td>519.2485</td>
<td>1096.5938</td>
</tr>
<tr>
<td>7</td>
<td>920.4216</td>
<td>460.7144</td>
<td>903.3951</td>
<td>452.2012</td>
<td>K</td>
<td>986.4578</td>
<td>493.7325</td>
<td>969.4312</td>
<td>485.2192</td>
<td>968.4472</td>
</tr>
<tr>
<td>8</td>
<td>1083.4849</td>
<td>542.2461</td>
<td>1066.4384</td>
<td>533.7228</td>
<td>Y</td>
<td>818.3223</td>
<td>408.6798</td>
<td>799.3257</td>
<td>400.1685</td>
<td>798.3417</td>
</tr>
<tr>
<td>9</td>
<td>1212.5275</td>
<td>606.7874</td>
<td>1195.5010</td>
<td>598.2541</td>
<td>E</td>
<td>655.2889</td>
<td>327.1481</td>
<td>635.2624</td>
<td>318.6348</td>
<td>635.2734</td>
</tr>
<tr>
<td>10</td>
<td>1269.5460</td>
<td>635.2781</td>
<td>1252.5224</td>
<td>625.7664</td>
<td>G</td>
<td>524.2463</td>
<td>262.6268</td>
<td>507.7198</td>
<td>254.1135</td>
<td>506.3358</td>
</tr>
<tr>
<td>11</td>
<td>1398.5916</td>
<td>699.7994</td>
<td>1381.5650</td>
<td>691.2862</td>
<td>E</td>
<td>467.2249</td>
<td>234.1161</td>
<td>450.1983</td>
<td>225.6028</td>
<td>449.2143</td>
</tr>
<tr>
<td>12</td>
<td>1561.6549</td>
<td>781.3311</td>
<td>1544.6284</td>
<td>772.8178</td>
<td>Y</td>
<td>333.1823</td>
<td>169.5948</td>
<td>321.1257</td>
<td>161.0813</td>
<td>320.1257</td>
</tr>
<tr>
<td>13</td>
<td>1753.7148</td>
<td>865.3674</td>
<td>1736.6881</td>
<td>856.8744</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5408</td>
<td></td>
</tr>
</tbody>
</table>

MTIMEQKYEGEYR
MS/MS Fragmentation of LITNSEELAFYNGNKR
Found in P52096, ATP-binding cassette sub-family D member 3 OS=Mus musculus GN=Aloc3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or Plot ions 200 to 1900 Da Full range
Label all possible matches ○ Label matches used for scoring ♦

Monoisotopic mass of neutral peptide Pe(m/z): 1532.5412
Fixed modifications: NMTSE (C) (Apply to specified residues or termini only)
Variable modifications:
E1S neutral loss 44.0099
Intra Scorer: G2 Extrap: 5.7e-006
Matches: 81/152 fragment ions using 76 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0013</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>227.1734</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>328.2231</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>442.2660</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>529.2480</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>658.3465</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>787.8822</td>
<td>E</td>
</tr>
<tr>
<td>8</td>
<td>906.4675</td>
<td>I</td>
</tr>
<tr>
<td>9</td>
<td>971.5044</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>1118.5728</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>1281.6361</td>
<td>Y</td>
</tr>
<tr>
<td>12</td>
<td>1395.6791</td>
<td>N</td>
</tr>
<tr>
<td>13</td>
<td>1453.7005</td>
<td>G</td>
</tr>
<tr>
<td>14</td>
<td>1566.7435</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>1756.8490</td>
<td>K</td>
</tr>
<tr>
<td>16</td>
<td>1753.1190</td>
<td>R</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KLVEHLHNFIFFR

Found in P09046, ATP-binding cassette sub-family D member 3 OS=Mus musculus GN=Abcd3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1784.5842

Fixed modifications: MMDB (C) (apply to specified residues or termini only)

Variable modifications:

R : sodF_2 (K), with neutral loss 43.0084

Matches: 16/120 fragment ions using 21 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b^+</th>
<th>b''</th>
<th>y^+</th>
<th>y''</th>
<th>Seq.</th>
<th>y^++</th>
<th>y'''</th>
<th>y^+++</th>
<th>y^++++</th>
<th>y^+++++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1127</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5408</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>284.1909</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0388</td>
<td>L</td>
<td>1571.8481</td>
<td>786.4277</td>
<td>1554.6216</td>
<td>777.9144</td>
<td>1553.8376</td>
<td>777.4224</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>333.2553</td>
<td>192.1363</td>
<td>365.2387</td>
<td>183.6230</td>
<td>V</td>
<td>1458.7641</td>
<td>729.8857</td>
<td>1441.7375</td>
<td>721.3724</td>
<td>1440.7525</td>
<td>720.8804</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>512.3079</td>
<td>256.6576</td>
<td>495.2813</td>
<td>248.1443</td>
<td>E</td>
<td>1359.6957</td>
<td>680.3515</td>
<td>1342.6691</td>
<td>671.8382</td>
<td>1341.6851</td>
<td>671.3462</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>649.3688</td>
<td>325.1870</td>
<td>532.3402</td>
<td>316.6738</td>
<td>H</td>
<td>1230.6331</td>
<td>615.8300</td>
<td>1213.6265</td>
<td>607.3169</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>762.4209</td>
<td>381.7291</td>
<td>575.4243</td>
<td>373.2158</td>
<td>L</td>
<td>1068.3942</td>
<td>547.3007</td>
<td>1076.5676</td>
<td>538.7874</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>890.5098</td>
<td>456.2585</td>
<td>682.4352</td>
<td>441.7452</td>
<td>H</td>
<td>960.5161</td>
<td>490.7387</td>
<td>963.4835</td>
<td>482.2454</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1013.5277</td>
<td>507.2500</td>
<td>706.5261</td>
<td>498.7667</td>
<td>N</td>
<td>842.4512</td>
<td>422.2292</td>
<td>826.4246</td>
<td>413.7160</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1160.6211</td>
<td>580.8142</td>
<td>748.5948</td>
<td>572.3099</td>
<td>L</td>
<td>729.4083</td>
<td>365.2078</td>
<td>712.3817</td>
<td>356.6945</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1273.7052</td>
<td>637.3562</td>
<td>835.6786</td>
<td>628.8429</td>
<td>I</td>
<td>582.3398</td>
<td>291.6736</td>
<td>565.3133</td>
<td>283.1603</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1420.7736</td>
<td>710.8904</td>
<td>940.7470</td>
<td>702.3772</td>
<td>F</td>
<td>469.2558</td>
<td>235.1315</td>
<td>452.2292</td>
<td>226.6183</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1597.8420</td>
<td>784.4246</td>
<td>1130.8154</td>
<td>775.9114</td>
<td>F</td>
<td>322.1874</td>
<td>161.5973</td>
<td>303.1608</td>
<td>153.0840</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0031</td>
<td>158.0924</td>
<td>79.5488</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LVADFMAKK

Found in P00329, Alcohol dehydrogenase 1 OS=Mus musculus GN=Adh1 PE=2 SV=2

Click and mouse within plot area to zoom in by factor of two about that point.

150 to 1500 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1107.5634
Fixed modifications: M+N3 (C) (apply to specified residues or termini only)
Variable modifications:
K8 : mod_C_O2 (K), with neutral loss 43.9698
Ions Score: 26 Expect: 0.0055
Matches : 10/66 fragment ions using 27 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b⁺⁺</th>
<th>b⁻</th>
<th>b⁻²⁺</th>
<th>b₀</th>
<th>b⁺⁻</th>
<th>y</th>
<th>y⁺⁺</th>
<th>y⁻</th>
<th>y⁻⁺⁺</th>
<th>y⁰</th>
<th>y⁰⁺⁺</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>951.4968</td>
<td>476.2520</td>
<td>934.4703</td>
<td>467.7388</td>
<td>933.4863</td>
<td>467.2468</td>
</tr>
<tr>
<td>3</td>
<td>284.1969</td>
<td>142.6021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>832.4284</td>
<td>426.7178</td>
<td>835.4019</td>
<td>418.2046</td>
<td>834.4178</td>
<td>417.7126</td>
</tr>
<tr>
<td>4</td>
<td>399.2238</td>
<td>200.1155</td>
<td>381.2132</td>
<td>191.1103</td>
<td></td>
<td></td>
<td>D</td>
<td>781.3913</td>
<td>391.1993</td>
<td>764.3647</td>
<td>382.6860</td>
<td>763.3807</td>
<td>382.1940</td>
</tr>
<tr>
<td>5</td>
<td>546.2922</td>
<td>273.6498</td>
<td>528.2817</td>
<td>264.6415</td>
<td></td>
<td></td>
<td>F</td>
<td>666.3643</td>
<td>333.6858</td>
<td>649.3378</td>
<td>325.1725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>748.3698</td>
<td>374.6886</td>
<td>730.3593</td>
<td>365.6833</td>
<td></td>
<td></td>
<td>A</td>
<td>388.2554</td>
<td>194.6134</td>
<td>571.2289</td>
<td>186.1181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>918.4754</td>
<td>459.7413</td>
<td>901.4488</td>
<td>451.2280</td>
<td>900.4648</td>
<td>450.7360</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IKMVATGVCRR

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b'</th>
<th>b0</th>
<th>b0'</th>
<th>Seq</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y*+</th>
<th>y0</th>
<th>y0+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>K</td>
<td>1052.5050</td>
<td>526.7561</td>
<td>1035.4784</td>
<td>518.2428</td>
<td>1034.4944</td>
<td>517.7508</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>415.2374</td>
<td>208.1223</td>
<td>398.2108</td>
<td>199.6090</td>
<td>M</td>
<td>882.3994</td>
<td>441.7034</td>
<td>865.3729</td>
<td>433.1901</td>
<td>864.3889</td>
<td>432.6981</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>514.3058</td>
<td>257.6565</td>
<td>497.2792</td>
<td>249.1432</td>
<td>V</td>
<td>751.3589</td>
<td>376.1831</td>
<td>734.3324</td>
<td>367.6698</td>
<td>733.3484</td>
<td>367.1778</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>585.3429</td>
<td>293.1751</td>
<td>568.3163</td>
<td>284.6618</td>
<td>A</td>
<td>652.2903</td>
<td>326.6489</td>
<td>635.2640</td>
<td>318.1356</td>
<td>634.2803</td>
<td>317.6436</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>743.4120</td>
<td>372.2097</td>
<td>726.3855</td>
<td>363.6964</td>
<td>725.4015</td>
<td>362.2044</td>
<td>G</td>
<td>480.2057</td>
<td>240.6065</td>
<td>463.1792</td>
<td>232.0932</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>842.4804</td>
<td>421.7439</td>
<td>825.4539</td>
<td>413.2300</td>
<td>824.4699</td>
<td>412.7386</td>
<td>V</td>
<td>423.1843</td>
<td>212.0958</td>
<td>406.1577</td>
<td>203.5825</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>991.4773</td>
<td>496.2423</td>
<td>974.4508</td>
<td>487.7290</td>
<td>973.4668</td>
<td>487.2370</td>
<td>C</td>
<td>324.1159</td>
<td>162.5616</td>
<td>307.0893</td>
<td>154.0483</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ICKHPESNFCSR
Found in P00329, Alcohol dehydrogenase 1 OS=Mus musculus GN=Adh1 PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(scale): 1557.6344
Fixed modifications: MET5 (C) (apply to specified residues or termini only)
Variable modifications:
K5 : alk_COOH (K), with neutral loss 49.9898
Ions Score: 21 Expect: 9.0039
Matches: 20/116 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b′</th>
<th>h</th>
<th>h++</th>
<th>b0</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>1441.5480</td>
<td>721.2776</td>
</tr>
<tr>
<td>2</td>
<td>262.0882</td>
<td>132.0478</td>
<td>C</td>
<td>1292.5511</td>
<td>646.7792</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>483.1938</td>
<td>217.1003</td>
<td>K</td>
<td>1122.4435</td>
<td>561.7264</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>570.2527</td>
<td>285.8300</td>
<td>H</td>
<td>985.3866</td>
<td>492.3969</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>667.3055</td>
<td>334.1564</td>
<td>P</td>
<td>888.3338</td>
<td>444.6706</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>796.4808</td>
<td>398.6777</td>
<td>F</td>
<td>759.2913</td>
<td>308.1493</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>833.3801</td>
<td>442.1937</td>
<td>S</td>
<td>672.2592</td>
<td>336.6333</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>997.4230</td>
<td>499.2151</td>
<td>N</td>
<td>582.2163</td>
<td>279.6118</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1144.4974</td>
<td>572.4703</td>
<td>F</td>
<td>206.0776</td>
<td>99.1373</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1293.4882</td>
<td>647.2478</td>
<td>C</td>
<td>1300.5203</td>
<td>690.7638</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>262.1510</td>
<td>131.5791</td>
<td>S</td>
<td>175.1190</td>
<td>88.0631</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KFPLDPLITHVLPFEK
Found in P03529, Alcohol dehydrogenase 1 OS=Mus musculus GN=Aldh1 PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point.

Monoisotopic mass of neutral peptide Mr(calc): 1973.0766
Fixed modifications: M+15 (+N) (apply to specified residues or termini only)
Variable modifications:
K1 mal-COOH (+105), with neutral loss 48.0956

Matches : 40/176 fragment ions using GO most intense peaks (help)

<table>
<thead>
<tr>
<th>y</th>
<th>b</th>
<th>b**</th>
<th>b^+</th>
<th>b**+</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y**</th>
<th>y**+</th>
<th>y***</th>
<th>y10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0690</td>
<td>154.0865</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>201.1547</td>
<td>151.0810</td>
<td>F</td>
<td>1765.9687</td>
<td>833.3980</td>
<td>1748.9622</td>
<td>874.9847</td>
<td>1747.9782</td>
<td>874.9827</td>
</tr>
<tr>
<td>3</td>
<td>415.2340</td>
<td>203.1206</td>
<td>258.0704</td>
<td>199.6074</td>
<td>P</td>
<td>1618.9203</td>
<td>809.6638</td>
<td>1601.8918</td>
<td>801.4505</td>
<td>1600.9097</td>
<td>800.9555</td>
</tr>
<tr>
<td>4</td>
<td>528.3180</td>
<td>264.6607</td>
<td>311.2945</td>
<td>256.1484</td>
<td>L</td>
<td>1521.8675</td>
<td>761.4374</td>
<td>1504.8410</td>
<td>752.9241</td>
<td>1503.8570</td>
<td>752.4321</td>
</tr>
<tr>
<td>5</td>
<td>643.3450</td>
<td>322.1761</td>
<td>362.3184</td>
<td>313.8629</td>
<td>D</td>
<td>1498.7839</td>
<td>704.9594</td>
<td>1431.7569</td>
<td>696.3621</td>
<td>1390.7729</td>
<td>695.8901</td>
</tr>
<tr>
<td>6</td>
<td>700.3978</td>
<td>350.7023</td>
<td>382.3712</td>
<td>322.5872</td>
<td>E</td>
<td>1293.7565</td>
<td>647.3819</td>
<td>1276.7300</td>
<td>638.8658</td>
<td>1275.7460</td>
<td>638.3766</td>
</tr>
<tr>
<td>7</td>
<td>853.4818</td>
<td>427.2435</td>
<td>456.4553</td>
<td>418.7313</td>
<td>L</td>
<td>1196.7092</td>
<td>598.8555</td>
<td>1179.6772</td>
<td>590.3422</td>
<td>1178.6992</td>
<td>589.8302</td>
</tr>
<tr>
<td>8</td>
<td>966.5659</td>
<td>483.7866</td>
<td>524.5393</td>
<td>475.2733</td>
<td>I</td>
<td>1083.6197</td>
<td>542.3135</td>
<td>1066.5932</td>
<td>533.8082</td>
<td>1065.6091</td>
<td>533.0382</td>
</tr>
<tr>
<td>9</td>
<td>1067.6136</td>
<td>534.3104</td>
<td>575.2971</td>
<td>525.3051</td>
<td>T</td>
<td>976.5356</td>
<td>485.7715</td>
<td>953.5091</td>
<td>477.2582</td>
<td>952.2521</td>
<td>476.7626</td>
</tr>
<tr>
<td>10</td>
<td>1204.6725</td>
<td>602.8390</td>
<td>643.8649</td>
<td>591.8246</td>
<td>H</td>
<td>869.4889</td>
<td>435.2476</td>
<td>852.4614</td>
<td>426.7343</td>
<td>851.4774</td>
<td>426.2423</td>
</tr>
<tr>
<td>11</td>
<td>1303.7409</td>
<td>652.3741</td>
<td>693.3743</td>
<td>643.3688</td>
<td>V</td>
<td>722.4291</td>
<td>366.7128</td>
<td>715.4025</td>
<td>358.2049</td>
<td>714.4183</td>
<td>357.7129</td>
</tr>
<tr>
<td>12</td>
<td>1416.8249</td>
<td>708.9161</td>
<td>749.8144</td>
<td>700.0208</td>
<td>L</td>
<td>633.3606</td>
<td>317.1840</td>
<td>616.3341</td>
<td>308.6707</td>
<td>615.3501</td>
<td>308.1787</td>
</tr>
<tr>
<td>13</td>
<td>1513.8777</td>
<td>757.4425</td>
<td>806.8512</td>
<td>746.9292</td>
<td>P</td>
<td>528.2766</td>
<td>260.6419</td>
<td>503.2560</td>
<td>252.1287</td>
<td>502.2660</td>
<td>251.6366</td>
</tr>
<tr>
<td>14</td>
<td>1606.9461</td>
<td>805.9079</td>
<td>854.9106</td>
<td>822.4634</td>
<td>F</td>
<td>432.2328</td>
<td>212.1155</td>
<td>406.9739</td>
<td>203.6023</td>
<td>405.2132</td>
<td>203.1103</td>
</tr>
<tr>
<td>15</td>
<td>1789.9687</td>
<td>853.9806</td>
<td>902.9623</td>
<td>865.9477</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0981</td>
<td>258.1448</td>
<td>129.5761</td>
</tr>
<tr>
<td>16</td>
<td>147.1128</td>
<td>74.0609</td>
<td>130.0863</td>
<td>65.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IKMVATGVCVR

Found in P00329. Alcohol dehydrogenase 1 OS=Mus musculus GN=Adh1 PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mz(calc): 1224.5665

Fixed Modifications: M(13) (C) (apply to specified residues or terminal only)

Variable Modifications:

X2 : m/z 1532 (R), with neutral loss 42.0908

M3 : Oxidation (M), with neutral losses 0.0000 (shown in table), 60.0908

Ions Score: 19 **Expect:** 0.13

Matches: 5/126 fragment ions using 20 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b^4+</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y^4+</th>
<th>y^6+</th>
<th>y^8+</th>
<th>y^10+</th>
<th>y^12+</th>
<th>y^14+</th>
<th>y^16+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>i</td>
<td>1</td>
<td>1068.4999</td>
<td>534.7536</td>
<td>1051.4733</td>
<td>526.2403</td>
<td>1050.4893</td>
<td>525.7483</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1569</td>
<td>142.6021</td>
<td>267.1703</td>
<td>267.1088</td>
<td>K</td>
<td>598.3943</td>
<td>440.7008</td>
<td>881.3678</td>
<td>441.1875</td>
<td>880.3838</td>
<td>440.6955</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>331.2223</td>
<td>216.1198</td>
<td>214.9557</td>
<td>207.6065</td>
<td>M</td>
<td>751.3589</td>
<td>590.3124</td>
<td>734.3524</td>
<td>367.0098</td>
<td>733.3484</td>
<td>367.1778</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>539.0007</td>
<td>265.6540</td>
<td>513.2741</td>
<td>257.1407</td>
<td>Y</td>
<td>652.2903</td>
<td>536.6489</td>
<td>463.2664</td>
<td>318.1326</td>
<td>634.2800</td>
<td>317.6436</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>601.3378</td>
<td>301.1172</td>
<td>304.3112</td>
<td>292.6593</td>
<td>A</td>
<td>581.2534</td>
<td>513.1053</td>
<td>554.2269</td>
<td>382.6171</td>
<td>563.3428</td>
<td>282.1251</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>702.3855</td>
<td>351.6964</td>
<td>685.3589</td>
<td>343.1831</td>
<td>T</td>
<td>480.2657</td>
<td>420.6065</td>
<td>463.1792</td>
<td>232.0932</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>759.4069</td>
<td>380.2071</td>
<td>742.3804</td>
<td>371.6938</td>
<td>G</td>
<td>480.2657</td>
<td>420.6065</td>
<td>463.1792</td>
<td>232.0932</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>839.4754</td>
<td>429.7413</td>
<td>841.4488</td>
<td>421.2280</td>
<td>V</td>
<td>423.1848</td>
<td>323.9558</td>
<td>306.1577</td>
<td>203.5825</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1007.4723</td>
<td>504.2398</td>
<td>990.4457</td>
<td>495.7265</td>
<td>C</td>
<td>324.1159</td>
<td>262.5616</td>
<td>307.0893</td>
<td>154.0483</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IIAVDINKDK

Found in **P00329**, Alcohol dehydrogenase 1
OS=**Mus musculus**
GN=**Adh1**
PE=2
SV=2

Click mouse within plot area to zoom in by factor of two about that point

O_r, Plot from **100** to **1300 Da**
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1213.6554

Fixed modifications: NMTS (C) (apply to specified residues or termini only)

Variable modifications:

K**0** : **mal-CO2 (K)**, with neutral loss 43.0050

Ions Score: 28 Expect: 0.27

Matches: 24/86 fragment ions using 90 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**++**</th>
<th>b^a</th>
<th>b**+++**</th>
<th>b^0</th>
<th>b^0**++**</th>
<th>Seq.</th>
<th>y</th>
<th>y**++**</th>
<th>y^a</th>
<th>y**+++**</th>
<th>y^0</th>
<th>y^0**++**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>1057.5888</td>
<td>529.2980</td>
<td>1040.5623</td>
<td>520.7848</td>
<td>1039.5782</td>
<td>520.2928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>I</td>
<td>944.5947</td>
<td>472.7560</td>
<td>927.4782</td>
<td>464.2427</td>
<td>926.4942</td>
<td>463.7507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>298.2125</td>
<td>149.6099</td>
<td>A</td>
<td>873.4676</td>
<td>437.2374</td>
<td>856.4411</td>
<td>428.7242</td>
<td>855.4571</td>
<td>428.2322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>397.2889</td>
<td>199.1441</td>
<td>V</td>
<td>774.3992</td>
<td>387.7032</td>
<td>757.3727</td>
<td>379.1900</td>
<td>756.3886</td>
<td>378.6980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>512.2079</td>
<td>256.6576</td>
<td>I</td>
<td>659.3723</td>
<td>330.1808</td>
<td>642.3457</td>
<td>321.0675</td>
<td>641.3617</td>
<td>321.1845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>625.3919</td>
<td>313.1906</td>
<td>I</td>
<td>546.2852</td>
<td>273.6477</td>
<td>529.2617</td>
<td>265.1345</td>
<td>528.2776</td>
<td>264.6425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>739.4349</td>
<td>370.2211</td>
<td>272.4083</td>
<td>361.7078</td>
<td>721.4243</td>
<td>361.2158</td>
<td>N</td>
<td>415.2187</td>
<td>208.1130</td>
<td>414.2347</td>
<td>207.6210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>900.5404</td>
<td>455.2738</td>
<td>892.5138</td>
<td>446.7600</td>
<td>891.5298</td>
<td>446.2686</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1024.5673</td>
<td>512.7873</td>
<td>1007.5408</td>
<td>504.2740</td>
<td>1006.5568</td>
<td>503.7820</td>
<td>D</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of WDIQKYAR

Found in **O35490**, Betaine--homocysteine S-methyltransferase 1
OS=Mus musculus GN=Bhmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b^+</th>
<th>b''+</th>
<th>b^0</th>
<th>b''0</th>
<th>Seq.</th>
<th>γ</th>
<th>y''</th>
<th>y''+</th>
<th>y^+</th>
<th>y''''</th>
<th>y''''+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.0866</td>
<td>94.0469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>835.4945</td>
<td>468.2509</td>
<td>918.4680</td>
<td>459.7376</td>
<td>917.4819</td>
<td>459.2456</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>302.1135</td>
<td>151.5604</td>
<td>238.1030</td>
<td>142.5551</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>820.4676</td>
<td>410.7374</td>
<td>803.4310</td>
<td>402.2241</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>415.1976</td>
<td>208.1024</td>
<td>397.1870</td>
<td>199.0972</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>707.3835</td>
<td>354.1954</td>
<td>690.3570</td>
<td>345.6821</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>543.2562</td>
<td>272.1317</td>
<td>526.2296</td>
<td>263.6105</td>
<td>525.2456</td>
<td>263.1264</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>713.3617</td>
<td>357.1845</td>
<td>696.3352</td>
<td>348.6712</td>
<td>695.3511</td>
<td>348.1792</td>
<td>K</td>
<td>579.3249</td>
<td>290.1661</td>
<td>562.2984</td>
<td>281.6528</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>876.4250</td>
<td>438.7162</td>
<td>859.3985</td>
<td>430.2029</td>
<td>858.4145</td>
<td>429.7109</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>947.4621</td>
<td>474.2347</td>
<td>930.4356</td>
<td>465.7214</td>
<td>929.4516</td>
<td>465.2294</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5458</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LMKEGLEAAR

Found in Q35490. Betaine--homocysteine S-methyltransferase 1 OS=Mus musculus GN=Bhmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1200 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1202.6965

Fixed modifications: NMTS (G) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b~</th>
<th>b+</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y~</th>
<th>y+</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5492</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>245.1318</td>
<td>123.0696</td>
<td></td>
<td></td>
<td>M</td>
<td>1046.5299</td>
<td>523.7688</td>
<td>1029.5034</td>
<td>515.2553</td>
</tr>
<tr>
<td>3</td>
<td>415.2374</td>
<td>208.1223</td>
<td>398.2108</td>
<td>199.6090</td>
<td>K</td>
<td>915.4894</td>
<td>458.2483</td>
<td>898.4629</td>
<td>449.7351</td>
</tr>
<tr>
<td>4</td>
<td>544.2799</td>
<td>272.6436</td>
<td>527.2534</td>
<td>264.1303</td>
<td>526.2694</td>
<td>263.6383</td>
<td>E</td>
<td>745.3839</td>
<td>373.1956</td>
</tr>
<tr>
<td>5</td>
<td>601.3014</td>
<td>301.1543</td>
<td>584.2749</td>
<td>292.6411</td>
<td>583.2908</td>
<td>292.1491</td>
<td>G</td>
<td>616.3413</td>
<td>308.6743</td>
</tr>
<tr>
<td>6</td>
<td>714.3855</td>
<td>357.6894</td>
<td>697.3589</td>
<td>349.1831</td>
<td>696.3749</td>
<td>348.6911</td>
<td>L</td>
<td>559.3198</td>
<td>280.1636</td>
</tr>
<tr>
<td>7</td>
<td>843.4281</td>
<td>422.2177</td>
<td>826.4015</td>
<td>413.7044</td>
<td>825.4175</td>
<td>413.2124</td>
<td>E</td>
<td>446.2258</td>
<td>223.6215</td>
</tr>
<tr>
<td>8</td>
<td>914.4652</td>
<td>457.7362</td>
<td>897.4386</td>
<td>449.2230</td>
<td>896.4546</td>
<td>448.7309</td>
<td>A</td>
<td>317.1932</td>
<td>159.1002</td>
</tr>
<tr>
<td>9</td>
<td>985.5023</td>
<td>493.2548</td>
<td>968.4757</td>
<td>484.7415</td>
<td>967.4917</td>
<td>484.2495</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GNYVAEKISGQK

Found in O55490, Betaine–homocysteine S-methyltransferase 1 OS=Mus musculus GN=Ehmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from [200] to [1000] Da Full range

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1079.6729

Fixed modifications: METh (C) (apply to specified residues or termini only)

Variable modifications:

Mr : cal. 1079.6729, with neutral loss 48.9888

Ions Score: 21 Expected: 0.026
Matches : 12/114 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**</th>
<th>h0</th>
<th>h0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td>55.0451</td>
<td>78.0262</td>
<td>G</td>
<td></td>
<td></td>
<td>1278.6688</td>
<td>639.8381</td>
<td>1261.6423</td>
<td>631.3248</td>
<td>1260.6383</td>
<td>630.8328</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>172.0717</td>
<td>86.5395</td>
<td>159.0511</td>
<td>78.0262</td>
<td>N</td>
<td></td>
<td></td>
<td>1164.6259</td>
<td>582.8166</td>
<td>1147.5994</td>
<td>574.3033</td>
<td>1146.6154</td>
<td>573.8113</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>335.1350</td>
<td>168.0711</td>
<td>318.1084</td>
<td>159.5579</td>
<td>Y</td>
<td></td>
<td></td>
<td>1001.5626</td>
<td>501.2849</td>
<td>984.5360</td>
<td>492.7717</td>
<td>983.5250</td>
<td>492.2706</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>434.2934</td>
<td>217.6053</td>
<td>417.1769</td>
<td>209.0921</td>
<td>V</td>
<td></td>
<td></td>
<td>802.4942</td>
<td>451.7507</td>
<td>885.4676</td>
<td>443.2375</td>
<td>884.4835</td>
<td>442.7454</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>505.2405</td>
<td>253.1239</td>
<td>488.2140</td>
<td>244.6106</td>
<td>A</td>
<td></td>
<td></td>
<td>617.2566</td>
<td>309.1310</td>
<td>616.2726</td>
<td>308.6399</td>
<td>614.4571</td>
<td>316.2322</td>
<td>614.4305</td>
</tr>
<tr>
<td>7</td>
<td>804.3886</td>
<td>402.6980</td>
<td>787.3621</td>
<td>394.1847</td>
<td>K</td>
<td></td>
<td></td>
<td>702.4145</td>
<td>351.7109</td>
<td>685.3879</td>
<td>343.1976</td>
<td>684.4039</td>
<td>342.7056</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>917.4727</td>
<td>459.2400</td>
<td>900.4462</td>
<td>450.7267</td>
<td>I</td>
<td></td>
<td></td>
<td>532.3689</td>
<td>266.6581</td>
<td>515.2824</td>
<td>258.1448</td>
<td>514.2984</td>
<td>257.6528</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1061.5267</td>
<td>531.2697</td>
<td>1044.4997</td>
<td>522.7355</td>
<td>G</td>
<td></td>
<td></td>
<td>352.1928</td>
<td>166.6001</td>
<td>315.1663</td>
<td>158.0868</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1189.5848</td>
<td>595.2960</td>
<td>1172.5582</td>
<td>586.7828</td>
<td>Q</td>
<td></td>
<td></td>
<td>275.1714</td>
<td>138.0895</td>
<td>258.1448</td>
<td>120.5761</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ISGQKVNEAACDIAR
Found in O35490, Betaine--homocysteine S-methyltransferase 1 OS=Mus musculus GN=Bmmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1703.7702
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
KM ma e (O), with neutral loss 44.0120
Ions Score: 76 Expect: 2.2e-904
Matches : 81/554 fragment ions using 54 most intense peaks (hires)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+++</th>
<th>b++</th>
<th>b+</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+++</th>
<th>z</th>
<th>z++</th>
<th>z+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>S</td>
<td>1549.7097</td>
<td>775.3585</td>
<td>1532.6832</td>
<td>766.8452</td>
<td>1531.6982</td>
<td>766.3532</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>258.1448</td>
<td>129.7612</td>
<td>240.1343</td>
<td>120.5708</td>
<td>G</td>
<td>1462.6777</td>
<td>731.8423</td>
<td>1445.6512</td>
<td>723.3292</td>
<td>1444.6671</td>
<td>722.8372</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>366.2030</td>
<td>183.6053</td>
<td>369.1799</td>
<td>182.9021</td>
<td>Q</td>
<td>1459.6562</td>
<td>793.3318</td>
<td>1388.6297</td>
<td>694.8185</td>
<td>1387.6457</td>
<td>694.3265</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>376.2089</td>
<td>188.6181</td>
<td>379.2824</td>
<td>187.1448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>655.3774</td>
<td>328.1925</td>
<td>638.3508</td>
<td>319.6790</td>
<td>637.3688</td>
<td></td>
<td>219.1870</td>
<td>Y</td>
<td>1167.4921</td>
<td>554.2497</td>
<td>1090.4650</td>
<td>545.7364</td>
</tr>
<tr>
<td>7</td>
<td>769.1203</td>
<td>385.2138</td>
<td>752.3997</td>
<td>376.7005</td>
<td>751.4907</td>
<td></td>
<td>376.2082</td>
<td>N</td>
<td>1068.4237</td>
<td>594.7153</td>
<td>991.5972</td>
<td>496.2022</td>
</tr>
<tr>
<td>8</td>
<td>898.4829</td>
<td>449.7351</td>
<td>881.4363</td>
<td>441.2218</td>
<td>880.5423</td>
<td></td>
<td>440.7296</td>
<td>E</td>
<td>894.3869</td>
<td>447.6940</td>
<td>877.5543</td>
<td>439.1808</td>
</tr>
<tr>
<td>9</td>
<td>899.5000</td>
<td>449.2536</td>
<td>952.4734</td>
<td>476.7494</td>
<td>951.4894</td>
<td></td>
<td>476.2483</td>
<td>A</td>
<td>765.3282</td>
<td>383.1727</td>
<td>748.3117</td>
<td>374.6595</td>
</tr>
<tr>
<td>10</td>
<td>1040.5371</td>
<td>520.7722</td>
<td>1023.5106</td>
<td>512.2589</td>
<td>1022.5265</td>
<td>511.7669</td>
<td>A</td>
<td>694.3011</td>
<td>347.6542</td>
<td>677.2745</td>
<td>339.1409</td>
<td>676.2805</td>
</tr>
<tr>
<td>11</td>
<td>1139.5340</td>
<td>555.2706</td>
<td>1127.5073</td>
<td>546.7575</td>
<td>1117.5224</td>
<td>546.2564</td>
<td>C</td>
<td>622.2640</td>
<td>312.1356</td>
<td>606.2371</td>
<td>303.6224</td>
<td>605.2524</td>
</tr>
<tr>
<td>12</td>
<td>1304.5609</td>
<td>652.7841</td>
<td>1287.5344</td>
<td>644.2708</td>
<td>1286.5504</td>
<td>643.7788</td>
<td>D</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
</tr>
<tr>
<td>13</td>
<td>1417.6450</td>
<td>709.3261</td>
<td>1400.6185</td>
<td>700.8129</td>
<td>1399.6344</td>
<td>700.3209</td>
<td>I</td>
<td>359.2460</td>
<td>180.1237</td>
<td>342.2136</td>
<td>171.6104</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1488.6821</td>
<td>744.8447</td>
<td>1471.6555</td>
<td>736.3314</td>
<td>1470.6716</td>
<td>735.8394</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0884</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Mass Spectrometric Data

Fragmentation of LKAYLMSQPLAYHTPDCGK

Found in: OAS940, Batracotoxininae Semathreptidae 1, Odorosaurus GMMBent PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or: Plot focus 200 to 1700 Da **Full range**

Label all possible matches **Label matches used for scoring**

Maxent model of neutral peptide Mc(pI=3): 2233.0575

Fixed modifications: M, K (apply to specified residues or termini only)

Variable modifications:
- **K:** m1, m2, m3, n, with neutral losses 43, 195, 196
- **M:** Oxidation (M, with neutral losses 0.0058 (invasive), 61, 195, 196

Masses: 26.000, 0.0002

Metabolite: 26.005 Fragment ions into using 10 most intense peaks (default)

a	b	b''	b'	b''	b	b'	b''	Seq	y	y''	y'	y''	y	y''													
1	114.0913	57.5493				L																					
2	284.1909	142.6021	267.1708	134.0889		K	2128.9708	1063.4898	2109.9442	1055.4758	2108.9602	1034.9834	18														
3	385.2340	178.1206	333.2074	169.6074		A	1956.8653	978.9363	1939.8387	970.4230	1938.8457	969.9310	17														
4	518.2973	259.6525	501.2708	251.1590		Y	1885.8281	943.4177	1868.8016	934.9044	1867.8176	934.4124	16														
5	621.3914	316.1942	614.3548	307.8611		L	1722.7648	861.3880	1705.7383	852.3728	1704.7442	852.8804	15														
6	778.4168	389.7120	761.3902	381.1988		M	1699.6807	805.3440	1592.6542	796.8207	1591.6702	796.3387	14														
7	865.4488	433.2280	849.4233	424.7148	847.4321	424.2228	S	1462.6453	731.8253	1445.6188	723.3130	1444.6548	722.8310	13													
8	963.5074	497.2337	956.4808	488.7441	957.4968	488.2520	Q	1576.6188	788.3103	1558.5588	779.7970	1557.6028	779.5050	12													
9	1060.5601	545.7837	1073.5936	537.2704	1072.5496	536.7784	P	1247.5527	624.2810	1220.5282	615.7877	1219.5462	615.2757	11													
10	1203.6442	602.3247	1198.6177	593.8125	1198.5336	593.3205	L	1190.9208	575.7546	1133.7474	567.2414	1132.4914	566.7492	10													
11	1374.6811	677.8448	1357.6548	659.3310	1356.6708	658.8390	A	1637.4179	519.2126	1600.3914	509.2093	1599.4074	509.2073	9													
12	1437.7447	719.3760	1420.7181	710.8627	1419.7341	710.3707	Y	965.3808	483.9640	949.3543	473.1808	948.3702	474.6888	8													
13	1578.8034	787.9034	1557.7770	779.9221	1556.7930	778.9001	H	803.3175	402.1624	786.2909	395.6491	783.3069	395.1571	7													
14	1675.8512	838.4293	1658.8247	829.9160	1657.8407	829.4240	T	666.2586	333.6329	649.2320	325.1196	648.2480	324.6276	6													
15	1772.9040	886.9556	1755.8775	878.4424	1754.8934	877.9504	P	565.3108	283.1091	548.1843	274.5958	547.2063	274.1083	6													
16	1887.9189	944.4691	1870.9464	935.9538	1869.9204	935.4638	D	668.1581	354.2382	651.1316	342.2664	650.1476	342.5774	7													
18	2093.9493	1074.4737	2076.9228	1058.9610	2075.9358	1053.4730	G	204.1343	102.5708	187.1077	94.0575	186.5468	94.0575	2													
19	147.1128	74.0563	130.0853	65.5468		K	1063.4898	1939.8387	1938.8457	969.9310	18																

Raw Text: LKAYLMSQPLAYHTPDCGK
MS/MS Fragmentation of GYVKAGPWTPEAAVEHPEAVR

Found in GYVKAGPWTPEAAVEHPEAVR

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from -500 to 1000 Da, Full range

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>bkkk</th>
<th>Seq</th>
<th>y</th>
<th>y+</th>
<th>y0</th>
<th>ykkk</th>
<th>ykkkkk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>221.0921</td>
<td>111.0497</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>2249.1349</td>
<td>1125.0711</td>
<td>2232.1084</td>
<td>1116.5578</td>
<td>2231.1244</td>
</tr>
<tr>
<td>3</td>
<td>320.1605</td>
<td>160.839</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>2086.0716</td>
<td>1043.5394</td>
<td>2069.0451</td>
<td>1033.0246</td>
<td>2068.0611</td>
</tr>
<tr>
<td>5</td>
<td>581.3901</td>
<td>281.1552</td>
<td>544.2786</td>
<td>272.8419</td>
<td></td>
<td>A</td>
<td>1816.8977</td>
<td>905.9525</td>
<td>1799.8711</td>
<td>900.4592</td>
<td>1798.8371</td>
</tr>
<tr>
<td>6</td>
<td>618.3246</td>
<td>309.6659</td>
<td>601.2980</td>
<td>301.1327</td>
<td></td>
<td>C</td>
<td>1748.8696</td>
<td>873.4339</td>
<td>1728.8340</td>
<td>864.9206</td>
<td>1727.8300</td>
</tr>
<tr>
<td>7</td>
<td>715.3774</td>
<td>358.1923</td>
<td>698.3508</td>
<td>349.6790</td>
<td></td>
<td>P</td>
<td>1688.8391</td>
<td>844.9232</td>
<td>1671.8125</td>
<td>836.4099</td>
<td>1670.8285</td>
</tr>
<tr>
<td>8</td>
<td>801.4567</td>
<td>431.2320</td>
<td>884.4301</td>
<td>442.7187</td>
<td></td>
<td>Y</td>
<td>1591.7883</td>
<td>796.5968</td>
<td>1574.7598</td>
<td>787.3835</td>
<td>1573.7738</td>
</tr>
<tr>
<td>9</td>
<td>1002.5043</td>
<td>501.7558</td>
<td>985.4778</td>
<td>493.2425</td>
<td>984.4938</td>
<td>492.7505</td>
<td>T</td>
<td>1405.7070</td>
<td>703.3571</td>
<td>1388.8605</td>
<td>694.8439</td>
</tr>
<tr>
<td>10</td>
<td>1099.5711</td>
<td>550.2822</td>
<td>1082.5306</td>
<td>541.7689</td>
<td>1081.5465</td>
<td>541.2769</td>
<td>P</td>
<td>1394.8292</td>
<td>652.8335</td>
<td>1387.8328</td>
<td>641.3200</td>
</tr>
<tr>
<td>12</td>
<td>1293.5668</td>
<td>650.3220</td>
<td>1282.6103</td>
<td>641.0806</td>
<td>1281.6263</td>
<td>641.3168</td>
<td>A</td>
<td>1278.5640</td>
<td>639.7856</td>
<td>1261.5374</td>
<td>631.2724</td>
</tr>
<tr>
<td>13</td>
<td>1370.6359</td>
<td>685.4849</td>
<td>1353.6474</td>
<td>677.2273</td>
<td>1352.6654</td>
<td>676.8335</td>
<td>A</td>
<td>1357.6269</td>
<td>651.6271</td>
<td>1349.5503</td>
<td>642.7538</td>
</tr>
<tr>
<td>14</td>
<td>1469.7423</td>
<td>735.5748</td>
<td>1452.7158</td>
<td>726.0611</td>
<td>1451.7318</td>
<td>725.6969</td>
<td>Y</td>
<td>1396.4998</td>
<td>648.7485</td>
<td>1389.4923</td>
<td>640.2352</td>
</tr>
<tr>
<td>15</td>
<td>1598.8189</td>
<td>790.8946</td>
<td>1581.8754</td>
<td>781.8502</td>
<td>1570.8764</td>
<td>780.9082</td>
<td>E</td>
<td>1578.4218</td>
<td>741.2143</td>
<td>1564.3948</td>
<td>736.7010</td>
</tr>
<tr>
<td>16</td>
<td>1732.8998</td>
<td>848.4265</td>
<td>1718.8313</td>
<td>839.9233</td>
<td>1717.8339</td>
<td>839.4029</td>
<td>H</td>
<td>1707.3888</td>
<td>834.6903</td>
<td>1693.3252</td>
<td>826.1797</td>
</tr>
<tr>
<td>17</td>
<td>1812.9683</td>
<td>916.9519</td>
<td>1793.7801</td>
<td>908.4387</td>
<td>1784.8860</td>
<td>907.9467</td>
<td>P</td>
<td>1771.3198</td>
<td>876.1635</td>
<td>1759.2923</td>
<td>864.6503</td>
</tr>
<tr>
<td>18</td>
<td>1961.9382</td>
<td>981.4752</td>
<td>1944.9217</td>
<td>972.9060</td>
<td>1934.9236</td>
<td>972.4680</td>
<td>E</td>
<td>1874.2673</td>
<td>957.6572</td>
<td>1867.2505</td>
<td>945.2407</td>
</tr>
<tr>
<td>20</td>
<td>2112.0447</td>
<td>1096.2620</td>
<td>2100.1382</td>
<td>1098.0127</td>
<td>2114.0342</td>
<td>1097.5207</td>
<td>V</td>
<td>1744.1874</td>
<td>937.5973</td>
<td>1737.5608</td>
<td>928.0840</td>
</tr>
<tr>
<td>21</td>
<td>175.1190</td>
<td>88.0651</td>
<td>158.0924</td>
<td>78.5498</td>
<td>157.0924</td>
<td>78.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KEYWQNLR**

Found in **O335490** Retaine--homocysteine S-methyltransferase

OS=Mus musculus GN=Blmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1650 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M_r(calc): 1221.5778

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K1 : m/z CO2 (X), with neutral loss 43.0090

Ion Score: 17 **Expect:** 0.12

Matches: 6/70 fragment ions using 18 most intense peaks (**help**)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b−</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>h−</th>
<th>h+</th>
<th>h++</th>
<th>Seq.</th>
<th>y</th>
<th>y−</th>
<th>y++</th>
<th>y0</th>
<th>y0−</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0500</td>
<td>154.0863</td>
<td>77.5468</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1008.4898</td>
<td>504.7485</td>
<td>991.4632</td>
<td>496.2352</td>
<td>990.4792</td>
<td>495.7432</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>300.1554</td>
<td>150.5813</td>
<td>233.1288</td>
<td>142.0681</td>
<td>282.1448</td>
<td>141.5761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>465.2187</td>
<td>232.1130</td>
<td>446.1922</td>
<td>223.5907</td>
<td>445.2082</td>
<td>223.1077</td>
<td></td>
<td>V</td>
<td>879.4472</td>
<td>440.2272</td>
<td>862.4206</td>
<td>431.7139</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>649.2980</td>
<td>325.1527</td>
<td>632.2715</td>
<td>316.6364</td>
<td>631.2875</td>
<td>316.1474</td>
<td></td>
<td>W</td>
<td>716.5838</td>
<td>358.6956</td>
<td>699.3573</td>
<td>350.1823</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>777.3566</td>
<td>359.1819</td>
<td>760.3301</td>
<td>380.6687</td>
<td>759.3461</td>
<td>380.1767</td>
<td>Q</td>
<td>530.5045</td>
<td>265.6559</td>
<td>513.2780</td>
<td>257.1426</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KGILER
Found in O35490, Betaine--homocysteine S-methyltransferase 1 OS=Mus musculus GN=Bhmt PE=2 SV=1

Monoisotopic mass of neutral peptide Mr(calc): 800.4392
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : mal_c02 (K), with neutral loss 43.0598
Ions Score: 70 Expect: 0.15
Matches : 7/50 fragment ions using 13 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b**+</th>
<th>b0</th>
<th>b0++</th>
<th>Seq</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0575</td>
<td>G</td>
<td>587.3511</td>
<td>294.1792</td>
<td>570.3246</td>
<td>285.6659</td>
<td>569.3406</td>
<td>285.1739</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>341.2183</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>I</td>
<td>530.3297</td>
<td>265.6685</td>
<td>513.3031</td>
<td>257.1552</td>
<td>512.3191</td>
<td>256.6632</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>583.3450</td>
<td>292.1761</td>
<td>566.3184</td>
<td>283.6629</td>
<td>565.3344</td>
<td>283.1709</td>
<td>E</td>
<td>304.1613</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1510</td>
<td>143.5791</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVEAFETAKK

Found in Q64442, Sorbitol dehydrogenase OS=Mus musculus GN=Sord PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or: Plot from 150 to 1060 Da

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide

<table>
<thead>
<tr>
<th>Mass (Da)</th>
<th>1178.5810</th>
</tr>
</thead>
</table>

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications: K9: mal-CDG (K), with neutral loss 42.0158

Ions Score: 24 **Expect**: 0.002

Matches: 29/82 fragment ions using 45 most intense peaks **(help)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y^*</th>
<th>y''</th>
<th>y0</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>V</td>
<td>1064.5623</td>
<td>532.7848</td>
<td>1047.5357</td>
<td>524.2715</td>
<td>1046.5517</td>
<td>523.7795</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>965.4938</td>
<td>483.2306</td>
<td>948.4673</td>
<td>474.3737</td>
<td>947.4833</td>
<td>474.2453</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>300.1534</td>
<td>150.3813</td>
<td>282.1448</td>
<td>141.3761</td>
<td>E</td>
<td>355.3819</td>
<td>177.0916</td>
<td>A</td>
<td>836.4512</td>
<td>418.7293</td>
<td>819.4247</td>
<td>410.2160</td>
<td>818.4407</td>
<td>409.7240</td>
</tr>
<tr>
<td>4</td>
<td>371.1925</td>
<td>186.0999</td>
<td>353.1819</td>
<td>177.0916</td>
<td>A</td>
<td>355.3819</td>
<td>177.0916</td>
<td>A</td>
<td>836.4512</td>
<td>418.7293</td>
<td>819.4247</td>
<td>410.2160</td>
<td>818.4407</td>
<td>409.7240</td>
</tr>
<tr>
<td>5</td>
<td>518.2609</td>
<td>259.6341</td>
<td>350.2504</td>
<td>250.8288</td>
<td>F</td>
<td>765.4141</td>
<td>383.2107</td>
<td>748.3876</td>
<td>374.6974</td>
<td>747.4036</td>
<td>374.2054</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>647.3035</td>
<td>324.1554</td>
<td>629.2930</td>
<td>315.1501</td>
<td>E</td>
<td>618.3457</td>
<td>309.6765</td>
<td>601.3192</td>
<td>301.1632</td>
<td>600.3352</td>
<td>300.6712</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>748.3512</td>
<td>374.6792</td>
<td>730.3495</td>
<td>365.6740</td>
<td>T</td>
<td>489.3031</td>
<td>245.1352</td>
<td>472.2766</td>
<td>236.6419</td>
<td>471.2926</td>
<td>236.1499</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>819.3883</td>
<td>410.1978</td>
<td>801.3777</td>
<td>401.1925</td>
<td>A</td>
<td>868.2554</td>
<td>434.5107</td>
<td>418.7293</td>
<td>408.5107</td>
<td>418.7293</td>
<td>408.5107</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>989.4928</td>
<td>495.2506</td>
<td>972.4673</td>
<td>486.7373</td>
<td>K</td>
<td>971.4833</td>
<td>486.2453</td>
<td>971.4833</td>
<td>486.2453</td>
<td>971.4833</td>
<td>486.2453</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KPMVLGHEAAGTVTK

- **Found in:** Q64442, Sorbitol dehydrogenase OS=Mus musculus GN=Sord PE=1 SV=3
- **Fixed modifications:** MMTS (C) (apply to specified residues or termini only)
- **Variable modifications:**
 - K: alklys (K), with neutral loss 44.0268
- **Ions Score:** 28 **Expect:** 0.012
- **Matches:** 27/132 fragment ions using 81 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.122</td>
<td>154.085</td>
<td>77.346</td>
<td>K</td>
<td>1410.7410</td>
<td>705.3741</td>
<td>1393.7144</td>
<td>697.3608</td>
</tr>
<tr>
<td>2</td>
<td>268.156</td>
<td>134.266</td>
<td>657.3477</td>
<td>M</td>
<td>1313.6882</td>
<td>648.3425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>389.2061</td>
<td>200.1067</td>
<td>591.8275</td>
<td>V</td>
<td>1182.8477</td>
<td>591.8275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>498.2745</td>
<td>249.8409</td>
<td>383.3142</td>
<td>L</td>
<td>1082.5792</td>
<td>522.2633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>161.1585</td>
<td>80.0329</td>
<td>279.6966</td>
<td>334.6035</td>
<td>651.3534</td>
<td>326.1804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>668.3880</td>
<td>334.6035</td>
<td>187.3728</td>
<td>483.7513</td>
<td>932.4847</td>
<td>476.7460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>766.4309</td>
<td>403.2231</td>
<td>788.4174</td>
<td>394.7058</td>
<td>913.4738</td>
<td>457.2405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>924.4815</td>
<td>467.7444</td>
<td>917.6550</td>
<td>459.2311</td>
<td>916.4709</td>
<td>458.3791</td>
<td>776.6149</td>
<td>388.7111</td>
</tr>
<tr>
<td>9</td>
<td>1005.5106</td>
<td>503.2629</td>
<td>988.4921</td>
<td>454.7497</td>
<td>987.5080</td>
<td>494.2577</td>
<td>647.3733</td>
<td>324.1896</td>
</tr>
<tr>
<td>10</td>
<td>1076.5557</td>
<td>538.7815</td>
<td>1059.5290</td>
<td>530.2682</td>
<td>1058.5452</td>
<td>539.7762</td>
<td>576.3352</td>
<td>288.0712</td>
</tr>
<tr>
<td>11</td>
<td>1133.6772</td>
<td>567.2922</td>
<td>1116.5065</td>
<td>558.7790</td>
<td>1115.5668</td>
<td>558.2870</td>
<td>595.2980</td>
<td>259.1227</td>
</tr>
<tr>
<td>12</td>
<td>1234.6249</td>
<td>617.8161</td>
<td>1217.5983</td>
<td>609.3028</td>
<td>1216.6143</td>
<td>608.8108</td>
<td>448.2766</td>
<td>224.6419</td>
</tr>
<tr>
<td>13</td>
<td>1333.6923</td>
<td>667.3503</td>
<td>1316.6667</td>
<td>658.8370</td>
<td>1315.6827</td>
<td>658.3450</td>
<td>387.2239</td>
<td>174.1181</td>
</tr>
<tr>
<td>14</td>
<td>1434.7410</td>
<td>717.8474</td>
<td>1417.7144</td>
<td>709.3608</td>
<td>1416.7304</td>
<td>708.8686</td>
<td>248.1505</td>
<td>124.5839</td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.6853</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KPMVLGHEAAGTVTK

Found in O64442. Selenated dehydro-Met
OS=Mus musculus GN=U09928 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 150 to 1000 Da

Label all possible matches Label matches used for scoring

Protonic mass of neutral peptide Mz(mass): 1699.8240
Fixed modifications: HETQ (C) (apply to specified residues or termini only)
Variable modifications:
K1 : mad, C02 (K), with neutral loss 64.0958
M1 : Oxidation (M), with neutral losses 0.0280(shown in table) 64.0958
Input Score: 02 Expect: 0.0035
Matches: 41/256 fragments ions using 97 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>Seq.</th>
<th>y0</th>
<th>y00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.6060</td>
<td>154.0863</td>
<td>77.5458</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>258.1456</td>
<td>134.3864</td>
<td>231.1590</td>
<td>125.8731</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>415.2011</td>
<td>208.1044</td>
<td>395.1742</td>
<td>199.9087</td>
<td>M</td>
<td>1329.6831</td>
<td>665.3492</td>
<td>331.8719</td>
<td>1311.6764</td>
</tr>
<tr>
<td>4</td>
<td>514.2694</td>
<td>257.6383</td>
<td>497.2028</td>
<td>290.1251</td>
<td>V</td>
<td>1183.6477</td>
<td>591.8275</td>
<td>1165.627</td>
<td>583.3142</td>
</tr>
<tr>
<td>5</td>
<td>627.3824</td>
<td>314.1804</td>
<td>590.3277</td>
<td>301.6671</td>
<td>L</td>
<td>1083.5793</td>
<td>542.2933</td>
<td>1066.5528</td>
<td>533.7800</td>
</tr>
<tr>
<td>6</td>
<td>684.3769</td>
<td>342.6919</td>
<td>576.3484</td>
<td>334.1778</td>
<td>G</td>
<td>970.4952</td>
<td>485.7513</td>
<td>953.4687</td>
<td>477.3380</td>
</tr>
<tr>
<td>7</td>
<td>821.4388</td>
<td>411.2205</td>
<td>704.4073</td>
<td>402.7073</td>
<td>H</td>
<td>913.4718</td>
<td>457.2405</td>
<td>896.4472</td>
<td>448.7273</td>
</tr>
<tr>
<td>8</td>
<td>950.4764</td>
<td>475.7418</td>
<td>739.4409</td>
<td>486.7366</td>
<td>E</td>
<td>776.4149</td>
<td>388.7111</td>
<td>759.3883</td>
<td>380.1678</td>
</tr>
<tr>
<td>9</td>
<td>1021.5134</td>
<td>511.2604</td>
<td>800.4787</td>
<td>492.7411</td>
<td>T</td>
<td>647.3723</td>
<td>324.1898</td>
<td>630.4357</td>
<td>315.1845</td>
</tr>
<tr>
<td>10</td>
<td>1092.5506</td>
<td>546.7990</td>
<td>875.5245</td>
<td>538.2657</td>
<td>A</td>
<td>576.3357</td>
<td>298.8612</td>
<td>559.3806</td>
<td>280.1579</td>
</tr>
<tr>
<td>11</td>
<td>1140.5721</td>
<td>573.2807</td>
<td>913.5256</td>
<td>586.7764</td>
<td>G</td>
<td>505.2980</td>
<td>253.1227</td>
<td>488.2175</td>
<td>244.6394</td>
</tr>
<tr>
<td>12</td>
<td>1250.6193</td>
<td>625.8135</td>
<td>982.6192</td>
<td>617.3003</td>
<td>T</td>
<td>488.2766</td>
<td>254.6149</td>
<td>481.2590</td>
<td>246.1287</td>
</tr>
<tr>
<td>13</td>
<td>1349.6828</td>
<td>675.7477</td>
<td>1081.6603</td>
<td>666.8345</td>
<td>V</td>
<td>347.2289</td>
<td>174.1181</td>
<td>330.2023</td>
<td>165.6048</td>
</tr>
<tr>
<td>14</td>
<td>1450.7359</td>
<td>725.8716</td>
<td>1183.7083</td>
<td>717.3333</td>
<td>Y</td>
<td>248.1605</td>
<td>124.5839</td>
<td>231.1339</td>
<td>116.0706</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IGDFVVKKPMVLGHEAAGTVTK

The image contains a mass spectrometry analysis of a peptide sequence, IGDFVVKKPMVLGHEAAGTVTK, with a focus on fragmentation and protein sequence analysis. The table lists various fragmentation ions and their corresponding scores and masses. The analysis includes fixed modifications and variable modifications, with isotopic clusters and fragment ions shown. The data is used for identifying the peptide sequence from a mass spectrometry experiment.
IGDFVVKKPMVLGHEAAGTVTK
MS/MS Fragmentation of **KAGLLEK**
Found in O61176. Arstianet-1 OS=Mus musculus GN=Arz1 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 800 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 843.4702
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
- K: +44.01568 [K], with neutral loss 43.9898

Ions Score: 36 **Expect:** 0.038
Matches: 12/60 fragment ions using 20 most intense peaks (b=-p)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>b0</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>A</td>
<td>636.3821</td>
<td>315.6947</td>
<td>613.3556</td>
<td>307.1814</td>
<td>612.3715</td>
<td>306.6894</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>299.1714</td>
<td>150.0893</td>
<td>282.1448</td>
<td>141.5761</td>
<td>G</td>
<td>539.3450</td>
<td>280.1761</td>
<td>542.3184</td>
<td>271.6629</td>
<td>541.3344</td>
<td>271.1709</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>412.2554</td>
<td>206.6314</td>
<td>395.2289</td>
<td>198.1181</td>
<td>L</td>
<td>502.3235</td>
<td>251.6654</td>
<td>485.2970</td>
<td>243.1521</td>
<td>484.3130</td>
<td>242.6601</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>525.3395</td>
<td>263.1734</td>
<td>508.3130</td>
<td>254.6601</td>
<td>L</td>
<td>389.2395</td>
<td>195.1234</td>
<td>372.2129</td>
<td>186.6101</td>
<td>371.2289</td>
<td>186.1181</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>654.3821</td>
<td>327.6947</td>
<td>637.3556</td>
<td>319.1814</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.1448</td>
<td>129.5761</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GGVEKGPAALR
Found in Q61776, Arginase-1 OS=Mus musculus GN=Arg1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Set from _150_ to _1650_ Da
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1135.5335
Fixed modifications: NO modification (C) (apply to specified residues or termini only)
Variable modifications:
KS : ma.LCO2 (K), with neutral loss 43.01599
Ions Score: 56 Expect: 0.00010
Matches: 18/52 fragment ions using 18 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b−−</th>
<th>b−</th>
<th>b0</th>
<th>b+</th>
<th>Seq.</th>
<th>y</th>
<th>y−</th>
<th>y++</th>
<th>y***</th>
<th>y0</th>
<th>y0−−</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>115.0502</td>
<td>58.0287</td>
<td>G</td>
<td></td>
<td></td>
<td>1039.5805</td>
<td>520.2984</td>
<td>1022.5629</td>
<td>511.7851</td>
<td>1021.5782</td>
<td>511.2031</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>214.1186</td>
<td>107.5629</td>
<td>V</td>
<td></td>
<td></td>
<td>982.5680</td>
<td>491.7876</td>
<td>965.5415</td>
<td>483.2744</td>
<td>964.5574</td>
<td>482.7824</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>343.2182</td>
<td>172.0842</td>
<td>E</td>
<td></td>
<td></td>
<td>883.4996</td>
<td>442.2534</td>
<td>866.4730</td>
<td>433.7402</td>
<td>865.4890</td>
<td>433.2482</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>513.2667</td>
<td>257.1370</td>
<td>K</td>
<td></td>
<td></td>
<td>754.4570</td>
<td>377.7321</td>
<td>737.4305</td>
<td>369.2189</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>570.2882</td>
<td>285.6477</td>
<td>G</td>
<td></td>
<td></td>
<td>594.3515</td>
<td>292.6794</td>
<td>567.3249</td>
<td>284.1661</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>667.3401</td>
<td>334.1741</td>
<td>P</td>
<td></td>
<td></td>
<td>527.3000</td>
<td>264.1686</td>
<td>510.3035</td>
<td>255.6554</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>738.3781</td>
<td>369.6927</td>
<td>A</td>
<td></td>
<td></td>
<td>430.2772</td>
<td>215.6421</td>
<td>413.2507</td>
<td>207.1290</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>809.4152</td>
<td>405.2112</td>
<td>A</td>
<td></td>
<td></td>
<td>359.2401</td>
<td>180.1230</td>
<td>342.2136</td>
<td>171.6104</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>922.4993</td>
<td>461.7533</td>
<td>L</td>
<td></td>
<td></td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0919</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

GGVEKGPAALR
MS/MS Fragmentation of \textit{LKETEYDVR}

Found in Q6176, Arginase-1 OS=Mus musculus GN=Arg1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from \textbf{150} to \textbf{1200} Da Full range

Label all possible matches \(\bigcirc\) Label matches used for scoring \(\bigcirc\)

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
& b & b^{++} & b^{+} & b^{+++} & b^{0} & b^{0++} & Seq. & y & y^{++} & y^{+} & y^{+++} & y^{0} & y^{0++} & # \\
\hline
1 & 114.0913 & 57.5493 & L & 1081.5160 & 541.2617 & 1064.4895 & 532.7484 & 1063.5055 & 532.2564 & 8 \\
2 & \textbf{284.1060} & 142.6021 & 267.1703 & 134.0888 & K & 1081.5160 & 541.2617 & 1064.4895 & 532.7484 & 1063.5055 & 532.2564 & 8 \\
3 & 413.2395 & 207.1234 & 396.2129 & 198.6101 & E & \textbf{911.4105} & 456.2089 & 894.3840 & \textbf{447.6956} & 893.3999 & \textbf{447.2036} & 7 \\
5 & 643.3297 & 322.1685 & 626.3032 & 313.6552 & E & \textbf{681.3202} & 341.1638 & 664.2937 & 332.6505 & 663.3097 & 332.1585 & 5 \\
8 & \textbf{1020.4884} & 510.7478 & 1003.4619 & 502.2346 & V & \textbf{274.1874} & 137.5973 & 257.1608 & 129.0840 & 129.0840 & 2 \\
9 & \textbf{175.1190} & 88.0631 & 158.0924 & 79.5498 & R & \textbf{175.1190} & 88.0631 & 158.0924 & 79.5498 & \textbf{175.1190} & 88.0631 & 158.0924 & \textbf{79.5498} & 1 \\
\hline
\end{tabular}
\end{table}

Monoisotopic mass of neutral peptide Mr(calc): 1237.5826

Fixed modifications: MNTS (C) (apply to specified residues or termini only)

Variable modifications:

K2 : ma_l(C) (K), with neutral loss 43.0095

Ions Score: 26 Expect: 0.025

Matches : 14/486 fragment ions using 30 most intense peaks (help)
ANNELAGVVAEIVQKNGR
MS/MS Fragmentation of SVGKANEELAGVVAEVQK

Found in Q61776, Arginine-1 OS=hsa mascot GN=Arg1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ⬇️ Label matches used for scoring ⬇️

Monoisotopic mass of neutral peptide (m/z): 1912.9749
Fixed modifications: HET (O) (apply to specified residues or term only)
Variable modifications:
K: m+2 (N), with neutral loss 49.0064
Ions Searched: 17 Expect: 2.5e-06
Matches: 21/192 fragment ions using 31 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b++</th>
<th>Seq</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td>1782.9596</td>
<td>891.9834</td>
<td>1765.9531</td>
<td>883.4702</td>
<td>1764.9409</td>
<td>882.9782</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.1077</td>
<td>94.0575</td>
<td>169.0972</td>
<td>85.0622</td>
<td>Y</td>
<td>1782.9596</td>
<td>891.9834</td>
<td>1765.9531</td>
<td>883.4702</td>
<td>1764.9409</td>
<td>882.9782</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>244.1292</td>
<td>122.5682</td>
<td>226.1186</td>
<td>113.5629</td>
<td>G</td>
<td>1683.8912</td>
<td>941.4492</td>
<td>1666.8464</td>
<td>929.9390</td>
<td>1665.8086</td>
<td>933.4440</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>414.2467</td>
<td>207.6210</td>
<td>397.2082</td>
<td>199.1077</td>
<td>396.2231</td>
<td>198.6157</td>
<td>K</td>
<td>1626.8397</td>
<td>873.9233</td>
<td>1609.8342</td>
<td>802.4222</td>
<td>1603.8392</td>
<td>904.9352</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>485.2718</td>
<td>243.1355</td>
<td>468.2453</td>
<td>234.6256</td>
<td>467.2613</td>
<td>234.1345</td>
<td>A</td>
<td>1458.7643</td>
<td>728.8857</td>
<td>1439.7377</td>
<td>720.3725</td>
<td>1438.7356</td>
<td>719.8805</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>590.3148</td>
<td>300.1610</td>
<td>582.2882</td>
<td>291.6477</td>
<td>581.3042</td>
<td>291.1557</td>
<td>N</td>
<td>1345.7271</td>
<td>692.3672</td>
<td>1326.7000</td>
<td>684.6339</td>
<td>1326.7162</td>
<td>684.3619</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>728.3573</td>
<td>364.8823</td>
<td>711.3308</td>
<td>356.1690</td>
<td>710.3488</td>
<td>355.6770</td>
<td>E</td>
<td>1271.8442</td>
<td>626.4547</td>
<td>1254.8576</td>
<td>627.8324</td>
<td>1253.8585</td>
<td>627.3404</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>857.3999</td>
<td>429.2036</td>
<td>840.3734</td>
<td>420.9663</td>
<td>839.3894</td>
<td>420.2085</td>
<td>Y</td>
<td>1142.6416</td>
<td>571.8244</td>
<td>1125.6150</td>
<td>563.1111</td>
<td>1124.6130</td>
<td>562.8191</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>970.4840</td>
<td>485.7456</td>
<td>953.4575</td>
<td>477.2242</td>
<td>952.4734</td>
<td>476.7404</td>
<td>L</td>
<td>1013.5996</td>
<td>507.0901</td>
<td>999.5724</td>
<td>498.7899</td>
<td>995.5884</td>
<td>498.2976</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>1041.5211</td>
<td>521.2624</td>
<td>1024.4948</td>
<td>512.7269</td>
<td>1023.5108</td>
<td>512.2538</td>
<td>A</td>
<td>980.5149</td>
<td>462.7611</td>
<td>963.4884</td>
<td>462.2478</td>
<td>958.5043</td>
<td>461.7555</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>1098.5426</td>
<td>549.7749</td>
<td>1081.5160</td>
<td>541.2617</td>
<td>1080.5320</td>
<td>540.7696</td>
<td>G</td>
<td>839.4776</td>
<td>415.2425</td>
<td>822.4512</td>
<td>407.2393</td>
<td>811.4672</td>
<td>406.2373</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>1197.6110</td>
<td>599.3011</td>
<td>1180.5844</td>
<td>590.7599</td>
<td>1179.6004</td>
<td>590.3039</td>
<td>V</td>
<td>772.4563</td>
<td>386.7118</td>
<td>755.4298</td>
<td>378.2185</td>
<td>744.4560</td>
<td>377.7265</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>1296.6794</td>
<td>648.8433</td>
<td>1279.6529</td>
<td>640.3501</td>
<td>1271.6668</td>
<td>639.8381</td>
<td>V</td>
<td>673.3537</td>
<td>337.1979</td>
<td>656.3614</td>
<td>328.8484</td>
<td>655.3774</td>
<td>328.1923</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>1367.7165</td>
<td>684.5619</td>
<td>1350.6900</td>
<td>675.8486</td>
<td>1349.7060</td>
<td>675.5566</td>
<td>A</td>
<td>574.8165</td>
<td>287.6634</td>
<td>557.2980</td>
<td>279.1501</td>
<td>556.3080</td>
<td>278.6851</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1496.7691</td>
<td>748.8832</td>
<td>1479.7526</td>
<td>740.3699</td>
<td>1478.7485</td>
<td>740.0779</td>
<td>Y</td>
<td>503.8284</td>
<td>252.1448</td>
<td>486.2559</td>
<td>243.6136</td>
<td>485.2718</td>
<td>243.1396</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1592.8276</td>
<td>798.4174</td>
<td>1580.8010</td>
<td>789.9041</td>
<td>1577.8170</td>
<td>789.4121</td>
<td>V</td>
<td>574.3998</td>
<td>287.6325</td>
<td>557.2312</td>
<td>279.1108</td>
<td>556.3080</td>
<td>278.6851</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1723.8861</td>
<td>852.4474</td>
<td>1706.8596</td>
<td>833.9354</td>
<td>1705.8755</td>
<td>833.4414</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0898</td>
<td>258.1448</td>
<td>129.5761</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18 | 1850.9446 | 905.4723 | 1833.9180 | 906.9041 | 1830.9354 | 906.4414 | K | 147.1128 | 74.0600 | 130.0863 | 65.5468 | 10
MS/MS Fragmentation of SLEIGAPFSKGQPR

Found in Q61788, Arginase-1 OS=Mus musculus GN=Argl PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or Plot from 200 to 1800 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(n, n.e.): 1684.8784

Fixed modifications: M + 15 (C) (apply to specified residues or termini only)

Variable modifications:

K11: m + 49 (K), with neutral loss 43.0589

Ions Score: 19 Expect: 0.984

_matches : 9/100 fragment ions using 13 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^{++}</th>
<th>b^{+++}</th>
<th>b^{0}</th>
<th>b^{0^{++}}</th>
<th>Seq.</th>
<th>y</th>
<th>y^{++}</th>
<th>y^{+++}</th>
<th>y^{0}</th>
<th>y^{0^{++}}</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81.0393</td>
<td>44.3232</td>
<td>70.0287</td>
<td>33.5180</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>L</td>
<td>1534.8639</td>
<td>777.9316</td>
<td>1537.8373</td>
<td>769.4223</td>
<td>1536.8333</td>
<td>768.9303</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>330.1660</td>
<td>165.5866</td>
<td>312.1554</td>
<td>156.5613</td>
<td>E</td>
<td>1441.7796</td>
<td>721.3935</td>
<td>1424.7532</td>
<td>712.8803</td>
<td>1423.7692</td>
<td>712.3883</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>443.2190</td>
<td>221.1287</td>
<td>425.2395</td>
<td>213.1234</td>
<td>I</td>
<td>1312.7152</td>
<td>656.8722</td>
<td>1295.7166</td>
<td>648.3590</td>
<td>1294.7266</td>
<td>647.8570</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>556.3341</td>
<td>278.6707</td>
<td>538.3235</td>
<td>269.6564</td>
<td>I</td>
<td>1199.6531</td>
<td>600.3302</td>
<td>1182.6266</td>
<td>591.8169</td>
<td>1181.6426</td>
<td>591.3249</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>615.3536</td>
<td>307.1814</td>
<td>595.3450</td>
<td>298.1761</td>
<td>G</td>
<td>1086.5401</td>
<td>542.7882</td>
<td>1069.3452</td>
<td>535.2749</td>
<td>1068.5582</td>
<td>534.7839</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>694.3927</td>
<td>342.7090</td>
<td>666.3821</td>
<td>333.8947</td>
<td>A</td>
<td>1020.5476</td>
<td>513.2774</td>
<td>1012.5201</td>
<td>506.7642</td>
<td>1011.5370</td>
<td>506.2722</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>781.4454</td>
<td>391.2264</td>
<td>763.4349</td>
<td>382.2211</td>
<td>P</td>
<td>958.5165</td>
<td>479.7589</td>
<td>941.4839</td>
<td>471.2456</td>
<td>940.4999</td>
<td>470.7536</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>928.5128</td>
<td>464.7066</td>
<td>910.5023</td>
<td>455.7553</td>
<td>F</td>
<td>881.4277</td>
<td>431.2325</td>
<td>844.4312</td>
<td>422.7192</td>
<td>843.4472</td>
<td>422.2272</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>1015.5459</td>
<td>508.2766</td>
<td>997.5353</td>
<td>499.2713</td>
<td>S</td>
<td>714.3893</td>
<td>357.6983</td>
<td>697.3628</td>
<td>349.1850</td>
<td>696.3787</td>
<td>348.9310</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1187.6514</td>
<td>593.3293</td>
<td>1168.6249</td>
<td>584.3216</td>
<td>K</td>
<td>627.3373</td>
<td>314.1823</td>
<td>610.3007</td>
<td>305.6690</td>
<td>611.3170</td>
<td>305.1762</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1242.6729</td>
<td>621.8401</td>
<td>1223.6463</td>
<td>613.3260</td>
<td>G</td>
<td>457.2518</td>
<td>229.1295</td>
<td>440.2522</td>
<td>220.6162</td>
<td>441.2689</td>
<td>220.1243</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>1370.7314</td>
<td>683.8964</td>
<td>1351.7049</td>
<td>677.8561</td>
<td>Q</td>
<td>400.2303</td>
<td>200.6188</td>
<td>383.2037</td>
<td>192.1053</td>
<td>383.2037</td>
<td>192.1053</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1457.7842</td>
<td>734.3927</td>
<td>1430.7577</td>
<td>725.8322</td>
<td>P</td>
<td>275.2171</td>
<td>136.5895</td>
<td>255.1482</td>
<td>128.0762</td>
<td>255.1482</td>
<td>128.0762</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>175.1190</td>
<td>88.6063</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MVQKSLAR

Found in P54869, Hydroxymethylglutaryl-CoA synthase, mitochondrial OS=Mus musculus GN=Hmgcs2 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, enter plot area to zoom in by factor of two about that point

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1017.5277
Fixed modifications: HMTS (C) (apply to specified residues or termini only)
Variable modifications:
K4 : m1_O2 (K), with neutral loss 43.0050
Ions Score: 89 Expect: 0.017
Matches: 21/66 fragment ions using 40 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y**</th>
<th>y0</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>231.1162</td>
<td>116.0617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>843.5647</td>
<td>422.2560, 826.4781</td>
<td>413.7427</td>
<td>825.4941</td>
<td>413.2507</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>359.1748</td>
<td>180.0910, 342.1482</td>
<td>171.5777</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>744.4363</td>
<td>372.7218, 727.4097</td>
<td>364.2085</td>
<td>726.4257</td>
<td>363.7165</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>529.2803</td>
<td>265.1438, 512.2537</td>
<td>256.6305</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>616.3777</td>
<td>308.6925, 599.3511</td>
<td>300.1792</td>
<td>598.3671</td>
<td>299.6872</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>616.3123</td>
<td>308.6598, 599.2858</td>
<td>598.3017</td>
<td>299.6545</td>
<td></td>
<td></td>
<td>S</td>
<td>446.2722</td>
<td>233.6397, 429.2456</td>
<td>215.1264</td>
<td>428.2616</td>
<td>214.6344</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>800.4335</td>
<td>400.7204, 783.4069</td>
<td>392.2071, 782.4229</td>
<td>391.7151</td>
<td></td>
<td></td>
<td>A</td>
<td>246.1561</td>
<td>123.5817, 229.1295</td>
<td>115.0684</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631, 158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FNNVEAGKYTVGLGQTR
Found in P54869. Hydroxymethylbutyryl-CoA synthase, mitochondrial OS=Mus musculus GN=Hmcox2 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Me(calc): 1908.9426
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
E9 : ael_COO (R), with neutral loss 49.0068

Total Score: 55 Expect: 0.0000
Matches : 22/120 fragment ions using 60 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>m/z</th>
<th>b</th>
<th>y</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>y+4</th>
<th>y+5</th>
<th>y+6</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>262.1186</td>
<td>131.5629</td>
<td>245.0021</td>
<td>123.0497</td>
<td>N</td>
<td>1748.8926</td>
<td>874.9135</td>
<td>1731.8660</td>
<td>806.4367</td>
<td>1730.8820</td>
</tr>
<tr>
<td>3</td>
<td>376.1615</td>
<td>188.5944</td>
<td>359.1350</td>
<td>180.0711</td>
<td>N</td>
<td>1634.8497</td>
<td>817.8925</td>
<td>1617.8231</td>
<td>809.4115</td>
<td>1616.8391</td>
</tr>
<tr>
<td>4</td>
<td>475.2460</td>
<td>238.1186</td>
<td>458.2034</td>
<td>229.6053</td>
<td>V</td>
<td>1520.9967</td>
<td>760.9907</td>
<td>1503.7802</td>
<td>752.3937</td>
<td>1502.7962</td>
</tr>
<tr>
<td>5</td>
<td>584.2782</td>
<td>302.6399</td>
<td>567.2460</td>
<td>294.1266</td>
<td>586.2620</td>
<td>293.6846</td>
<td>E</td>
<td>1421.7383</td>
<td>711.3728</td>
<td>1404.7118</td>
</tr>
<tr>
<td>6</td>
<td>675.3097</td>
<td>338.1585</td>
<td>658.2831</td>
<td>329.6432</td>
<td>567.2991</td>
<td>329.1532</td>
<td>A</td>
<td>1392.6987</td>
<td>646.8515</td>
<td>1375.6692</td>
</tr>
<tr>
<td>7</td>
<td>732.3331</td>
<td>386.6692</td>
<td>715.3046</td>
<td>358.1559</td>
<td>714.3266</td>
<td>357.6639</td>
<td>G</td>
<td>1278.6586</td>
<td>611.3329</td>
<td>1264.6321</td>
</tr>
<tr>
<td>8</td>
<td>902.4367</td>
<td>451.7220</td>
<td>883.4101</td>
<td>443.2087</td>
<td>884.4261</td>
<td>442.7167</td>
<td>K</td>
<td>1164.6472</td>
<td>592.8222</td>
<td>1147.6106</td>
</tr>
<tr>
<td>9</td>
<td>1065.5000</td>
<td>539.5356</td>
<td>1048.4724</td>
<td>524.7404</td>
<td>1047.4894</td>
<td>524.2489</td>
<td>Y</td>
<td>994.5316</td>
<td>497.7694</td>
<td>977.5051</td>
</tr>
<tr>
<td>10</td>
<td>1166.5477</td>
<td>583.7775</td>
<td>1149.5211</td>
<td>572.2642</td>
<td>1148.5371</td>
<td>574.7722</td>
<td>T</td>
<td>831.1683</td>
<td>416.2378</td>
<td>814.4417</td>
</tr>
<tr>
<td>11</td>
<td>1265.6161</td>
<td>653.3117</td>
<td>1248.5935</td>
<td>624.7984</td>
<td>1247.6055</td>
<td>624.3064</td>
<td>V</td>
<td>739.1206</td>
<td>365.7139</td>
<td>713.3941</td>
</tr>
<tr>
<td>13</td>
<td>1435.7216</td>
<td>718.3644</td>
<td>1418.6951</td>
<td>699.8512</td>
<td>1417.7110</td>
<td>699.3592</td>
<td>L</td>
<td>574.3307</td>
<td>287.6690</td>
<td>557.3042</td>
</tr>
<tr>
<td>14</td>
<td>1492.7431</td>
<td>746.8725</td>
<td>1475.7165</td>
<td>726.3619</td>
<td>1474.7232</td>
<td>727.3699</td>
<td>G</td>
<td>461.1467</td>
<td>231.1270</td>
<td>444.2201</td>
</tr>
<tr>
<td>16</td>
<td>1721.8493</td>
<td>861.4283</td>
<td>1704.8228</td>
<td>852.9150</td>
<td>1703.8388</td>
<td>852.4230</td>
<td>T</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
</tr>
<tr>
<td>17</td>
<td>R</td>
<td>171.1159</td>
<td>88.0651</td>
<td>171.0824</td>
<td>88.0922</td>
<td>170.9488</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LVSSVSDLPKR

Found in: P54869. Hydroxymethylbilirubin-CoA synthase, mitochondrial OS=Mus musculus GN=Hmas2 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from: 200 to 1100 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(calc): 1285.6978

Fixed modifications: M() (apply to specified residues or termini only)

Variable modifications:
- K10: ma1.C02 (K), with neutral loss 43.9998

Ions Score: 20 **Expect:** 0.038

Matches: 15/50 fragment ions using 18 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>Charge</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>Intensity</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1508</td>
<td>107.0835</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300.1918</td>
<td>150.5995</td>
<td>S</td>
<td>1036.5527</td>
<td>515.7800</td>
<td>1013.5262</td>
<td>507.2667</td>
<td>1012.5422</td>
</tr>
<tr>
<td>4</td>
<td>337.2238</td>
<td>168.6114</td>
<td>S</td>
<td>943.5207</td>
<td>472.2640</td>
<td>926.4942</td>
<td>463.7507</td>
<td>925.5102</td>
</tr>
<tr>
<td>5</td>
<td>486.2922</td>
<td>243.6498</td>
<td>V</td>
<td>856.4887</td>
<td>428.7480</td>
<td>839.4621</td>
<td>420.2347</td>
<td>838.4781</td>
</tr>
<tr>
<td>6</td>
<td>533.3243</td>
<td>267.1658</td>
<td>S</td>
<td>555.3137</td>
<td>278.1605</td>
<td>537.4263</td>
<td>279.2158</td>
<td>539.4097</td>
</tr>
<tr>
<td>7</td>
<td>688.3512</td>
<td>344.6792</td>
<td>D</td>
<td>670.3406</td>
<td>335.6740</td>
<td>653.3617</td>
<td>327.1845</td>
<td>652.3777</td>
</tr>
<tr>
<td>8</td>
<td>801.4353</td>
<td>400.2121</td>
<td>L</td>
<td>738.4247</td>
<td>392.2160</td>
<td>555.3613</td>
<td>278.1843</td>
<td>538.3348</td>
</tr>
<tr>
<td>9</td>
<td>898.4800</td>
<td>449.7476</td>
<td>P</td>
<td>880.4775</td>
<td>440.7424</td>
<td>442.2772</td>
<td>221.6423</td>
<td>425.2507</td>
</tr>
<tr>
<td>10</td>
<td>1068.5936</td>
<td>534.8004</td>
<td>K</td>
<td>1051.5570</td>
<td>526.2871</td>
<td>1050.5830</td>
<td>525.7951</td>
<td>345.2245</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VSKDASPGSPLEK

Found in P54689, Hydroxymethylglycine-CoA synthase, mitochondrial OS=Mus musculus GN=Hmgcs2 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Flat from ___ to ___ Da Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide M(z+1): 1299.6832
Fixed modifications: MESS (C) (apply to specified matches or termini only)
Variable modifications:
NO: , male (K), with neutral loss 48.0569

Score: 38 Expect: 8.9583

Matches: 28/156 fragment ions using 40 most intense peaks (b/a)

#	b	b^+	b^++	b^0	b^++	Seq	y	y^+	y^++	y^0	y^0++	
1	100.0757	50.5415				V						
2	187.1077	94.0537					1257.5621	629.3197	1240.6036	620.8084	1239.6216	620.3144
3	357.2132	179.1103					1170.6001	585.8037	1153.7535	577.2984	1152.5895	576.7984
4	472.2402	236.6237					1000.6816	500.7509	983.4680	492.2376	982.4840	491.7426
5	543.2763	272.1392					885.4676	443.2374	868.4111	434.7242	867.4571	434.2232
6	630.3062	315.6638					814.4365	407.7189	797.4040	399.2056	796.4199	398.7136
7	727.3321	364.1814					727.3983	364.2029	710.3119	355.6896	709.3879	355.1796
8	784.3356	392.6904					630.3457	315.6763	613.3992	307.1632	612.3352	306.6712
9	871.4156	436.2114					578.3242	287.1858	556.2977	278.6525	555.3176	278.1605
10	968.4684	484.7578					486.2922	243.6498	469.2657	235.1362	468.2817	234.6443
11	1051.5524	514.7298					389.3385	185.1324	372.2129	186.6101	371.2389	186.1181
12	1210.5950	603.8011					276.3328	138.3813	259.1289	130.0831	258.1448	129.5761
13							147.1228	74.0569	130.0833	65.5468	1	
MS/MS Fragmentation of LEETYTNKDVDKALLK
Found in P54892, Hydroxymethylglutaryl-CoA synthase, mitochondrial OS=Mus musculus GN=Hmgcs2 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1800 Da
Label all possible matches ○ Label matches used for scoring ⬤

Monoisotopic mass of neutral peptide Mz(calc): 1566.5942
Fixed modifications: 5HT (C) (apply to specified residues or termini only)
Variable modifications:
K12 : m/e 49.02 [O] , with neutral loss 48.0098
Ion Score: 17 Expect: 0.005
Matches : 6/106 fragment ions using 10 most intense peaks (h为目标)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>h'</th>
<th>h''</th>
<th>y'</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>243.1539</td>
<td>122.0706</td>
<td>225.1234</td>
<td>113.0653</td>
<td>E</td>
<td>1808.9276</td>
<td>904.4957</td>
<td>1791.9011</td>
<td>896.4942</td>
</tr>
<tr>
<td>3</td>
<td>372.1763</td>
<td>186.5919</td>
<td>354.1660</td>
<td>177.5856</td>
<td>E</td>
<td>1678.8350</td>
<td>840.4462</td>
<td>1662.8327</td>
<td>831.0329</td>
</tr>
<tr>
<td>4</td>
<td>473.2242</td>
<td>237.1157</td>
<td>455.2136</td>
<td>228.1103</td>
<td>T</td>
<td>1550.8425</td>
<td>775.9219</td>
<td>1533.8159</td>
<td>767.4116</td>
</tr>
<tr>
<td>5</td>
<td>636.2875</td>
<td>318.6474</td>
<td>618.2770</td>
<td>309.6421</td>
<td>V</td>
<td>1448.7848</td>
<td>725.4010</td>
<td>1432.7632</td>
<td>716.8877</td>
</tr>
<tr>
<td>6</td>
<td>737.3352</td>
<td>369.1712</td>
<td>719.3246</td>
<td>360.1660</td>
<td>T</td>
<td>1288.7314</td>
<td>643.8694</td>
<td>1269.7040</td>
<td>635.3561</td>
</tr>
<tr>
<td>7</td>
<td>831.3781</td>
<td>426.1927</td>
<td>813.3676</td>
<td>417.1874</td>
<td>N</td>
<td>1183.8628</td>
<td>593.3423</td>
<td>1168.8722</td>
<td>584.3422</td>
</tr>
<tr>
<td>8</td>
<td>979.4731</td>
<td>490.2602</td>
<td>961.4625</td>
<td>481.2349</td>
<td>K</td>
<td>1071.6408</td>
<td>536.3241</td>
<td>1056.6415</td>
<td>527.8108</td>
</tr>
<tr>
<td>9</td>
<td>1094.5000</td>
<td>547.7537</td>
<td>1076.4895</td>
<td>538.7481</td>
<td>D</td>
<td>943.3459</td>
<td>472.2766</td>
<td>926.3193</td>
<td>463.7653</td>
</tr>
<tr>
<td>10</td>
<td>1193.5365</td>
<td>597.2879</td>
<td>1175.5419</td>
<td>588.7476</td>
<td>V</td>
<td>828.5189</td>
<td>414.7651</td>
<td>811.4924</td>
<td>406.2498</td>
</tr>
<tr>
<td>11</td>
<td>1298.5934</td>
<td>654.0813</td>
<td>1280.5881</td>
<td>645.7961</td>
<td>D</td>
<td>729.4505</td>
<td>385.2289</td>
<td>712.4240</td>
<td>376.7156</td>
</tr>
<tr>
<td>12</td>
<td>1478.7009</td>
<td>739.5845</td>
<td>1461.6744</td>
<td>731.3408</td>
<td>314.6004</td>
<td>730.8488</td>
<td>K</td>
<td>614.4236</td>
<td>307.7114</td>
</tr>
<tr>
<td>13</td>
<td>1549.7380</td>
<td>757.3727</td>
<td>1532.7115</td>
<td>766.8394</td>
<td>A</td>
<td>444.5180</td>
<td>222.6627</td>
<td>427.5212</td>
<td>214.1494</td>
</tr>
<tr>
<td>14</td>
<td>1662.8231</td>
<td>831.9147</td>
<td>1645.7956</td>
<td>823.4014</td>
<td>L</td>
<td>1644.8115</td>
<td>822.9994</td>
<td>L</td>
<td>373.2809</td>
</tr>
<tr>
<td>15</td>
<td>1775.9062</td>
<td>888.4567</td>
<td>1758.8796</td>
<td>879.9434</td>
<td>L</td>
<td>1757.8596</td>
<td>879.4514</td>
<td>1750.8596</td>
<td>879.9414</td>
</tr>
<tr>
<td>16</td>
<td>1889.9883</td>
<td>944.5097</td>
<td>1872.9617</td>
<td>936.9865</td>
<td>K</td>
<td>147.1128</td>
<td>74.0500</td>
<td>139.0863</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **APNSPDVLEIEFKK**

Found in P16460, Argininosuccinate synthase OS=Mus musculus GN=Ass1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Ox Peptide from 200 to 1500 Da Full range Label all possible matches Label matches used for scoring

Nonisotopic mass of neutral peptide M(calc): 1671.3845
Fixed modifications: M(13) (C) (apply to specified residues or termini only)
Variable modifications: KE: M(14) (E, with neutral loss 48.0950)
T ions Score: 52 Expect: 0.00592
Matches to Fragment ions using 20 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>y</th>
<th>Seq</th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>Int</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>73.5444</td>
<td>56.5258</td>
<td>P</td>
<td>1557.8159</td>
<td>779.4116</td>
<td>1340.7894</td>
<td>770.8983</td>
<td>1539.8953</td>
<td>770.4063</td>
</tr>
<tr>
<td>3</td>
<td>283.1401</td>
<td>142.0737</td>
<td>N</td>
<td>1160.7631</td>
<td>730.8822</td>
<td>1443.7366</td>
<td>722.3719</td>
<td>1442.7326</td>
<td>721.8799</td>
</tr>
<tr>
<td>4</td>
<td>370.1721</td>
<td>182.2897</td>
<td>332.1456</td>
<td>177.0784</td>
<td>352.1612</td>
<td>176.3844</td>
<td>S</td>
<td>1346.7202</td>
<td>673.8637</td>
</tr>
<tr>
<td>5</td>
<td>467.2269</td>
<td>234.1161</td>
<td>430.1983</td>
<td>225.0282</td>
<td>440.2413</td>
<td>225.1108</td>
<td>P</td>
<td>1255.6682</td>
<td>630.3477</td>
</tr>
<tr>
<td>6</td>
<td>582.2516</td>
<td>291.6263</td>
<td>555.2233</td>
<td>283.1163</td>
<td>564.2415</td>
<td>282.6243</td>
<td>D</td>
<td>1162.6354</td>
<td>581.8213</td>
</tr>
<tr>
<td>7</td>
<td>681.3202</td>
<td>341.1638</td>
<td>654.2937</td>
<td>332.6505</td>
<td>663.3097</td>
<td>332.1585</td>
<td>V</td>
<td>1047.6085</td>
<td>524.3079</td>
</tr>
<tr>
<td>8</td>
<td>794.4043</td>
<td>397.7018</td>
<td>777.3777</td>
<td>389.1925</td>
<td>776.3937</td>
<td>388.7005</td>
<td>L</td>
<td>948.5401</td>
<td>474.7737</td>
</tr>
<tr>
<td>9</td>
<td>923.4469</td>
<td>462.2271</td>
<td>906.4203</td>
<td>453.7138</td>
<td>905.4360</td>
<td>453.2218</td>
<td>F</td>
<td>835.4560</td>
<td>418.2316</td>
</tr>
<tr>
<td>11</td>
<td>1165.5735</td>
<td>583.2904</td>
<td>1148.5470</td>
<td>574.7771</td>
<td>1147.5630</td>
<td>574.2851</td>
<td>E</td>
<td>593.3293</td>
<td>297.1683</td>
</tr>
<tr>
<td>12</td>
<td>1312.6420</td>
<td>656.8246</td>
<td>1295.6154</td>
<td>648.3135</td>
<td>1294.6314</td>
<td>647.8193</td>
<td>F</td>
<td>464.2667</td>
<td>232.6470</td>
</tr>
<tr>
<td>13</td>
<td>1482.7475</td>
<td>741.8774</td>
<td>1465.7209</td>
<td>733.3641</td>
<td>1464.7369</td>
<td>732.8271</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
</tr>
<tr>
<td>14</td>
<td>1471.1128</td>
<td>74.0500</td>
<td>1430.0863</td>
<td>65.5468</td>
<td>1300.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TQDPAKAPNSPDVLEIEFK

Found in P16160, Argininosuccinate synthetase OS=Mus musculus GN=Ass1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or: Plot from 300 to 2000 Da Full range
Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide (M+H): 2114.5556

Fixed modifications: M(15) C (apply to specified residues or termini only)

Variable modifications:

- R: m/z 202 (R), with neutral loss 44.01298

Ions Searched: 76 Bepari; 7.1e-07

Matches: 46/121 fragments list using 80 most intense peaks (Child)

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b''</th>
<th>y</th>
<th>y''</th>
<th>Seq.</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>p</th>
<th>f''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0350</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>245.1465</td>
<td>173.0679</td>
<td>328.1139</td>
<td>164.5606</td>
<td>327.1299</td>
<td>164.0586</td>
<td>D</td>
<td>1911.9688</td>
<td>956.4886</td>
<td>1894.9433</td>
<td>947.9753</td>
</tr>
<tr>
<td>4</td>
<td>412.1932</td>
<td>221.6003</td>
<td>425.1667</td>
<td>213.0870</td>
<td>424.1827</td>
<td>212.5920</td>
<td>P</td>
<td>1796.9429</td>
<td>989.9751</td>
<td>1779.9163</td>
<td>980.4618</td>
</tr>
<tr>
<td>5</td>
<td>513.2360</td>
<td>257.1188</td>
<td>496.2038</td>
<td>248.6055</td>
<td>492.2198</td>
<td>248.1135</td>
<td>A</td>
<td>1699.8901</td>
<td>805.4487</td>
<td>1682.8469</td>
<td>801.3954</td>
</tr>
<tr>
<td>6</td>
<td>683.3339</td>
<td>342.1716</td>
<td>666.3093</td>
<td>333.6583</td>
<td>665.3253</td>
<td>333.1663</td>
<td>K</td>
<td>1628.8530</td>
<td>814.9301</td>
<td>1611.8265</td>
<td>806.4169</td>
</tr>
<tr>
<td>7</td>
<td>754.3739</td>
<td>377.6001</td>
<td>737.3646</td>
<td>369.1760</td>
<td>736.3624</td>
<td>368.5849</td>
<td>A</td>
<td>1554.7875</td>
<td>725.8774</td>
<td>1441.7200</td>
<td>721.3641</td>
</tr>
<tr>
<td>8</td>
<td>851.4258</td>
<td>426.2165</td>
<td>834.3992</td>
<td>417.7032</td>
<td>833.4152</td>
<td>417.2112</td>
<td>P</td>
<td>1387.7104</td>
<td>694.3588</td>
<td>1370.8638</td>
<td>685.8455</td>
</tr>
<tr>
<td>9</td>
<td>965.4687</td>
<td>483.2801</td>
<td>948.4421</td>
<td>474.7247</td>
<td>947.4581</td>
<td>474.3237</td>
<td>N</td>
<td>1290.6576</td>
<td>645.8324</td>
<td>1277.6311</td>
<td>637.3192</td>
</tr>
<tr>
<td>10</td>
<td>1052.5067</td>
<td>526.7540</td>
<td>1035.4742</td>
<td>515.2407</td>
<td>1034.4901</td>
<td>514.7847</td>
<td>S</td>
<td>1176.6147</td>
<td>596.8110</td>
<td>1159.5981</td>
<td>590.2977</td>
</tr>
<tr>
<td>11</td>
<td>1149.5535</td>
<td>575.2904</td>
<td>1132.5269</td>
<td>566.7671</td>
<td>1131.5429</td>
<td>565.2751</td>
<td>P</td>
<td>1089.5987</td>
<td>545.2950</td>
<td>1072.5561</td>
<td>536.7817</td>
</tr>
<tr>
<td>12</td>
<td>1264.5834</td>
<td>632.7928</td>
<td>1247.5599</td>
<td>624.2806</td>
<td>1246.5609</td>
<td>623.7886</td>
<td>D</td>
<td>992.3399</td>
<td>496.7663</td>
<td>975.3038</td>
<td>488.2553</td>
</tr>
<tr>
<td>13</td>
<td>1363.6848</td>
<td>682.3281</td>
<td>1346.6223</td>
<td>673.8148</td>
<td>1345.6383</td>
<td>673.3223</td>
<td>Y</td>
<td>877.5629</td>
<td>439.2551</td>
<td>860.4764</td>
<td>430.7418</td>
</tr>
<tr>
<td>14</td>
<td>1476.7239</td>
<td>738.8071</td>
<td>1459.7064</td>
<td>730.3568</td>
<td>1458.7232</td>
<td>729.5648</td>
<td>L</td>
<td>778.4345</td>
<td>389.7209</td>
<td>761.4080</td>
<td>381.2076</td>
</tr>
<tr>
<td>15</td>
<td>1605.7755</td>
<td>805.3914</td>
<td>1588.7469</td>
<td>796.8781</td>
<td>1587.7649</td>
<td>794.3861</td>
<td>E</td>
<td>665.3305</td>
<td>333.1789</td>
<td>648.3335</td>
<td>324.6656</td>
</tr>
<tr>
<td>16</td>
<td>1718.8596</td>
<td>859.9334</td>
<td>1701.8330</td>
<td>851.4201</td>
<td>1698.8490</td>
<td>850.9281</td>
<td>K</td>
<td>536.3679</td>
<td>268.6576</td>
<td>519.2813</td>
<td>260.1443</td>
</tr>
<tr>
<td>17</td>
<td>1847.9032</td>
<td>924.4547</td>
<td>1830.8756</td>
<td>915.9414</td>
<td>1829.8916</td>
<td>915.4494</td>
<td>E</td>
<td>424.2338</td>
<td>212.1151</td>
<td>405.1973</td>
<td>203.6023</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>147.1128</td>
<td>74.0000</td>
<td>130.0856</td>
<td>65.3400</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NDLMEYA\textsc{KQHGIPIVP}TPK
GRNDLMEYAKQHGIPIPVTPK

Mass Spectrometry

Monoisotopic mass of neutral peptide M (+Na) = 2459.2421
Fixed modifications: C-47 (apply to specified residues or terminal only)
Variable modifications:
Matched : 25/242 fragment ions using 20 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq. y</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5130</td>
<td>C</td>
<td>2349.2384</td>
<td>1175.1228</td>
<td>2532.2118</td>
<td>1166.6095</td>
<td>2331.2278</td>
<td>1166.1775</td>
</tr>
<tr>
<td>3</td>
<td>328.1728</td>
<td>164.5900</td>
<td>311.1462</td>
<td>156.0768</td>
<td>N</td>
<td>2193.1387</td>
<td>1097.0723</td>
<td>2176.1167</td>
<td>1088.5590</td>
</tr>
<tr>
<td>6</td>
<td>687.3243</td>
<td>344.1618</td>
<td>670.2997</td>
<td>335.6525</td>
<td>669.3117</td>
<td>335.1565</td>
<td>M</td>
<td>1850.9833</td>
<td>925.9835</td>
</tr>
<tr>
<td>7</td>
<td>818.3569</td>
<td>408.8871</td>
<td>799.3403</td>
<td>400.1738</td>
<td>798.2938</td>
<td>399.6618</td>
<td>E</td>
<td>1719.9424</td>
<td>860.4751</td>
</tr>
<tr>
<td>8</td>
<td>979.4003</td>
<td>490.2137</td>
<td>962.4036</td>
<td>481.7055</td>
<td>961.4196</td>
<td>481.2135</td>
<td>Y</td>
<td>1590.9002</td>
<td>795.9558</td>
</tr>
<tr>
<td>9</td>
<td>1050.8737</td>
<td>552.7237</td>
<td>1032.4003</td>
<td>517.2240</td>
<td>1022.4897</td>
<td>516.7320</td>
<td>A</td>
<td>1427.8269</td>
<td>719.4221</td>
</tr>
<tr>
<td>10</td>
<td>1236.7572</td>
<td>610.7601</td>
<td>1203.5465</td>
<td>602.2768</td>
<td>1202.5623</td>
<td>601.7848</td>
<td>K</td>
<td>1356.7998</td>
<td>678.8053</td>
</tr>
<tr>
<td>11</td>
<td>1373.8594</td>
<td>674.8192</td>
<td>1351.8049</td>
<td>666.2061</td>
<td>1350.8209</td>
<td>665.8141</td>
<td>Q</td>
<td>1386.6943</td>
<td>793.8508</td>
</tr>
<tr>
<td>12</td>
<td>1485.6965</td>
<td>716.3488</td>
<td>1468.6858</td>
<td>714.8255</td>
<td>1467.6798</td>
<td>714.3245</td>
<td>H</td>
<td>1508.6537</td>
<td>725.8215</td>
</tr>
<tr>
<td>13</td>
<td>1542.7118</td>
<td>771.8595</td>
<td>1522.6362</td>
<td>763.3463</td>
<td>1524.7012</td>
<td>762.8542</td>
<td>G</td>
<td>1583.9668</td>
<td>461.2920</td>
</tr>
<tr>
<td>14</td>
<td>1655.7959</td>
<td>828.4016</td>
<td>1638.7693</td>
<td>819.8933</td>
<td>1637.8823</td>
<td>819.3963</td>
<td>I</td>
<td>1641.5553</td>
<td>523.7813</td>
</tr>
<tr>
<td>15</td>
<td>1773.5946</td>
<td>876.9279</td>
<td>1756.9221</td>
<td>868.4147</td>
<td>1754.9831</td>
<td>867.9227</td>
<td>P</td>
<td>1751.6715</td>
<td>576.3939</td>
</tr>
<tr>
<td>16</td>
<td>1866.5373</td>
<td>934.7900</td>
<td>1849.9061</td>
<td>924.5676</td>
<td>1847.9221</td>
<td>924.4647</td>
<td>P</td>
<td>1846.4135</td>
<td>527.7129</td>
</tr>
<tr>
<td>18</td>
<td>2062.0359</td>
<td>1051.6296</td>
<td>2045.0723</td>
<td>2032.0173</td>
<td>2044.0483</td>
<td>2022.2253</td>
<td>V</td>
<td>2042.8517</td>
<td>222.6495</td>
</tr>
<tr>
<td>19</td>
<td>2163.1015</td>
<td>1052.8644</td>
<td>2146.0750</td>
<td>1075.5415</td>
<td>2145.0910</td>
<td>1074.5615</td>
<td>T</td>
<td>2145.3183</td>
<td>173.1103</td>
</tr>
<tr>
<td>20</td>
<td>2260.1543</td>
<td>1159.8008</td>
<td>2243.1278</td>
<td>1122.0673</td>
<td>2242.1437</td>
<td>1121.5775</td>
<td>P</td>
<td>2242.1586</td>
<td>122.8564</td>
</tr>
<tr>
<td>21</td>
<td>2357.2071</td>
<td>1266.9383</td>
<td>2340.2806</td>
<td>1228.2451</td>
<td>2339.2557</td>
<td>1227.7557</td>
<td>E</td>
<td>2347.1383</td>
<td>74.0600</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YKLDCR
Found in J3OMG3. Voltage-dependent anion-selective channel protein 3 OS=Mus musculus GN=Vdac3 PE=4 SV=1
Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 928.3782
Fixed modifications: HMTS (C) (apply to specified residues or termini only)
Variable modifications:
K2 : +1.010 Da (K), with neutral loss 43.9898
Ions Score: 27 Expect: 0.047
Matches : 5/48 fragment ions using 7 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0768</td>
<td>82.5389</td>
<td>Y</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>167.5917</td>
<td>K</td>
<td>722.3324</td>
<td>361.6698</td>
<td>705.3058</td>
<td>353.1566</td>
<td>704.3218</td>
<td>352.6646</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>447.2602</td>
<td>224.1337</td>
<td>L</td>
<td>532.2269</td>
<td>276.6171</td>
<td>535.2003</td>
<td>268.1038</td>
<td>534.2163</td>
<td>267.6118</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>562.2871</td>
<td>281.6472</td>
<td>D</td>
<td>439.1428</td>
<td>220.0750</td>
<td>422.1163</td>
<td>211.5618</td>
<td>421.1322</td>
<td>211.0698</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>711.2840</td>
<td>356.1457</td>
<td>C</td>
<td>324.1159</td>
<td>162.5616</td>
<td>307.0893</td>
<td>154.0483</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DVFNKGYGFGMVK

Found in J3OMG2. Voltage-dependent anion-selective channel protein 3 OS=Mus musculus GN=Vdac3 PE=4 SV=1

Align mouse within plot area to zoom in by factor of two about that point

Or [Plot from] 200 to 1500 Da [Full range]

Label all possible matches [] Label matches used for scoring []

Monoisotopic mass of neutral peptide M_a (m/z): 1562.7076
Fixed modifications: NEQ (C) (apply to specified residues or termini only)
Variable modifications:
ES: wa/0.02 (E), with neutral loss 44.0980
MS1: Oxidation (M), with neutral losses 0.0455 (shown in table), 63.9983
Ions Score: 20 Expect: 0.0017

Matches: 37/100 fragment ions using 24 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**</th>
<th>y0</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118.9242</td>
<td>58.5207</td>
<td>98.6027</td>
<td>49.2155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1026</td>
<td>108.4500</td>
<td>197.0921</td>
<td>99.6197</td>
<td>V</td>
<td>1481.6900</td>
<td>702.8227</td>
<td>1387.6715</td>
<td>694.3394</td>
</tr>
<tr>
<td>3</td>
<td>362.1110</td>
<td>181.5552</td>
<td>344.1505</td>
<td>172.5839</td>
<td>F</td>
<td>1305.6298</td>
<td>653.3184</td>
<td>1288.6031</td>
<td>644.3052</td>
</tr>
<tr>
<td>4</td>
<td>476.2140</td>
<td>238.6106</td>
<td>459.1874</td>
<td>230.0974</td>
<td>458.2034</td>
<td>229.6050</td>
<td>N</td>
<td>1155.5612</td>
<td>579.7842</td>
</tr>
<tr>
<td>5</td>
<td>516.2190</td>
<td>258.6584</td>
<td>628.2990</td>
<td>315.1301</td>
<td>628.2989</td>
<td>314.6581</td>
<td>K</td>
<td>1044.5183</td>
<td>522.7628</td>
</tr>
<tr>
<td>6</td>
<td>703.3140</td>
<td>352.1714</td>
<td>685.3304</td>
<td>343.1688</td>
<td>G</td>
<td>874.4128</td>
<td>437.7100</td>
<td>857.3862</td>
<td>420.1967</td>
</tr>
<tr>
<td>7</td>
<td>866.4043</td>
<td>433.7056</td>
<td>848.2777</td>
<td>425.1925</td>
<td>848.2767</td>
<td>424.7007</td>
<td>V</td>
<td>517.3813</td>
<td>409.1993</td>
</tr>
<tr>
<td>8</td>
<td>923.4258</td>
<td>462.2165</td>
<td>906.3992</td>
<td>453.7033</td>
<td>905.4152</td>
<td>453.2112</td>
<td>G</td>
<td>654.3280</td>
<td>327.6766</td>
</tr>
<tr>
<td>9</td>
<td>1070.4942</td>
<td>535.7507</td>
<td>1053.4678</td>
<td>527.2375</td>
<td>1052.4836</td>
<td>526.7454</td>
<td>F</td>
<td>597.3065</td>
<td>399.1569</td>
</tr>
<tr>
<td>10</td>
<td>1127.5130</td>
<td>594.2815</td>
<td>1110.4891</td>
<td>555.7482</td>
<td>1109.5021</td>
<td>555.2562</td>
<td>G</td>
<td>456.2381</td>
<td>225.6227</td>
</tr>
<tr>
<td>11</td>
<td>1274.5510</td>
<td>677.7792</td>
<td>1257.5245</td>
<td>629.2659</td>
<td>1256.5405</td>
<td>628.7739</td>
<td>M</td>
<td>393.2166</td>
<td>197.1119</td>
</tr>
<tr>
<td>12</td>
<td>1373.6190</td>
<td>687.3134</td>
<td>1356.5929</td>
<td>678.8001</td>
<td>1355.6089</td>
<td>678.3081</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1128</td>
<td>74.9600</td>
<td>130.0863</td>
<td>62.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LTLDTIFVPTNGKK

Found in J30MG3. Voltage-dependent anion-selective channel protein 3 OS=Mus musculus GN=Vdac3 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1600 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide MW(calc): 1621.8779
Fixed modifications: MetO(S) (apply to specified residues or termini only)
Variable modifications:
K13 = mal CO2 (R), with neutral loss 42.0486
Ions Score: 28 Expect: 0.024
Matches : 11/100 fragment ions using 14 most intense peaks (link)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144.0913</td>
<td>57.5493</td>
<td>197.1285</td>
<td>99.0679</td>
<td>L</td>
<td>1475.8104</td>
<td>738.4088</td>
<td>1458.7839</td>
<td>729.8956</td>
<td>1457.7999</td>
<td>729.4036</td>
</tr>
<tr>
<td>2</td>
<td>215.1300</td>
<td>108.0731</td>
<td>329.2323</td>
<td>155.6099</td>
<td>T</td>
<td>1374.7627</td>
<td>687.8820</td>
<td>1357.7362</td>
<td>679.3717</td>
<td>1356.7522</td>
<td>678.8797</td>
</tr>
<tr>
<td>3</td>
<td>443.2500</td>
<td>222.1237</td>
<td>625.2946</td>
<td>282.1208</td>
<td>D</td>
<td>1261.6787</td>
<td>631.3430</td>
<td>1244.6521</td>
<td>622.8297</td>
<td>1243.6681</td>
<td>622.3377</td>
</tr>
<tr>
<td>4</td>
<td>541.2977</td>
<td>272.6512</td>
<td>725.3917</td>
<td>352.6472</td>
<td>T</td>
<td>1146.6517</td>
<td>575.8295</td>
<td>1129.6232</td>
<td>565.3162</td>
<td>1128.6412</td>
<td>564.8242</td>
</tr>
<tr>
<td>5</td>
<td>657.3181</td>
<td>329.1845</td>
<td>839.3712</td>
<td>419.1892</td>
<td>I</td>
<td>1045.6041</td>
<td>522.3057</td>
<td>1028.5775</td>
<td>514.7924</td>
<td>1027.5935</td>
<td>514.3004</td>
</tr>
<tr>
<td>6</td>
<td>654.4902</td>
<td>302.7287</td>
<td>636.4396</td>
<td>319.7324</td>
<td>F</td>
<td>932.5390</td>
<td>466.7636</td>
<td>915.4984</td>
<td>458.2564</td>
<td>914.5904</td>
<td>457.7584</td>
</tr>
<tr>
<td>7</td>
<td>804.5186</td>
<td>402.7227</td>
<td>765.4396</td>
<td>377.7324</td>
<td>V</td>
<td>785.4516</td>
<td>393.2294</td>
<td>768.4250</td>
<td>384.7162</td>
<td>767.4410</td>
<td>384.2241</td>
</tr>
<tr>
<td>8</td>
<td>1000.5714</td>
<td>500.7893</td>
<td>982.5608</td>
<td>491.7840</td>
<td>P</td>
<td>636.3822</td>
<td>314.6952</td>
<td>629.3566</td>
<td>305.1819</td>
<td>628.3726</td>
<td>304.6899</td>
</tr>
<tr>
<td>9</td>
<td>1114.6143</td>
<td>557.8108</td>
<td>1099.5877</td>
<td>549.8075</td>
<td>N</td>
<td>589.3304</td>
<td>295.2688</td>
<td>572.3039</td>
<td>286.6536</td>
<td>571.3198</td>
<td>286.1636</td>
</tr>
<tr>
<td>10</td>
<td>1215.6620</td>
<td>608.3346</td>
<td>1198.6334</td>
<td>599.8213</td>
<td>T</td>
<td>475.2875</td>
<td>238.1474</td>
<td>458.2609</td>
<td>229.6341</td>
<td>457.2769</td>
<td>228.1412</td>
</tr>
<tr>
<td>11</td>
<td>1272.6834</td>
<td>636.8454</td>
<td>1255.6569</td>
<td>628.3321</td>
<td>G</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>347.2298</td>
<td>178.6363</td>
</tr>
<tr>
<td>12</td>
<td>1442.7890</td>
<td>721.8981</td>
<td>1425.7862</td>
<td>713.3848</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>299.1983</td>
<td>150.1062</td>
</tr>
<tr>
<td>13</td>
<td>1471.1128</td>
<td>74.0600</td>
<td>1308.0653</td>
<td>65.5468</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>1308.0653</td>
<td>65.5468</td>
<td>147.1128</td>
<td>74.0600</td>
</tr>
</tbody>
</table>

LTLDTIFVPTNGKK
MS/MS Fragmentation of YKVCNYGLTFTQK
Found in JAKMA Voltage-dependent anion-selective channel protein 3 (OS=Macaurosdenum GN=Vdac3 PE=4 SV=1)

Click mouse within plot area to zoom in by factor of two about that point
Or Plot from 200 to 800 De Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M0 (calc.) : 1695.7627
Fixed modifications: M0723 (C) (apply to specified residues or termini only)
Variable modifications:
K2 : maldi200 (K), with neutral loss 42 u mos
Ions Score : 83 Expect : 0.000003
Matches : 20/122 fragment ions using 50 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>743.3463</td>
<td>742.6912</td>
<td>736.8495</td>
<td>1471.7012</td>
<td>736.3572</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>167.5917</td>
<td>317.1496</td>
<td>159.0784</td>
<td></td>
<td>K</td>
<td>1489.7178</td>
<td>462.6912</td>
<td>736.8495</td>
<td>1471.7012</td>
<td>736.3572</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>453.2445</td>
<td>217.1259</td>
<td>416.2180</td>
<td>208.6126</td>
<td></td>
<td>V</td>
<td>1319.6123</td>
<td>660.3098</td>
<td>1302.5857</td>
<td>651.7865</td>
<td>1301.6017</td>
<td>651.7865</td>
</tr>
<tr>
<td>4</td>
<td>282.2415</td>
<td>291.8244</td>
<td>285.2149</td>
<td>233.0211</td>
<td></td>
<td>C</td>
<td>1220.5438</td>
<td>810.7758</td>
<td>1203.5173</td>
<td>602.2623</td>
<td>1202.5333</td>
<td>601.7703</td>
</tr>
<tr>
<td>6</td>
<td>859.3477</td>
<td>430.1775</td>
<td>842.3212</td>
<td>421.6642</td>
<td></td>
<td>Y</td>
<td>957.5040</td>
<td>479.2556</td>
<td>940.4775</td>
<td>470.7424</td>
<td>939.4934</td>
<td>470.7424</td>
</tr>
<tr>
<td>7</td>
<td>916.3892</td>
<td>458.6882</td>
<td>899.3426</td>
<td>450.1750</td>
<td></td>
<td>G</td>
<td>794.4407</td>
<td>397.7240</td>
<td>777.4114</td>
<td>355.2107</td>
<td>776.4301</td>
<td>338.7187</td>
</tr>
<tr>
<td>8</td>
<td>1029.4532</td>
<td>515.2363</td>
<td>1012.4267</td>
<td>506.7170</td>
<td></td>
<td>L</td>
<td>737.4192</td>
<td>369.2132</td>
<td>720.3927</td>
<td>360.7000</td>
<td>719.4087</td>
<td>360.2080</td>
</tr>
<tr>
<td>9</td>
<td>1130.5009</td>
<td>565.7541</td>
<td>1113.4744</td>
<td>556.7488</td>
<td></td>
<td>T</td>
<td>624.3352</td>
<td>312.6712</td>
<td>607.3086</td>
<td>394.1579</td>
<td>606.3246</td>
<td>305.6659</td>
</tr>
<tr>
<td>10</td>
<td>1277.5693</td>
<td>639.2883</td>
<td>1260.5428</td>
<td>620.7750</td>
<td></td>
<td>F</td>
<td>522.2875</td>
<td>262.1474</td>
<td>506.2609</td>
<td>253.6341</td>
<td>505.2768</td>
<td>253.1421</td>
</tr>
<tr>
<td>12</td>
<td>1506.6756</td>
<td>753.8414</td>
<td>1489.6490</td>
<td>745.3282</td>
<td></td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0609</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DVFNKGYGFGMVK
Found in J3QMG3, Voltage-dependent anion-selective channel protein 3
OS=Mus musculus GN=Vdac3 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, select from 200 to 1500 Da
Label all possible matches [] Label matches used for scoring []

Monoisotopic mass of neutral peptide Mz(calc): 1596.7126
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K5 : mal-COO (K), with neutral loss 43.9598
Ions Score: 20 Expect: 0.10
Matches : 10/114Fragment ions using 10 most intense peaks (below)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>98.5237</td>
<td>D</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>362.1710</td>
<td>181.5892</td>
<td>344.1605</td>
<td>172.5389</td>
<td>F</td>
<td>1257.6517</td>
<td>645.3210</td>
<td>1272.6262</td>
<td>656.0877</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>476.2140</td>
<td>238.6106</td>
<td>459.1874</td>
<td>230.0974</td>
<td>458.2024</td>
<td>229.6053</td>
<td>N</td>
<td>1442.2569</td>
<td>571.7808</td>
<td>1125.5397</td>
<td>562.2735</td>
</tr>
<tr>
<td>5</td>
<td>646.3195</td>
<td>323.6634</td>
<td>629.3930</td>
<td>315.1501</td>
<td>628.3089</td>
<td>314.6581</td>
<td>K</td>
<td>1028.5234</td>
<td>514.7653</td>
<td>1011.4968</td>
<td>506.2320</td>
</tr>
<tr>
<td>6</td>
<td>703.3410</td>
<td>352.1741</td>
<td>685.3144</td>
<td>343.6608</td>
<td>685.3304</td>
<td>343.1688</td>
<td>G</td>
<td>858.4178</td>
<td>429.7126</td>
<td>841.3913</td>
<td>421.1993</td>
</tr>
<tr>
<td>8</td>
<td>923.4528</td>
<td>482.2163</td>
<td>906.3992</td>
<td>483.7032</td>
<td>903.4525</td>
<td>453.2112</td>
<td>G</td>
<td>658.3390</td>
<td>319.6702</td>
<td>651.3065</td>
<td>311.3489</td>
</tr>
<tr>
<td>9</td>
<td>1070.4542</td>
<td>535.7507</td>
<td>1053.4676</td>
<td>527.3757</td>
<td>1052.4836</td>
<td>526.7454</td>
<td>F</td>
<td>581.3116</td>
<td>291.1584</td>
<td>564.2850</td>
<td>392.6462</td>
</tr>
<tr>
<td>10</td>
<td>1127.3156</td>
<td>564.2615</td>
<td>1110.4891</td>
<td>555.7482</td>
<td>1109.5021</td>
<td>555.2582</td>
<td>G</td>
<td>454.2452</td>
<td>217.6252</td>
<td>417.2166</td>
<td>209.1119</td>
</tr>
<tr>
<td>11</td>
<td>1158.3561</td>
<td>629.7817</td>
<td>1241.5266</td>
<td>621.2684</td>
<td>1240.5456</td>
<td>620.7764</td>
<td>M</td>
<td>377.2217</td>
<td>189.1145</td>
<td>360.1952</td>
<td>180.6012</td>
</tr>
<tr>
<td>12</td>
<td>1357.6245</td>
<td>679.3159</td>
<td>1340.3980</td>
<td>670.8026</td>
<td>1339.8149</td>
<td>670.3106</td>
<td>Y</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
</tr>
<tr>
<td>13</td>
<td>147.1128</td>
<td>74.0600</td>
<td>150.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AAKDVFNK**
Found in J3QMG3. Voltage-dependent anion-selective channel protein 3 OS=Mus musculus GN=Vdac3 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from 100 to 1000 Da
Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 977.4818
Fixed modifications: NH3 (C) (apply to specified residues or termini only)
Variable modifications:
K3 : mal_C02 (B), with neutral loss 43.9890
Ions Score: 31 Expect: 0.019
Matches : 9/66 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b''</th>
<th>b0'</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y'</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>863.4621</td>
<td>432.2347</td>
<td>846.4356</td>
</tr>
<tr>
<td>2</td>
<td>143.0815</td>
<td>72.0444</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>792.4250</td>
<td>396.7162</td>
<td>775.3985</td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>157.0972</td>
<td>296.1605</td>
<td>148.5839</td>
<td></td>
<td>K</td>
<td>K</td>
<td>622.3195</td>
<td>311.6634</td>
<td>605.2930</td>
</tr>
<tr>
<td>4</td>
<td>428.2140</td>
<td>214.6106</td>
<td>411.1874</td>
<td>206.0974</td>
<td>410.2034</td>
<td>205.6053</td>
<td>D</td>
<td>D</td>
<td>507.2926</td>
<td>254.1499</td>
</tr>
<tr>
<td>5</td>
<td>527.2824</td>
<td>264.1448</td>
<td>510.2558</td>
<td>255.6316</td>
<td>509.2718</td>
<td>255.1396</td>
<td>V</td>
<td>V</td>
<td>507.2926</td>
<td>254.1499</td>
</tr>
<tr>
<td>6</td>
<td>674.3508</td>
<td>337.6790</td>
<td>657.3243</td>
<td>329.1688</td>
<td>656.3402</td>
<td>328.6738</td>
<td>F</td>
<td>F</td>
<td>408.2241</td>
<td>204.6157</td>
</tr>
<tr>
<td>7</td>
<td>788.3937</td>
<td>394.7005</td>
<td>771.3672</td>
<td>386.1872</td>
<td>770.3832</td>
<td>385.6952</td>
<td>N</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
</tr>
<tr>
<td>8</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0803</td>
<td>65.5468</td>
<td></td>
<td>K</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0803</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GPKSLIGVR

Found in Q91J35, UTP-gluco-1-phosphate uridylytransferase OS=Mus musculus GN=Ugp2 PE=2 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 950 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1011.5713
Fixed modifications: M(MS)^2 (C) (apply to specified residues or termini only)
Variable modifications:
K3 : m1_C02 (K), with neutral loss 43.0068
Ions Score: 17 Expect: 0.051
Matches : 11/76 fragment ions using 40 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''''</th>
<th>b0</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0227</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>155.0815</td>
<td>78.0444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>911.5673</td>
<td>456.2873</td>
<td>894.5407</td>
<td>447.7740</td>
<td>893.5567</td>
<td>447.2820</td>
</tr>
<tr>
<td>3</td>
<td>325.1370</td>
<td>163.0072</td>
<td>308.1605</td>
<td>154.5839</td>
<td></td>
<td></td>
<td>K</td>
<td>814.5145</td>
<td>407.7609</td>
<td>797.4880</td>
<td>399.2476</td>
<td>796.5039</td>
<td>398.7556</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>412.2195</td>
<td>206.6132</td>
<td>395.1925</td>
<td>198.0999</td>
<td>394.2085</td>
<td>197.6079</td>
<td>S</td>
<td>644.4090</td>
<td>322.7081</td>
<td>627.3824</td>
<td>314.1949</td>
<td>626.3984</td>
<td>313.7028</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>525.3031</td>
<td>263.1552</td>
<td>508.2766</td>
<td>254.6419</td>
<td>507.2920</td>
<td>254.1489</td>
<td>L</td>
<td>557.3770</td>
<td>279.1921</td>
<td>540.3504</td>
<td>270.6788</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>638.3872</td>
<td>319.0672</td>
<td>621.3606</td>
<td>311.1840</td>
<td>620.3766</td>
<td>310.6919</td>
<td>I</td>
<td>444.2929</td>
<td>222.6501</td>
<td>427.2663</td>
<td>214.1368</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>695.4087</td>
<td>348.2080</td>
<td>678.3821</td>
<td>339.6947</td>
<td>677.3981</td>
<td>339.2027</td>
<td>G</td>
<td>353.2088</td>
<td>166.1081</td>
<td>314.1823</td>
<td>157.5948</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>794.4771</td>
<td>397.7422</td>
<td>777.4505</td>
<td>389.2289</td>
<td>776.4665</td>
<td>388.7369</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>58.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
ADVKGGTTLTQYEGK

MS/MS Fragmentation of ADVKGGTTLTQYEGK

Found in **O91276**: UTP - glucose-1-phosphate uridylyltransferase OS=Mus musculus GN=Uru1 PE=2 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, [Plot from 200 to 1400 Da](#) [Full range](#)

Label all possible matches [Label matches used for scoring](#)

Monoisotopic mass of neutral peptide Mz(m/z): 1881.7415

Fixed modifications: NMT3 (C) (apply to specified residues or termini only)

Variable modifications:

K4 : m3s_202 (E), with neutral loss 48.0058

Ions Score: 48 **Expect**: 0.00007

Matches: 87/194 fragment ions using 43 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>ba</th>
<th>ba</th>
<th>ba</th>
<th>y</th>
<th>ya</th>
<th>ya</th>
<th>ya</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.0444</td>
<td>38.5238</td>
<td>159.0608</td>
<td>83.0340</td>
<td>A</td>
<td>1437.7220</td>
<td>719.3646</td>
<td>1420.6955</td>
<td>710.8514</td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>266.1397</td>
<td>143.5735</td>
<td>D</td>
<td>1322.6895</td>
<td>661.8512</td>
<td>1305.6685</td>
<td>653.3379</td>
</tr>
<tr>
<td>3</td>
<td>218.2667</td>
<td>228.6263</td>
<td>439.2187</td>
<td>220.1130</td>
<td>V</td>
<td>1235.6266</td>
<td>612.3170</td>
<td>1206.6001</td>
<td>603.0837</td>
</tr>
<tr>
<td>4</td>
<td>456.2453</td>
<td>228.6263</td>
<td>439.2187</td>
<td>220.1130</td>
<td>K</td>
<td>1235.6266</td>
<td>612.3170</td>
<td>1206.6001</td>
<td>603.0837</td>
</tr>
<tr>
<td>5</td>
<td>513.2667</td>
<td>257.1130</td>
<td>496.2403</td>
<td>248.6237</td>
<td>G</td>
<td>1053.5211</td>
<td>527.2642</td>
<td>1036.4834</td>
<td>518.7599</td>
</tr>
<tr>
<td>6</td>
<td>570.2882</td>
<td>285.6477</td>
<td>553.2617</td>
<td>277.1345</td>
<td>G</td>
<td>996.4997</td>
<td>498.7535</td>
<td>979.4713</td>
<td>490.2402</td>
</tr>
<tr>
<td>7</td>
<td>611.3399</td>
<td>338.1716</td>
<td>654.3093</td>
<td>327.6283</td>
<td>T</td>
<td>939.4782</td>
<td>470.2427</td>
<td>922.4516</td>
<td>461.7295</td>
</tr>
<tr>
<td>8</td>
<td>784.4199</td>
<td>392.7136</td>
<td>787.3914</td>
<td>384.2003</td>
<td>L</td>
<td>838.6805</td>
<td>419.7189</td>
<td>821.4040</td>
<td>411.2056</td>
</tr>
<tr>
<td>9</td>
<td>885.4676</td>
<td>443.2375</td>
<td>888.4411</td>
<td>434.3724</td>
<td>T</td>
<td>725.3464</td>
<td>363.1769</td>
<td>708.3199</td>
<td>354.6636</td>
</tr>
<tr>
<td>10</td>
<td>1013.5262</td>
<td>507.2667</td>
<td>996.4997</td>
<td>498.7535</td>
<td>Q</td>
<td>624.2988</td>
<td>312.6530</td>
<td>607.2722</td>
<td>303.1397</td>
</tr>
<tr>
<td>11</td>
<td>1176.5892</td>
<td>588.7984</td>
<td>1139.5613</td>
<td>580.2851</td>
<td>Y</td>
<td>496.2402</td>
<td>248.6237</td>
<td>479.2136</td>
<td>240.1105</td>
</tr>
<tr>
<td>12</td>
<td>1305.6321</td>
<td>633.3197</td>
<td>1288.6056</td>
<td>644.8064</td>
<td>E</td>
<td>332.1769</td>
<td>167.0921</td>
<td>316.1503</td>
<td>158.5788</td>
</tr>
<tr>
<td>13</td>
<td>1362.6536</td>
<td>681.8304</td>
<td>1345.6270</td>
<td>673.3172</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0860</td>
<td>130.0863</td>
<td>55.0485</td>
</tr>
</tbody>
</table>
FLQEKGPSVDWGK

MS/MS Fragmentation of FLQEKGPSVDWGK
Found in O01735: UDP-glucose-1-phosphate uridyltransferase OS=Mus musculus GN=Ugt1408 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1600 Da
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide (M(calc)): 1376.7069
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K8 : mg 329 (K), with neutral loss 49.046805
Ion Score: 2e Expert: 0.005959
Matches : 29/120 fragment ions using 65 most intense peaks (calc)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b**</th>
<th>b^+</th>
<th>b^++</th>
<th>b^0</th>
<th>k^++</th>
<th>Seq. y_y**</th>
<th>y^+</th>
<th>y^++</th>
<th>y^0</th>
<th>y^++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>261.1598</td>
<td>131.0835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1385.7060</td>
<td>693.3566</td>
<td>1368.6794</td>
<td>684.8432</td>
<td>1367.6954</td>
</tr>
<tr>
<td>4</td>
<td>518.2699</td>
<td>259.6341</td>
<td>301.2344</td>
<td>251.1208</td>
<td>300.2304</td>
<td>220.6288</td>
<td>E</td>
<td>1144.5633</td>
<td>572.7853</td>
<td>1127.5358</td>
<td>564.2720</td>
<td>1126.5528</td>
</tr>
<tr>
<td>5</td>
<td>658.3665</td>
<td>344.6809</td>
<td>671.3399</td>
<td>336.1736</td>
<td>670.3559</td>
<td>355.6816</td>
<td>K</td>
<td>1015.5207</td>
<td>508.2640</td>
<td>998.4942</td>
<td>499.7097</td>
<td>997.5102</td>
</tr>
<tr>
<td>7</td>
<td>842.4407</td>
<td>421.7240</td>
<td>825.4141</td>
<td>413.2107</td>
<td>824.4301</td>
<td>412.7187</td>
<td>P</td>
<td>788.5937</td>
<td>394.7005</td>
<td>771.5672</td>
<td>386.1872</td>
<td>770.3832</td>
</tr>
<tr>
<td>8</td>
<td>929.4727</td>
<td>465.2400</td>
<td>912.4452</td>
<td>456.7265</td>
<td>911.4621</td>
<td>456.2347</td>
<td>S</td>
<td>601.2410</td>
<td>346.1741</td>
<td>674.3144</td>
<td>337.6608</td>
<td>673.3304</td>
</tr>
<tr>
<td>9</td>
<td>1028.5413</td>
<td>514.7372</td>
<td>1011.5146</td>
<td>506.2689</td>
<td>1010.5306</td>
<td>505.7660</td>
<td>V</td>
<td>601.5089</td>
<td>302.6251</td>
<td>587.2824</td>
<td>294.1448</td>
<td>586.2968</td>
</tr>
<tr>
<td>10</td>
<td>1143.5681</td>
<td>572.2877</td>
<td>1126.5451</td>
<td>566.7744</td>
<td>1125.5575</td>
<td>565.2824</td>
<td>D</td>
<td>505.2405</td>
<td>253.1239</td>
<td>488.2140</td>
<td>244.6106</td>
<td>487.2300</td>
</tr>
<tr>
<td>12</td>
<td>1386.6688</td>
<td>691.8381</td>
<td>1369.6423</td>
<td>685.3284</td>
<td>1368.6583</td>
<td>684.8328</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td>186.6583</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LGSSFTKVQDYLRL

Found in 091715, L. deltoidea, leukocyte-derived factor.

Variable modifications: N-term (C) (apply to specified residues or termini only)

Monoisotopic mass of neutral peptide Mz(calm): 1598.7046

Fixed modifications: N-term (C) (apply to specified residues or termini only)

| m/z | b¹ | b² | b³ | y⁰ | y¹ | y² | y³ | Seq | y | y<sup></su
MS/MS Fragmentation of IQRPPEDSIQPYEIKIK

Found in 061738 1TPMz0.1_c02.00/c03.00/peptide OMMaMus morulina GNATev2 PE=7 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ☑ Label matches used for scoring *

IQRPPEDSIQPYEIKIK

Monoisotopic mass of neutral peptide Mz(calc): 2066.0371
Fixed modifications: MMTV (C) (apply to specified residues or termini only)
Variable modifications:
K8: iTRAQ 8 (K), with neutral loss 41 Da

Matches : 24/142 fragment ions using 51 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b²</th>
<th>b4++</th>
<th>b6</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y²</th>
<th>y4++</th>
<th>y6</th>
<th>y0++</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5403</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1409</td>
<td>121.7586</td>
<td>225.1224</td>
<td>113.0655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>398.2510</td>
<td>199.1282</td>
<td>381.2246</td>
<td>191.1180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>495.3028</td>
<td>247.1284</td>
<td>478.2877</td>
<td>239.1432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>592.3566</td>
<td>296.1820</td>
<td>575.3410</td>
<td>281.1816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>689.3592</td>
<td>341.1602</td>
<td>672.3506</td>
<td>352.1297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>786.4051</td>
<td>393.1717</td>
<td>767.3985</td>
<td>400.2034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>883.4581</td>
<td>441.2237</td>
<td>864.4581</td>
<td>453.1721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>980.6072</td>
<td>481.2358</td>
<td>961.6257</td>
<td>481.2358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1086.6522</td>
<td>502.2774</td>
<td>1067.6522</td>
<td>502.2774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1186.6568</td>
<td>542.2884</td>
<td>1167.6568</td>
<td>542.2884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1286.6613</td>
<td>582.3030</td>
<td>1267.6613</td>
<td>582.3030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1386.6658</td>
<td>622.3176</td>
<td>1367.6658</td>
<td>622.3176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1486.6700</td>
<td>662.3322</td>
<td>1467.6700</td>
<td>662.3322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1586.6744</td>
<td>702.3468</td>
<td>1567.6744</td>
<td>702.3468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above lists fragment ions and their corresponding masses, which are used for peptide identification.
MS/MS Fragmentation of **VGDKIATR**

Found in **P40142**, Transketolase OS=Mus musculus GN=Tko PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 900 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 944.4927
Fixed modifications: HMTS (C) (apply to specified residues or termini only)
Variable modifications:
K : mal-CO2 (K), with neutral loss 43.0098

Matches : 9/72 fragment ions using 16 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b^+</th>
<th>b^++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y^+</th>
<th>y^++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td></td>
<td></td>
<td>G</td>
<td>802.4417</td>
<td>401.7245</td>
<td>785.4152</td>
<td>393.2112</td>
<td>784.4312</td>
<td>392.7192</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>157.0972</td>
<td>79.0522</td>
<td>D</td>
<td>745.4203</td>
<td>373.2138</td>
<td>728.3937</td>
<td>364.7005</td>
<td>727.4097</td>
<td>364.2085</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>555.3137</td>
<td>278.1605</td>
<td>538.2871</td>
<td>269.6472</td>
<td>537.3031</td>
<td>269.1552</td>
<td>I</td>
<td>460.2878</td>
<td>230.6475</td>
<td>443.2613</td>
<td>222.1343</td>
<td>442.2727</td>
<td>221.6423</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>78.0924</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KAYGLALAK
Found in P40142. Transketolase OS=Mus musculus GN=Tkt PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 0 to 1000 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1019.5651
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : m/z CO2 (K), with neutral loss 43.0098
Ions Score: 37 Expect: 0.012
Matches: 12/64 fragment ions using 26 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>A</td>
<td>806.4771</td>
<td>403.7422</td>
<td>789.4505</td>
<td>395.2239</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>405.2132</td>
<td>203.1103</td>
<td>388.1867</td>
<td>194.5970</td>
<td>Y</td>
<td>735.4400</td>
<td>368.2236</td>
<td>718.4134</td>
<td>359.7103</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>462.2347</td>
<td>231.6210</td>
<td>445.2082</td>
<td>223.1077</td>
<td>G</td>
<td>372.3766</td>
<td>286.6920</td>
<td>555.3501</td>
<td>278.1787</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>575.3188</td>
<td>288.1630</td>
<td>558.2922</td>
<td>279.6498</td>
<td>L</td>
<td>515.3552</td>
<td>258.1812</td>
<td>498.3286</td>
<td>249.6679</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>646.3599</td>
<td>323.6816</td>
<td>629.3293</td>
<td>315.1683</td>
<td>A</td>
<td>402.2711</td>
<td>201.6392</td>
<td>385.2445</td>
<td>193.1259</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>759.4400</td>
<td>380.2236</td>
<td>742.4134</td>
<td>371.7103</td>
<td>L</td>
<td>331.2340</td>
<td>166.1206</td>
<td>514.2074</td>
<td>157.6074</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>830.4771</td>
<td>415.7422</td>
<td>813.4505</td>
<td>407.2289</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AFGQAKHQPTAIIAK
Found in P40142. Translated as OS=Mus musculus GN=Tha PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da Full-range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide \(m/z \text{calc.} \): 1665.5560
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
N\&K
m/z 202.008 (F), with neutral loss 43.0070
Ions Score: 28 Impact: 0.008D
Matches: 41/126 fragment ions using 92 most intense peaks

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>219.1128</td>
<td>110.0600</td>
<td>F</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>276.1343</td>
<td>133.5708</td>
<td>G</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>404.1928</td>
<td>202.0601</td>
<td>Q</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>471.2309</td>
<td>235.1154</td>
<td>A</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>545.3325</td>
<td>272.1662</td>
<td>K</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>782.3944</td>
<td>391.7008</td>
<td>N</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>910.4520</td>
<td>455.2301</td>
<td>Q</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1007.5057</td>
<td>503.2565</td>
<td>P</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1108.5334</td>
<td>554.7803</td>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1179.5925</td>
<td>589.2969</td>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1292.6746</td>
<td>646.3410</td>
<td>I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1405.7567</td>
<td>703.3830</td>
<td>I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1476.7958</td>
<td>735.9105</td>
<td>A</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1471.1125</td>
<td>74.0600</td>
<td>K</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **EAWHGKPLPK**
Found in **P40142**, Transketolase
OS=Mus musculus GN=Trk PE=1 SV=1

Monoisotopic mass of neutral peptide Mr(calc): 1247.6289
Fixed modifications: **NHE4 (C) (apply to specified residues or term only)**
Variable modifications:
K6 : +4.002 (K), with neutral loss 43.9890

Ions Score: 20 Expect: 0.22

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.0870</td>
<td>101.0471</td>
<td>183.0764</td>
<td>92.0418</td>
<td>A</td>
<td>1075.6047</td>
<td>538.3060</td>
<td>1058.5782</td>
<td>529.7927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>387.1663</td>
<td>194.0868</td>
<td>369.1557</td>
<td>185.0815</td>
<td>W</td>
<td>1004.5676</td>
<td>502.7874</td>
<td>987.5411</td>
<td>494.2742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>524.2252</td>
<td>262.6162</td>
<td>506.2146</td>
<td>253.6110</td>
<td>H</td>
<td>818.4883</td>
<td>409.7478</td>
<td>801.4618</td>
<td>401.2345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>581.2467</td>
<td>291.1270</td>
<td>563.2361</td>
<td>282.1217</td>
<td>G</td>
<td>681.4294</td>
<td>341.2183</td>
<td>664.4028</td>
<td>332.7051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>751.3522</td>
<td>376.1797</td>
<td>734.3257</td>
<td>367.1745</td>
<td>K</td>
<td>624.4079</td>
<td>312.7076</td>
<td>607.3814</td>
<td>304.1943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>848.4050</td>
<td>424.7061</td>
<td>831.3784</td>
<td>416.1928</td>
<td>P</td>
<td>454.3024</td>
<td>227.6548</td>
<td>457.2758</td>
<td>219.1416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>961.4890</td>
<td>481.2482</td>
<td>944.4625</td>
<td>472.7349</td>
<td>Q</td>
<td>943.4785</td>
<td>472.2429</td>
<td>340.2231</td>
<td>170.6152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1058.5418</td>
<td>529.7745</td>
<td>1041.5152</td>
<td>521.2613</td>
<td>P</td>
<td>244.1656</td>
<td>122.5864</td>
<td>227.1390</td>
<td>114.0731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GITGIEDKEAWHGKPLPK

Found in: P40412, Transketolase OS=Mus musculus GN=Tkt PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from [200] to [1500] Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 2601.0241

Fixed modifications: MSS (C) (apply to specified residues or terminal only)

Variable modifications:
- K14 : m/z 202 (K), with neutral loss 48.9588

Ions Score: 25 **Expect:** 6.00E-13

Matches: 66/100 fragments ions using 90 most intense peaks

Fragment Data

<table>
<thead>
<tr>
<th>m/z</th>
<th>b</th>
<th>b''</th>
<th>h</th>
<th>h''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>20.5180</td>
<td>G</td>
<td></td>
<td>I</td>
<td>1961.0491</td>
<td>981.0282</td>
<td>1944.0225</td>
<td>972.5140</td>
<td>1943.0381</td>
<td>972.0229</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0690</td>
<td></td>
<td>T</td>
<td>1847.9520</td>
<td>924.4852</td>
<td>1830.9385</td>
<td>915.9729</td>
<td>1829.9545</td>
<td>915.4809</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>272.1655</td>
<td>136.5893</td>
<td>254.1969</td>
<td>127.5767</td>
<td>T</td>
<td>1746.9173</td>
<td>873.9623</td>
<td>1729.9803</td>
<td>865.4940</td>
<td>1728.9068</td>
<td>864.9570</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>329.1819</td>
<td>160.5946</td>
<td>311.1714</td>
<td>150.0893</td>
<td>G</td>
<td>1689.8595</td>
<td>845.4156</td>
<td>1672.8689</td>
<td>836.9383</td>
<td>1671.8853</td>
<td>836.4463</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>442.2660</td>
<td>221.6366</td>
<td>424.2554</td>
<td>212.6314</td>
<td>I</td>
<td>1576.8118</td>
<td>788.9095</td>
<td>1559.7853</td>
<td>780.3963</td>
<td>1558.8013</td>
<td>779.9024</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>571.3086</td>
<td>285.1579</td>
<td>553.2980</td>
<td>277.1527</td>
<td>E</td>
<td>1441.7692</td>
<td>724.3833</td>
<td>1424.7477</td>
<td>715.8750</td>
<td>1423.7687</td>
<td>715.3830</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>688.3327</td>
<td>348.6714</td>
<td>668.3250</td>
<td>334.6861</td>
<td>D</td>
<td>1332.7425</td>
<td>666.8148</td>
<td>1315.7175</td>
<td>658.3615</td>
<td>1314.7317</td>
<td>657.8695</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>814.4105</td>
<td>407.7189</td>
<td>797.4164</td>
<td>399.2056</td>
<td>394.4199</td>
<td>398.7136</td>
<td>K</td>
<td>1204.6475</td>
<td>602.8273</td>
<td>1187.6308</td>
<td>594.3140</td>
<td>1186.6568</td>
</tr>
<tr>
<td>9</td>
<td>943.4731</td>
<td>472.2402</td>
<td>926.4866</td>
<td>463.7289</td>
<td>463.2249</td>
<td>E</td>
<td></td>
<td>1014.6582</td>
<td>507.7357</td>
<td>997.4837</td>
<td>499.3455</td>
<td>996.4597</td>
</tr>
<tr>
<td>10</td>
<td>1014.6582</td>
<td>507.7357</td>
<td>997.4837</td>
<td>499.3455</td>
<td>996.4597</td>
<td>498.7553</td>
<td>A</td>
<td>1075.8047</td>
<td>538.3060</td>
<td>1058.7582</td>
<td>529.7927</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1126.5895</td>
<td>606.7984</td>
<td>1109.5360</td>
<td>592.2631</td>
<td>586.5709</td>
<td>591.7031</td>
<td>W</td>
<td>1004.5767</td>
<td>502.7874</td>
<td>987.5411</td>
<td>494.2742</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1337.6484</td>
<td>660.3279</td>
<td>1320.6219</td>
<td>640.8146</td>
<td>631.6379</td>
<td>630.3226</td>
<td>H</td>
<td>818.4883</td>
<td>406.7478</td>
<td>801.4618</td>
<td>401.2345</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>1394.6669</td>
<td>697.8366</td>
<td>1377.6434</td>
<td>689.3253</td>
<td>680.6993</td>
<td>679.3833</td>
<td>G</td>
<td>681.4294</td>
<td>341.2183</td>
<td>664.4028</td>
<td>332.7051</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1564.7754</td>
<td>782.9114</td>
<td>1547.7549</td>
<td>774.7871</td>
<td>765.7640</td>
<td>773.3861</td>
<td>K</td>
<td>624.4079</td>
<td>312.7076</td>
<td>607.3814</td>
<td>304.1943</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1661.8352</td>
<td>831.4177</td>
<td>1644.8306</td>
<td>822.9045</td>
<td>814.8176</td>
<td>812.4125</td>
<td>P</td>
<td>481.3024</td>
<td>227.6548</td>
<td>473.7238</td>
<td>219.1416</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1744.9142</td>
<td>887.9558</td>
<td>1727.8927</td>
<td>879.4145</td>
<td>870.9017</td>
<td>870.9545</td>
<td>L</td>
<td>357.2946</td>
<td>179.1282</td>
<td>340.2231</td>
<td>170.6152</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1871.9650</td>
<td>936.4567</td>
<td>1854.9385</td>
<td>927.9729</td>
<td>918.9545</td>
<td>917.4809</td>
<td>P</td>
<td>244.1656</td>
<td>122.5864</td>
<td>227.1190</td>
<td>114.0731</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2232.0509</td>
<td>1037.5129</td>
<td>2214.0254</td>
<td>1021.5053</td>
<td>1011.4919</td>
<td>1008.3965</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0855</td>
<td>65.5468</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **FKSVDDVIK**

Found in **P24549** Retinal dehydrogenase 1

OSS=Msx mouse

GN=Aklh1al

PF=1

SV=5

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from **150** to **1150** Da Full range

Label all possible matches ○ Label matches used for scoring ○

Nonisotopic mass of neutral peptide Mr(calc): 1135.5761

Fixed modifications: M(18) (C) (apply to specified residues or termini only)

Variable modifications:

K2 : ma_l_C02 (K), with neutral loss 43.9888

Torsion Score: 34 Expect: 0.0013

Matches: 27/84 fragment ions using 45 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>301.1547</td>
<td>151.0810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>405.2132</td>
<td>203.1103</td>
<td>388.1867</td>
<td>194.5970</td>
<td>387.2027</td>
<td>194.1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>504.2817</td>
<td>252.6445</td>
<td>487.2521</td>
<td>244.1312</td>
<td>486.2711</td>
<td>243.6392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>619.3086</td>
<td>310.1579</td>
<td>602.2821</td>
<td>301.6447</td>
<td>601.2980</td>
<td>301.1527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>734.3355</td>
<td>367.6714</td>
<td>717.3090</td>
<td>359.1583</td>
<td>716.3250</td>
<td>358.6661</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>833.4040</td>
<td>417.2056</td>
<td>816.3774</td>
<td>408.6923</td>
<td>815.3934</td>
<td>408.2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>946.4880</td>
<td>473.7476</td>
<td>929.4615</td>
<td>465.2344</td>
<td>928.4775</td>
<td>464.7424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **ILDIESGKK**

Found in **P24549**, Retinal dehydrogenase 1 OS=Mus musculus GN=Aldh1a1 PE=1 SV=5

Click mouse within plot area to zoom in by factor of two about that point
Or,
Plot form 150 to 150 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1200.6601
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K9 : mal-CO2 (K), with neutral loss 43.9598
Ions Score: 20 Expect: 0.024
Matches: 25/52 fragment ions using 46 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>b^0</th>
<th>b^0++</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^0</th>
<th>y^0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>L</td>
<td>1044.5926</td>
<td>522.8004</td>
<td>1027.5670</td>
<td>514.2871</td>
<td>1026.5830</td>
<td>513.7951</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>342.2023</td>
<td>171.6048</td>
<td>324.1918</td>
<td>162.5995</td>
<td>D</td>
<td>933.5093</td>
<td>466.2584</td>
<td>914.4829</td>
<td>457.7451</td>
<td>913.4989</td>
<td>457.2531</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>455.2864</td>
<td>228.1468</td>
<td>437.2758</td>
<td>219.1416</td>
<td>L</td>
<td>816.4825</td>
<td>408.7449</td>
<td>799.4560</td>
<td>400.2316</td>
<td>798.4720</td>
<td>399.7396</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>784.4451</td>
<td>392.7262</td>
<td>766.4345</td>
<td>383.7209</td>
<td>S</td>
<td>461.2718</td>
<td>231.1395</td>
<td>444.2453</td>
<td>222.6263</td>
<td>443.2613</td>
<td>222.1343</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>841.4600</td>
<td>421.2369</td>
<td>823.4500</td>
<td>412.2316</td>
<td>G</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1011.5721</td>
<td>506.2897</td>
<td>994.5455</td>
<td>497.7764</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VAFTGSTQVGKLIK
Found in P24549. Retinal dehydrogenase 1 OS=Mus musculus GN=Aldh1al PE=1 SV=5

Monoisotopic mass of neutral peptide Mr(calc): 1583.5603
Fixed modifications: MMTH (C) (apply to specified residues or termini only)
Variable modifications:
K17 : methionine oxidized
Ions Score: 40 Expect: 0.0073
Matches : 19/122 fragment ions using 86 most intense peaks (helix)

<table>
<thead>
<tr>
<th>b</th>
<th>y</th>
<th>Seq</th>
<th>y++</th>
<th>y+++</th>
<th>y++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>1391.7893 696.3983 1374.7627 687.8830 1373.7787 687.3930</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1320.7322 660.8787 1303.7256 652.3665 1302.7414 651.8744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1156.6572 578.3402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>1157.6358 578.3402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>1055.6065 528.3084 1054.6255 527.3164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>1015.6146 508.3099 998.3811 499.7977 997.6941 499.3077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>910.5720 455.7898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Q</td>
<td>827.5349 414.2711 810.5084 405.7578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>699.4763 342.2418 682.4498 341.7225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>G</td>
<td>600.4079 300.7076 292.1943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>543.3865 272.1699 526.3599 263.6836</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L</td>
<td>372.2809 187.1441 356.2544 178.6108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I</td>
<td>260.1969 130.6201 243.1703 122.0888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>147.1128 74.0600 130.0863 65.5488</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IQHTKIFINNEWHNSVSGK

Found in P24549, Retinal dehydrogenase 1 O9; Mus musculus GN=Aldh1al PE=1 SV=5

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 2000 Da Full range
Label all possible matches Label matches used for scoring

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b***</th>
<th>b^</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y***</th>
<th>2050</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>1</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>Q</td>
<td>2181.8086</td>
<td>2091.0845</td>
<td>2164.0570</td>
<td>1082.5322</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>200.1081</td>
<td>362.1823</td>
<td>181.5948</td>
<td>H</td>
<td>2053.0250</td>
<td>2071.0161</td>
<td>2035.9984</td>
<td>1018.5029</td>
</tr>
<tr>
<td>5</td>
<td>763.4416</td>
<td>382.2267</td>
<td>746.4106</td>
<td>373.7134</td>
<td>745.4535</td>
<td>735.2214</td>
<td>I</td>
<td>1644.8120</td>
<td>822.9101</td>
<td>1627.7843</td>
<td>814.3968</td>
<td>1625.6023</td>
</tr>
<tr>
<td>6</td>
<td>910.5145</td>
<td>453.7609</td>
<td>893.4880</td>
<td>447.2476</td>
<td>802.5040</td>
<td>446.7256</td>
<td>F</td>
<td>1531.7238</td>
<td>768.3880</td>
<td>1514.7023</td>
<td>757.8258</td>
<td>1513.7182</td>
</tr>
<tr>
<td>7</td>
<td>1103.5986</td>
<td>512.3029</td>
<td>1006.5720</td>
<td>502.7897</td>
<td>1005.5800</td>
<td>503.2926</td>
<td>I</td>
<td>1384.6664</td>
<td>692.8333</td>
<td>1367.6339</td>
<td>684.3206</td>
<td>1366.6498</td>
</tr>
<tr>
<td>8</td>
<td>1217.6415</td>
<td>589.3244</td>
<td>1120.6150</td>
<td>580.8111</td>
<td>1119.6309</td>
<td>580.3191</td>
<td>N</td>
<td>1277.3763</td>
<td>616.2918</td>
<td>1254.5498</td>
<td>627.7785</td>
<td>1253.5658</td>
</tr>
<tr>
<td>9</td>
<td>1352.6844</td>
<td>626.3459</td>
<td>1234.6579</td>
<td>617.8326</td>
<td>1233.6739</td>
<td>617.3406</td>
<td>N</td>
<td>1157.3534</td>
<td>579.2703</td>
<td>1140.5669</td>
<td>570.7571</td>
<td>1139.5328</td>
</tr>
<tr>
<td>10</td>
<td>1380.7267</td>
<td>690.6872</td>
<td>1363.7005</td>
<td>682.3539</td>
<td>1362.7165</td>
<td>681.8619</td>
<td>E</td>
<td>1043.4905</td>
<td>522.2489</td>
<td>1036.4639</td>
<td>513.7356</td>
<td>1025.4799</td>
</tr>
<tr>
<td>11</td>
<td>1566.8083</td>
<td>783.9060</td>
<td>1540.7979</td>
<td>775.3935</td>
<td>1534.7935</td>
<td>774.9015</td>
<td>W</td>
<td>914.4479</td>
<td>457.7276</td>
<td>907.4213</td>
<td>440.2143</td>
<td>906.4673</td>
</tr>
<tr>
<td>12</td>
<td>1703.8533</td>
<td>822.4838</td>
<td>1686.8587</td>
<td>843.9230</td>
<td>1685.8457</td>
<td>843.4310</td>
<td>H</td>
<td>738.3656</td>
<td>364.6879</td>
<td>711.3420</td>
<td>356.1747</td>
<td>710.3580</td>
</tr>
<tr>
<td>13</td>
<td>1817.9082</td>
<td>909.4577</td>
<td>1800.8816</td>
<td>900.9445</td>
<td>1799.9079</td>
<td>900.4524</td>
<td>N</td>
<td>591.3087</td>
<td>296.1585</td>
<td>574.2831</td>
<td>287.6452</td>
<td>573.2991</td>
</tr>
<tr>
<td>14</td>
<td>1904.9402</td>
<td>971.9737</td>
<td>1887.9137</td>
<td>944.4605</td>
<td>1886.9266</td>
<td>943.9685</td>
<td>S</td>
<td>477.2676</td>
<td>239.1370</td>
<td>460.2402</td>
<td>230.6327</td>
<td>459.2562</td>
</tr>
<tr>
<td>16</td>
<td>2091.0460</td>
<td>1046.0240</td>
<td>2074.0141</td>
<td>1037.5107</td>
<td>2073.0301</td>
<td>1037.0187</td>
<td>S</td>
<td>291.1663</td>
<td>146.0868</td>
<td>274.1397</td>
<td>137.5735</td>
<td>273.1557</td>
</tr>
<tr>
<td>17</td>
<td>2148.0021</td>
<td>1074.5387</td>
<td>2131.0356</td>
<td>1066.0214</td>
<td>2130.0315</td>
<td>1065.5294</td>
<td>G</td>
<td>204.1343</td>
<td>102.5700</td>
<td>187.0776</td>
<td>94.0575</td>
<td>186.5468</td>
</tr>
<tr>
<td>18</td>
<td>2147.0021</td>
<td>1074.5387</td>
<td>2131.0356</td>
<td>1066.0214</td>
<td>2130.0315</td>
<td>1065.5294</td>
<td>G</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td>130.0853</td>
</tr>
</tbody>
</table>
MS/MS fragmentation of KYVLGNPLTPGINQGPQIDKEQHDK
Found in E26449, Ratinal dehydrogenase 1 OS=Rattus norvegicus GN=Aldehyde dehydrogenase 1 homolog (1)
Charge monoisotopic mass plot set to zoom in by a factor of two above that point

#	b1	b2	b3	b4	b5	b6	b7	b8	b9	Seq	y	y'	y''	y'''	y''''	#	
1	171.1125	154.0962	77.5468													28	
2	334.1761	176.5177	117.1407	150.7074													
3	433.2464	217.1259	106.2180	208.8126													
4	546.3268	273.6079	259.3021	410.1547													
5	603.3631	302.7187	156.2255	293.0554													
6	617.3404	308.6801	150.3185	293.0554													
7	614.3631	307.8285	150.3185	293.0554													
8	612.3519	306.2255	150.3185	293.0554													
9	607.3519	304.6801	150.3185	293.0554													
10	602.3519	303.0801	150.3185	293.0554													

Monoisotopic mass of neutral peptide [M+salt]+: 2074.4532
Fixed modifications: MDA2 (C) (apply to specified residues or tandem only)
Variable modifications:
 +5.94 Da (K), with neutral loss 13.0020
Zn Score: 33 Expect: 1.0e-4
Matches: 14/27 by fragment ions using 10 most intense peaks (help)
MS/MS Fragmentation of TILNNGKTCR

Found in P16015, Carbonic anhydrase 3 OS=Mus musculus GN=Ca3 PE=1 SV=3

Click mouse within plot area to zoom in by a factor of two about that point.

Or, Platform 150 to 12,000 Da Full range

Label all possible matches ○ Label matches used for scoring ●

![Fragmentation Graph](image)

Monoisotopic mass of neutral peptide Mr(calc): 1250.5747

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- K7 : mal-CO2 (K), with neutral loss 45.0188

Ions Score: 10 **Expect:** 0.013

Matches: 10/98 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b(^{++})</th>
<th>b(^{+})</th>
<th>b(^{++})</th>
<th>b(^{0})</th>
<th>b(^{0})</th>
<th>y</th>
<th>y(^{+})</th>
<th>y(^{+})</th>
<th>y(^{-})</th>
<th>y(^{0})</th>
<th>y(^{0})</th>
<th>y(^{++})</th>
<th>y(^{++})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td></td>
<td></td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.0731</td>
<td></td>
<td></td>
<td>197.1285</td>
<td>99.0679</td>
<td>I</td>
<td>1106.5443</td>
<td>553.7759</td>
<td>1089.5180</td>
<td>545.2626</td>
<td>1088.5339</td>
<td>544.7706</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>328.2231</td>
<td>164.6152</td>
<td></td>
<td></td>
<td>310.2125</td>
<td>155.6099</td>
<td>L</td>
<td>993.4004</td>
<td>497.2339</td>
<td>976.4339</td>
<td>488.7206</td>
<td>975.4499</td>
<td>488.2286</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>442.2660</td>
<td>221.6366</td>
<td>425.2395</td>
<td>213.1234</td>
<td>424.2554</td>
<td>212.6314</td>
<td>N</td>
<td>880.3764</td>
<td>440.6918</td>
<td>863.3498</td>
<td>432.1786</td>
<td>862.3658</td>
<td>431.6868</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>556.3089</td>
<td>278.6581</td>
<td>539.2824</td>
<td>270.1448</td>
<td>538.2984</td>
<td>269.6528</td>
<td>N</td>
<td>766.3335</td>
<td>383.6704</td>
<td>749.3069</td>
<td>375.1571</td>
<td>748.3229</td>
<td>374.6651</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>613.3304</td>
<td>307.1688</td>
<td>596.3039</td>
<td>298.6556</td>
<td>595.3198</td>
<td>298.1636</td>
<td>G</td>
<td>652.2905</td>
<td>326.6489</td>
<td>635.2640</td>
<td>318.1356</td>
<td>634.2800</td>
<td>317.6436</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>783.4539</td>
<td>392.2216</td>
<td>766.4094</td>
<td>383.7083</td>
<td>765.4254</td>
<td>383.2163</td>
<td>K</td>
<td>595.2691</td>
<td>298.1382</td>
<td>578.2426</td>
<td>289.6249</td>
<td>577.2585</td>
<td>289.1329</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>884.4836</td>
<td>442.7454</td>
<td>867.4571</td>
<td>434.2322</td>
<td>866.4730</td>
<td>433.7402</td>
<td>T</td>
<td>425.1635</td>
<td>213.0854</td>
<td>408.1370</td>
<td>204.5721</td>
<td>407.1530</td>
<td>204.0801</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1033.4805</td>
<td>517.2439</td>
<td>1016.4540</td>
<td>508.7306</td>
<td>1015.4699</td>
<td>508.2386</td>
<td>C</td>
<td>324.1159</td>
<td>162.5616</td>
<td>307.0893</td>
<td>154.0483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MB/MS Fragmentation of YAAELHLVHWNPKYNTFGEALK

Found in P16015, Carbonic anhydrase 3 OsMaAnasecahs GhoCaP PEn1 SVCe

Click menu within plot area to zoom in by factor of two about that point

Variable modification:
- Kd : m1, m2 (C) (apply to specified residues or termini only)

Raw score: 50.0000
Expect: 6e-06

Matches: 51/220 fragments listed using 100 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>b*</th>
<th>b++</th>
<th>b**</th>
<th>g*</th>
<th>g++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y**</th>
<th>y*</th>
<th>y**+</th>
<th>y0</th>
<th>y0**+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>235.1077</td>
<td>118.0575</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>308.1448</td>
<td>153.5716</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>435.1874</td>
<td>218.0974</td>
<td>417.1769</td>
<td>209.0921</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>548.2715</td>
<td>274.6354</td>
<td>230.2609</td>
<td>265.6841</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>658.3304</td>
<td>343.1658</td>
<td>667.3194</td>
<td>334.1656</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>798.4146</td>
<td>399.7109</td>
<td>780.4098</td>
<td>390.7054</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>897.4829</td>
<td>449.2451</td>
<td>879.4723</td>
<td>440.2399</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1034.5418</td>
<td>517.7745</td>
<td>1016.5312</td>
<td>508.7691</td>
<td></td>
</tr>
</tbody>
</table>
| 10 | 1120.6211 | 510.8142 | 1202.6102 | 601.8109 | 619.8909 | 802.4041 | 152.7464 | 766.8903 | 1591.7904 | 764.9388 | 12
| 11 | 1334.6460 | 667.8357 | 1317.6375 | 659.5224 | 1316.6535 | 658.8304 | | 1423.7216 | 712.3644 | 1406.6851 | 703.8312 | 1407.716 | 703.5952 | 12
| 12 | 1431.7168 | 716.3520 | 1414.6502 | 707.8488 | 1413.7065 | 707.3568 | | 1509.6787 | 655.3430 | 1525.6521 | 646.8257 | 1411.6811 | 646.5377 | 11
| 13 | 1601.8223 | 801.4148 | 1584.7578 | 792.9015 | 1583.8118 | 792.4092 | | 1612.6259 | 606.8166 | 1593.5994 | 598.3033 | 1594.6519 | 597.8113 | 10
| 14 | 1744.8817 | 882.9465 | 1727.8291 | 874.8332 | 1726.8751 | 873.9142 | | 1802.8204 | 521.7638 | 1725.4938 | 513.2500 | 1724.0989 | 512.5852 | 9
| 15 | 1878.9226 | 939.9679 | 1861.9202 | 951.4547 | 1860.9180 | 930.8526 | | N | 1879.4571 | 440.2392 | 951.7199 | 386.1456 | 951.2169 | 8
| 17 | 2127.0444 | 1064.0460 | 2110.0181 | 1055.5127 | 2109.0341 | 1055.0620 | F | 2124.5665 | 322.6628 | 1047.3999 | 324.1778 | 1046.5559 | 323.8680 | 6
| 18 | 2284.0661 | 1109.5367 | 2267.0396 | 1104.0234 | 2266.0566 | 1103.5314 | G | 2287.2909 | 259.2167 | 2166.2715 | 250.3075 | 2165.8949 | 499.2879 | 250.1474 | 6
| 19 | 2313.1085 | 1157.0485 | 2296.0822 | 1148.5447 | 2295.0982 | 1148.0527 | K | 2310.7676 | 330.2519 | 2265.2300 | 222.1287 | 2262.2680 | 221.6366 | 4
| 20 | 2384.1458 | 1292.5765 | 2367.1390 | 1284.0539 | 2366.1553 | 1283.5519 | A | 2381.7340 | 166.1206 | 2364.2074 | 157.6074 | 2363.0583 | 157.1024 | 3
| 21 | 2497.2259 | 1369.1188 | 2480.2036 | 1240.6039 | 2478.2192 | 1240.1133 | L | 2494.3969 | 130.0021 | 2473.1702 | 122.0838 | 2472.0543 | 122.0158 | 2

Neuroecopic mass of neural peptide M1308(1): 1555.5179

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- Kd : m1, m2 (C) (with neutral loss 43.9268)

Ions Scored: E0 Exempt: 6e-06

Matches: 50/220 fragments listed using 100 most intense peaks

YAAELHLVHWNPKYNTFGEALK
MS/MS Fragmentation of **LQSKVTAK**

Found in **J3ONG0**. MCG15755 OS=Mus musculus GN=Gm5424 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from: 100 to 850 Da

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 958.5287

Fixed modifications: **NMTIS (C)** (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>Value</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>y0</th>
<th>y00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td></td>
<td>Q</td>
<td>803.4621</td>
<td>402.2347</td>
<td>786.4356</td>
<td>393.7214</td>
<td>785.4516</td>
<td>393.2294</td>
</tr>
<tr>
<td>4</td>
<td>499.2875</td>
<td>250.1474</td>
<td>482.2609</td>
<td>241.6341</td>
<td>481.2769</td>
<td>K</td>
<td>588.3713</td>
<td>294.0894</td>
<td>571.3450</td>
<td>286.1761</td>
<td>570.3610</td>
<td>285.6841</td>
</tr>
<tr>
<td>5</td>
<td>598.3559</td>
<td>299.6816</td>
<td>581.3293</td>
<td>291.1683</td>
<td>580.3453</td>
<td>V</td>
<td>418.2660</td>
<td>209.6356</td>
<td>401.2395</td>
<td>201.1234</td>
<td>400.2554</td>
<td>200.6314</td>
</tr>
<tr>
<td>7</td>
<td>770.4407</td>
<td>385.7240</td>
<td>753.4141</td>
<td>377.2107</td>
<td>752.4301</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>100.5468</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matches : 19/74 fragment ions using 42 most intense peaks (help)
MS/MS Fragmentation of **KVFIEDVSK**

Found in 3QNG0, MCG15755 OS=Mus musculus GN=Gm5424 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 050 to 1200 D2 Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1149.5918

Fixed modifications: BMFS (C) (apply to specified residues or termini only)

Variable modifications:

K1 : mal-Glu (K), with neutral loss 43.9898

Ions Score: 24 Expect: 0.046

Matches : 8/85 fragment ions using 19 most intense peaks ([help](#))

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b*</th>
<th>b**++**</th>
<th>b0</th>
<th>b**++**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y*</th>
<th>y**++**</th>
<th>y0</th>
<th>y**++**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>85.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td>577.2828</td>
<td>289.1450</td>
<td>580.2562</td>
<td>280.6318</td>
<td>559.2722</td>
<td>280.1397</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.5147</td>
<td>127.0810</td>
<td>V</td>
<td>936.5037</td>
<td>468.7555</td>
<td>919.4771</td>
<td>460.2422</td>
<td>918.4931</td>
<td>459.7502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>417.2496</td>
<td>209.1285</td>
<td>400.2231</td>
<td>200.6152</td>
<td>F</td>
<td>837.4353</td>
<td>419.2213</td>
<td>820.4087</td>
<td>410.7080</td>
<td>819.4247</td>
<td>410.2160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>530.3387</td>
<td>265.6705</td>
<td>513.3071</td>
<td>257.1572</td>
<td>T</td>
<td>690.3668</td>
<td>345.6871</td>
<td>673.3403</td>
<td>337.1738</td>
<td>672.3563</td>
<td>336.6818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>659.3763</td>
<td>330.1918</td>
<td>642.3497</td>
<td>321.6785</td>
<td>D</td>
<td>577.2828</td>
<td>289.1450</td>
<td>580.2562</td>
<td>280.6318</td>
<td>559.2722</td>
<td>280.1397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>774.4032</td>
<td>387.7053</td>
<td>757.3677</td>
<td>379.1920</td>
<td>T</td>
<td>488.2402</td>
<td>224.6237</td>
<td>431.2136</td>
<td>216.1105</td>
<td>430.2296</td>
<td>215.6184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>873.4716</td>
<td>437.2395</td>
<td>856.4451</td>
<td>428.7262</td>
<td>V</td>
<td>333.2132</td>
<td>167.1103</td>
<td>316.1867</td>
<td>158.5970</td>
<td>315.2027</td>
<td>158.1050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>960.5037</td>
<td>480.7555</td>
<td>943.4771</td>
<td>472.2422</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
<td>108.5708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>K</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VTNIKDGTTTR
Found in J3QG0, MCG15755 OS=Mus musculus GN=Smn424 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1129.5939
Fixed modifications: MBTS (C) (apply to specified residues or termini only)
Variable modifications:
K5 : m/z CO2 (K), with neutral loss 44.012
Ions Score: 61 Expect: 0.00092
Matches : 19/100 Fragment ions using 49 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>100.0541</td>
<td>183.1128</td>
<td>92.0600</td>
<td>V</td>
<td>1047.5429</td>
<td>524.2751</td>
<td>1030.5164</td>
<td>515.7618</td>
<td>1029.5324</td>
<td>515.2608</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>315.1663</td>
<td>158.0668</td>
<td>208.1397</td>
<td>114.0735</td>
<td>N</td>
<td>946.4952</td>
<td>473.7513</td>
<td>929.4687</td>
<td>465.2380</td>
<td>928.4847</td>
<td>464.7460</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>428.2504</td>
<td>214.6288</td>
<td>411.2288</td>
<td>206.6155</td>
<td>K</td>
<td>832.4523</td>
<td>416.7298</td>
<td>815.4528</td>
<td>408.2165</td>
<td>814.4417</td>
<td>407.7245</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>598.3559</td>
<td>299.6816</td>
<td>581.3293</td>
<td>291.1683</td>
<td>T</td>
<td>719.3682</td>
<td>360.1878</td>
<td>702.3417</td>
<td>351.6745</td>
<td>701.3577</td>
<td>351.1825</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>713.3828</td>
<td>357.1951</td>
<td>696.3563</td>
<td>348.6818</td>
<td>D</td>
<td>549.2627</td>
<td>275.1350</td>
<td>532.2362</td>
<td>266.6217</td>
<td>531.2522</td>
<td>266.1297</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>770.4043</td>
<td>385.7058</td>
<td>753.3777</td>
<td>377.1925</td>
<td>G</td>
<td>434.2358</td>
<td>217.6215</td>
<td>417.2092</td>
<td>209.1083</td>
<td>416.2252</td>
<td>208.6162</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>972.4997</td>
<td>486.7535</td>
<td>955.4731</td>
<td>478.2402</td>
<td>R</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>258.1561</td>
<td>129.5817</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALKLGAK
Found in J3QNG0, MCG15755 OS=Mus musculus GN=Gm5424 PE=3 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, plot from 100 to 800 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide M_r(calc): 785.4667
fixed modifications: MNIS (C) (apply to specified residues or termini only)
Variable modifications:
KO : met.O2 (K), with neutral loss 43.0090
Ions Score: 22 Expect: 0.1
Matches : 16/44 fragment ions using 57 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^-</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td></td>
<td>L 671.4450</td>
<td>336.2262</td>
<td>654.4185</td>
<td>327.7129</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>355.2340</td>
<td>178.1206</td>
<td>338.2074</td>
<td>169.6074</td>
<td>K 558.3610</td>
<td>279.6841</td>
<td>541.3344</td>
<td>271.1709</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>468.3180</td>
<td>234.6627</td>
<td>451.2915</td>
<td>226.1494</td>
<td>L 388.2554</td>
<td>194.6314</td>
<td>371.2289</td>
<td>186.1181</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>525.3395</td>
<td>263.1734</td>
<td>508.3130</td>
<td>254.6601</td>
<td>G 275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>596.3766</td>
<td>298.6920</td>
<td>579.3501</td>
<td>290.1787</td>
<td>A 218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K 147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MSMS Fragmentation of **EGAKYVSHGATGK**

Found in **JON**

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1939.6525

Fixed modifications: **NMTS (C) (apply to specified residues or termini only)**

Variable modifications:

- **K4** : *mal*CO2 (K), with neutral loss 44.016

Tune Source: Zi, Expect: 3.22

Matches: 33/136 fragment ions using 16 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>h</th>
<th>h''</th>
<th>b</th>
<th>b''</th>
<th>h0</th>
<th>h0''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y''+</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.6499</td>
<td>65.3286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>1217.6273</td>
<td>609.3173</td>
<td>1200.6008</td>
<td>600.8040</td>
<td>1199.6167</td>
<td>600.3120</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>169.0608</td>
<td>85.0340</td>
<td>G</td>
<td>1877.6273</td>
<td>1090.3173</td>
<td>1200.6008</td>
<td>600.8040</td>
<td>1200.6167</td>
<td>600.3120</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>258.1684</td>
<td>129.5579</td>
<td>240.0979</td>
<td>120.5526</td>
<td>A</td>
<td>2160.6273</td>
<td>1090.3173</td>
<td>1200.6008</td>
<td>600.8040</td>
<td>1199.6167</td>
<td>600.3120</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>428.2140</td>
<td>214.6106</td>
<td>411.1874</td>
<td>206.6974</td>
<td>K</td>
<td>4287.6273</td>
<td>2480.3173</td>
<td>2072.5422</td>
<td>1072.5422</td>
<td>356.7747</td>
<td>1071.5522</td>
<td>356.7427</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>690.2457</td>
<td>345.6765</td>
<td>672.3192</td>
<td>337.1622</td>
<td>V</td>
<td>6907.6273</td>
<td>3100.3173</td>
<td>1451.7220</td>
<td>601.4526</td>
<td>451.2300</td>
<td>451.2300</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>914.3667</td>
<td>457.7220</td>
<td>897.4101</td>
<td>449.2087</td>
<td>Y</td>
<td>9147.6273</td>
<td>5450.3173</td>
<td>2771.1401</td>
<td>552.2589</td>
<td>276.6481</td>
<td>276.6481</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>971.4381</td>
<td>488.2327</td>
<td>954.4316</td>
<td>477.7194</td>
<td>H</td>
<td>9717.6273</td>
<td>5450.3173</td>
<td>2771.1401</td>
<td>552.2589</td>
<td>276.6481</td>
<td>276.6481</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1042.4952</td>
<td>521.7313</td>
<td>1025.4887</td>
<td>513.3280</td>
<td>A</td>
<td>10427.6273</td>
<td>5450.3173</td>
<td>2771.1401</td>
<td>552.2589</td>
<td>276.6481</td>
<td>276.6481</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1143.5249</td>
<td>572.2751</td>
<td>1126.5164</td>
<td>563.7618</td>
<td>T</td>
<td>11437.6273</td>
<td>5450.3173</td>
<td>2771.1401</td>
<td>552.2589</td>
<td>276.6481</td>
<td>276.6481</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1206.5644</td>
<td>600.7858</td>
<td>1183.5378</td>
<td>592.2726</td>
<td>G</td>
<td>12067.6273</td>
<td>5450.3173</td>
<td>2771.1401</td>
<td>552.2589</td>
<td>276.6481</td>
<td>276.6481</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VNVVEQEKIDK
Found in BoqZLA, Alpha-enolase (Fragment) OS=Mus musculus GN=Enol PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1300 Da
Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide M(r/c/a): 1385.7038
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K9 : m1_O2 (K), with neutral loss 43.9290
Tons Score: 37 Expect: 0.0054
Matches: 15/108 fragment ions using 23 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b0+++</th>
<th>Seq.</th>
<th>y</th>
<th>y+++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>214.1188</td>
<td>107.5629</td>
<td>197.0921</td>
<td>99.0497</td>
<td>N</td>
<td>1243.6529</td>
<td>622.3301</td>
<td>1226.6263</td>
<td>613.8168</td>
<td>1225.6423</td>
<td>613.3248</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>157.0972</td>
<td>296.1605</td>
<td>148.5839</td>
<td>V</td>
<td>1110.6099</td>
<td>565.3068</td>
<td>1112.5834</td>
<td>556.7953</td>
<td>1111.5994</td>
<td>556.3033</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>412.2554</td>
<td>206.6314</td>
<td>395.2289</td>
<td>198.1181</td>
<td>V</td>
<td>1030.5415</td>
<td>515.7744</td>
<td>1013.5150</td>
<td>507.2611</td>
<td>1012.5310</td>
<td>506.7691</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>541.2980</td>
<td>271.1327</td>
<td>524.2715</td>
<td>262.6394</td>
<td>523.2875</td>
<td>262.1474</td>
<td>E</td>
<td>931.4731</td>
<td>466.2402</td>
<td>914.4466</td>
<td>457.7269</td>
<td>913.4623</td>
<td>457.2349</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>669.3566</td>
<td>335.1819</td>
<td>652.3301</td>
<td>326.6867</td>
<td>651.3461</td>
<td>326.1767</td>
<td>Q</td>
<td>802.4365</td>
<td>401.7189</td>
<td>785.4040</td>
<td>393.2056</td>
<td>784.4199</td>
<td>392.7136</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>788.3982</td>
<td>390.7032</td>
<td>781.3727</td>
<td>391.1900</td>
<td>780.3886</td>
<td>390.6980</td>
<td>E</td>
<td>674.3719</td>
<td>337.6896</td>
<td>657.3454</td>
<td>329.1763</td>
<td>656.3614</td>
<td>328.6843</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>968.5047</td>
<td>484.7560</td>
<td>951.4782</td>
<td>476.2427</td>
<td>950.4942</td>
<td>475.7507</td>
<td>K</td>
<td>545.3293</td>
<td>273.1683</td>
<td>528.3028</td>
<td>264.6550</td>
<td>527.3188</td>
<td>264.1630</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1081.5888</td>
<td>541.2980</td>
<td>1064.5623</td>
<td>532.7848</td>
<td>1063.5782</td>
<td>532.2928</td>
<td>I</td>
<td>375.2238</td>
<td>188.1155</td>
<td>358.1973</td>
<td>179.6023</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1196.6157</td>
<td>598.8115</td>
<td>1179.5892</td>
<td>590.2982</td>
<td>1178.6052</td>
<td>589.8062</td>
<td>D</td>
<td>262.1397</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
<td>122.5682</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GVSQAVEHINKTIAPALVSK**

Found in **BIARR7**. Alpha-casein (Precursor) OlAaMa massdia GN=Aeol1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or Plot from 300 to 1900 Dq Full range

Label all possible matches **Label** matches used for scoring **

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b**-**</th>
<th>s</th>
<th>G</th>
<th>y</th>
<th>y**+**</th>
<th>y**-**</th>
<th>y**++**</th>
<th>y**-**</th>
<th>y**+++**</th>
<th>y**-**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>29.2180</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>157</td>
<td>70.6522</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>244</td>
<td>112.5682</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>373</td>
<td>186.6975</td>
<td>555.1612</td>
<td>178.9842</td>
<td></td>
<td>334.1777</td>
<td>177.5822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>443</td>
<td>222.5881</td>
<td>426.9685</td>
<td>213.9028</td>
<td></td>
<td>425.9134</td>
<td>218.1108</td>
<td></td>
<td>A</td>
<td>1372.9926</td>
<td>857.0314</td>
<td>715.9890</td>
</tr>
<tr>
<td>6</td>
<td>542</td>
<td>271.6503</td>
<td>525.2667</td>
<td>263.1370</td>
<td></td>
<td>534.3827</td>
<td>262.6450</td>
<td></td>
<td>V</td>
<td>1663.9585</td>
<td>831.4829</td>
<td>1444.9319</td>
</tr>
<tr>
<td>7</td>
<td>671</td>
<td>333.1716</td>
<td>654.1063</td>
<td>327.6583</td>
<td></td>
<td>653.3235</td>
<td>327.1663</td>
<td></td>
<td>F</td>
<td>1562.8901</td>
<td>781.8487</td>
<td>1545.8653</td>
</tr>
<tr>
<td>8</td>
<td>808</td>
<td>404.7070</td>
<td>791.3882</td>
<td>396.1875</td>
<td></td>
<td>790.3842</td>
<td>395.6953</td>
<td>H</td>
<td>1455.8475</td>
<td>717.4274</td>
<td>1416.8209</td>
<td>708.8141</td>
</tr>
<tr>
<td>9</td>
<td>921</td>
<td>461.2431</td>
<td>904.4523</td>
<td>452.7298</td>
<td></td>
<td>903.4663</td>
<td>452.2378</td>
<td>I</td>
<td>1296.7589</td>
<td>648.8979</td>
<td>1279.7620</td>
<td>640.3846</td>
</tr>
<tr>
<td>10</td>
<td>1025</td>
<td>518.2645</td>
<td>1018.4952</td>
<td>509.7513</td>
<td></td>
<td>1017.5112</td>
<td>509.2952</td>
<td>N</td>
<td>1581.7645</td>
<td>792.3559</td>
<td>1166.6780</td>
<td>583.8426</td>
</tr>
<tr>
<td>11</td>
<td>1265</td>
<td>613.0733</td>
<td>1200.6008</td>
<td>594.8040</td>
<td></td>
<td>1187.0676</td>
<td>594.3120</td>
<td>K</td>
<td>1609.6616</td>
<td>855.3344</td>
<td>1602.6350</td>
<td>556.8211</td>
</tr>
<tr>
<td>12</td>
<td>1306</td>
<td>655.8431</td>
<td>1285.6848</td>
<td>645.3279</td>
<td></td>
<td>1285.8664</td>
<td>644.8359</td>
<td>T</td>
<td>899.5569</td>
<td>450.2317</td>
<td>832.5293</td>
<td>443.7684</td>
</tr>
<tr>
<td>13</td>
<td>1419</td>
<td>730.3852</td>
<td>1400.7325</td>
<td>701.8899</td>
<td></td>
<td>1401.7485</td>
<td>701.3779</td>
<td>I</td>
<td>798.0584</td>
<td>398.7378</td>
<td>781.4818</td>
<td>391.4498</td>
</tr>
<tr>
<td>14</td>
<td>1490</td>
<td>745.9017</td>
<td>1473.7666</td>
<td>737.3884</td>
<td></td>
<td>1472.8765</td>
<td>736.8964</td>
<td>A</td>
<td>685.4343</td>
<td>343.2158</td>
<td>681.9798</td>
<td>343.7025</td>
</tr>
<tr>
<td>15</td>
<td>1557</td>
<td>849.4281</td>
<td>1520.8254</td>
<td>785.9148</td>
<td></td>
<td>1569.8384</td>
<td>785.4228</td>
<td>P</td>
<td>614.3579</td>
<td>307.6972</td>
<td>597.5606</td>
<td>290.1540</td>
</tr>
<tr>
<td>16</td>
<td>1658</td>
<td>889.8467</td>
<td>1641.8593</td>
<td>821.4334</td>
<td></td>
<td>1640.8755</td>
<td>820.9414</td>
<td>A</td>
<td>317.3364</td>
<td>259.1709</td>
<td>500.3079</td>
<td>250.6576</td>
</tr>
<tr>
<td>17</td>
<td>1772</td>
<td>997.8987</td>
<td>1754.9458</td>
<td>877.9754</td>
<td></td>
<td>1753.9959</td>
<td>877.4824</td>
<td>L</td>
<td>446.2979</td>
<td>222.6523</td>
<td>420.2708</td>
<td>215.8290</td>
</tr>
<tr>
<td>18</td>
<td>1871</td>
<td>1056.0229</td>
<td>1845.0120</td>
<td>927.5906</td>
<td></td>
<td>1833.0280</td>
<td>927.0176</td>
<td>V</td>
<td>533.7812</td>
<td>167.1103</td>
<td>516.1867</td>
<td>158.5970</td>
</tr>
<tr>
<td>19</td>
<td>1938</td>
<td>1137.5339</td>
<td>1861.0410</td>
<td>971.0256</td>
<td></td>
<td>1940.0690</td>
<td>970.5386</td>
<td>S</td>
<td>234.1444</td>
<td>117.1761</td>
<td>217.1813</td>
<td>108.0623</td>
</tr>
</tbody>
</table>

Masses are in Da (ppm) with errors between 0.0006:

Matches: 59/210 fragment ions using 39 mass error peaks

Note: Monoisotopic mass of neutral peptide (m/z): 2147.1888

Fixed modifications: Met(S) (apply to specified residues or termini only)

Variable modifications: [Nla]**K** (apply only to specified residues or termini only) with neutral loss 43.9956

Ions Score: 56 **Expect**: 0.0006
MS/MS Fragmentation of FMKGVSQAHEINK
Found in BIARR7. Alpha-melolase (Fragment) 08=Mus musculus GN=Enol PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
- Drag plot from 200 to 1000 Da
- Label all possible matches
- Label matches used for scoring

Monoisotopic mass of neutral peptide (m/z (calc)): 1729.9647
Fixed modifications: MTS8 (C) (apply to specified residues or termini only)
Variable modifications:
M: methyl_2O (M), with neutral loss 48.0965
Ion Score: 14 Exposed: 0.12
Matches: 22/142 fragment ions using 97 most intense peaks (calc)

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b**</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y0</th>
<th>y^+0</th>
<th>y0^+</th>
<th>y0^++</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td>M 1539.7948</td>
<td>770.4010</td>
<td>1522.7682</td>
<td>761.8578</td>
<td>1521.7842</td>
<td>761.3957</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>279.1142</td>
<td>140.0617</td>
<td>G 1408.7545</td>
<td>704.1805</td>
<td>1399.7278</td>
<td>695.6375</td>
<td>1390.7437</td>
<td>695.8755</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>336.1375</td>
<td>168.5725</td>
<td>K 1351.7228</td>
<td>675.3701</td>
<td>1344.7065</td>
<td>667.8368</td>
<td>1335.7223</td>
<td>667.3648</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>662.3330</td>
<td>331.6702</td>
<td>645.3065</td>
<td>323.1569</td>
<td>7</td>
<td>739.3651</td>
<td>375.1862</td>
<td>732.3185</td>
<td>366.6729</td>
<td>731.3545</td>
<td>366.1809</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>877.4289</td>
<td>439.2155</td>
<td>600.3971</td>
<td>430.7022</td>
<td>859.4131</td>
<td>430.2102</td>
<td>Q 938.5034</td>
<td>469.7556</td>
<td>921.4780</td>
<td>461.2431</td>
<td>920.4948</td>
<td>460.7511</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>948.4169</td>
<td>474.7340</td>
<td>931.4342</td>
<td>466.2207</td>
<td>930.4902</td>
<td>465.7287</td>
<td>A 810.4486</td>
<td>405.7271</td>
<td>793.4203</td>
<td>597.2138</td>
<td>792.4363</td>
<td>396.7218</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1047.5192</td>
<td>524.2682</td>
<td>1038.5026</td>
<td>515.7550</td>
<td>1029.5186</td>
<td>515.3629</td>
<td>V 739.4097</td>
<td>370.2085</td>
<td>722.3832</td>
<td>361.6952</td>
<td>721.3909</td>
<td>361.2032</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1176.5778</td>
<td>585.7385</td>
<td>1159.5352</td>
<td>580.2762</td>
<td>1158.5612</td>
<td>579.7842</td>
<td>E 640.3413</td>
<td>332.6743</td>
<td>623.3145</td>
<td>312.1610</td>
<td>622.3203</td>
<td>311.6590</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1312.6207</td>
<td>657.3190</td>
<td>1296.6041</td>
<td>648.8057</td>
<td>1295.6201</td>
<td>648.3137</td>
<td>H 511.2987</td>
<td>256.1530</td>
<td>494.2722</td>
<td>247.6397</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1426.7143</td>
<td>713.8610</td>
<td>1409.6882</td>
<td>705.3477</td>
<td>1408.7042</td>
<td>704.8557</td>
<td>I 374.2398</td>
<td>187.6235</td>
<td>357.2332</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1540.7577</td>
<td>770.8825</td>
<td>1523.7311</td>
<td>762.3692</td>
<td>1522.7471</td>
<td>761.8772</td>
<td>N 261.1557</td>
<td>131.0851</td>
<td>244.1292</td>
<td>122.5682</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1540.7577</td>
<td>770.8825</td>
<td>1523.7311</td>
<td>762.3692</td>
<td>1522.7471</td>
<td>761.8772</td>
<td>N 261.1557</td>
<td>131.0851</td>
<td>244.1292</td>
<td>122.5682</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1540.7577</td>
<td>770.8825</td>
<td>1523.7311</td>
<td>762.3692</td>
<td>1522.7471</td>
<td>761.8772</td>
<td>N 261.1557</td>
<td>131.0851</td>
<td>244.1292</td>
<td>122.5682</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1540.7577</td>
<td>770.8825</td>
<td>1523.7311</td>
<td>762.3692</td>
<td>1522.7471</td>
<td>761.8772</td>
<td>N 261.1557</td>
<td>131.0851</td>
<td>244.1292</td>
<td>122.5682</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TIAPALVSKK**

Found in **BIARK7**, Alpha-enolase (Fragment) OS=Mus musculus GN=Enol PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, [plot from] 150 to 1000 Da [full range]

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1112.6441

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
K10 : mal-CO2 (K), with neutral loss 48.0488

Total Score: 34 Expect: 0.011

Matches: 19/30 fragment ions using 40 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>−</sup></th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th> <sup>0</sup></th>
<th> <sup>−</sup></th>
<th> <sup>++</sup></th>
<th>Seq.</th>
<th>y<sup>−</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>−</sup><sup>++</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>−</sup><sup>0</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td>663.6139</td>
<td>484.8106</td>
<td>515.5873</td>
<td>476.2973</td>
<td>950.6033</td>
<td>475.8053</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.0731</td>
<td>197.1285</td>
<td>99.0679</td>
<td>I</td>
<td>855.3298</td>
<td>428.2668</td>
<td>838.5033</td>
<td>419.7533</td>
<td>837.5193</td>
<td>419.2633</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>286.1761</td>
<td>143.5917</td>
<td>268.1656</td>
<td>134.5864</td>
<td>A</td>
<td>855.3298</td>
<td>428.2668</td>
<td>838.5033</td>
<td>419.7533</td>
<td>837.5193</td>
<td>419.2633</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>454.2660</td>
<td>227.6366</td>
<td>436.2554</td>
<td>218.6314</td>
<td>A</td>
<td>667.4490</td>
<td>344.2236</td>
<td>670.4134</td>
<td>335.7103</td>
<td>669.4294</td>
<td>335.2183</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>567.3507</td>
<td>284.1787</td>
<td>549.3395</td>
<td>275.1754</td>
<td>L</td>
<td>616.4028</td>
<td>308.7051</td>
<td>599.3763</td>
<td>300.1918</td>
<td>598.3923</td>
<td>299.6998</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>666.4185</td>
<td>333.7129</td>
<td>648.4079</td>
<td>324.7076</td>
<td>V</td>
<td>563.3185</td>
<td>252.1630</td>
<td>486.2922</td>
<td>243.6498</td>
<td>485.3082</td>
<td>243.1577</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>753.4505</td>
<td>377.2289</td>
<td>735.4400</td>
<td>368.2236</td>
<td>S</td>
<td>404.2504</td>
<td>202.6288</td>
<td>387.2238</td>
<td>194.1155</td>
<td>386.2398</td>
<td>193.6235</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>881.5455</td>
<td>441.2764</td>
<td>864.5239</td>
<td>432.7631</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LGKEAGLKPFEQVK

Found in D2041. Long-chain fatty-acid-CoA ligase 1 OS=Mus musculus GN=Acs11 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from Ymin to Ymax Do Full range
Label all possible matches ○ Label matches used for scoring @

Monoisotopic mass of neutral peptide M(calcd): 1628.5774
Fixed modifications: MM2 (C) (apply to specified residues or termini only)
Variable modifications:
K : ma1-CO2 (E), with neutral loss 44.008
Ions Score: 27 **Expect**: 0.0046

Matches: 11/180 fragment ions using 20 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>-</sup></th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>Seq</th>
<th>y</th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5495</td>
<td>L</td>
<td>1472.8108</td>
<td>734.9090</td>
<td>1455.7842</td>
<td>728.3577</td>
<td>1454.8092</td>
<td>727.9037</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>G</td>
<td>1475.8108</td>
<td>734.9090</td>
<td>1455.7842</td>
<td>728.3577</td>
<td>1454.8092</td>
<td>727.9037</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>341.2183</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>K</td>
<td>1415.7893</td>
<td>708.3983</td>
<td>1398.7627</td>
<td>699.8850</td>
<td>1397.7787</td>
<td>499.3930</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>470.2099</td>
<td>235.6341</td>
<td>453.2344</td>
<td>237.1208</td>
<td>452.2304</td>
<td>228.6238</td>
<td>E</td>
<td>1245.6838</td>
<td>623.3455</td>
<td>1228.6572</td>
<td>614.8322</td>
<td>1227.6732</td>
</tr>
<tr>
<td>5</td>
<td>511.2630</td>
<td>271.1527</td>
<td>524.2715</td>
<td>262.6194</td>
<td>233.2673</td>
<td>262.1474</td>
<td>A</td>
<td>1116.6412</td>
<td>555.8247</td>
<td>1099.4146</td>
<td>550.3109</td>
<td>1096.6596</td>
</tr>
<tr>
<td>6</td>
<td>592.2630</td>
<td>299.6634</td>
<td>581.3930</td>
<td>291.1501</td>
<td>580.3609</td>
<td>290.6581</td>
<td>G</td>
<td>1645.6041</td>
<td>823.3057</td>
<td>1628.5774</td>
<td>814.9724</td>
<td>1627.6035</td>
</tr>
<tr>
<td>7</td>
<td>711.4036</td>
<td>356.2054</td>
<td>694.3770</td>
<td>347.6291</td>
<td>693.3930</td>
<td>347.2001</td>
<td>L</td>
<td>988.5826</td>
<td>494.7949</td>
<td>971.5560</td>
<td>486.2817</td>
<td>970.5720</td>
</tr>
<tr>
<td>8</td>
<td>839.4885</td>
<td>430.2329</td>
<td>822.4720</td>
<td>411.7396</td>
<td>821.4880</td>
<td>411.2476</td>
<td>K</td>
<td>875.4985</td>
<td>438.2529</td>
<td>858.4720</td>
<td>429.7396</td>
<td>857.4880</td>
</tr>
<tr>
<td>11</td>
<td>1222.6623</td>
<td>606.8348</td>
<td>1195.6358</td>
<td>598.3215</td>
<td>1194.6517</td>
<td>597.8295</td>
<td>E</td>
<td>583.2824</td>
<td>252.1448</td>
<td>486.2558</td>
<td>243.6316</td>
<td>485.2718</td>
</tr>
<tr>
<td>12</td>
<td>1340.7299</td>
<td>670.8641</td>
<td>1323.6943</td>
<td>662.3508</td>
<td>1322.7103</td>
<td>661.8589</td>
<td>Q</td>
<td>387.2389</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1439.7893</td>
<td>720.3983</td>
<td>1422.7627</td>
<td>711.8850</td>
<td>1421.7787</td>
<td>711.3930</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.1568</td>
<td>K</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.1568</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GEGEVCVKGANVFK**

Found in **D52911**, Long-chain-fatty-acid-CoA ligase 1 OS=Mus musculus GN=Acat1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

On: Flat form 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1567.7011

Fixed modifications: METh (C) (apply to specified residues or termini only)
Variable modifications:

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y0</th>
<th>y0'</th>
<th>y0''</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y1+</th>
<th>y2+</th>
<th>y3+</th>
<th>y0+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td>G</td>
<td>1467.6970</td>
<td>734.3522</td>
<td>1150.6703</td>
<td>725.3389</td>
<td>1449.6865</td>
<td>725.3469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>169.0088</td>
<td>83.0340</td>
<td>E</td>
<td>1281.6329</td>
<td>1284.6064</td>
<td>652.0809</td>
<td>1283.6224</td>
<td>652.3149</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>244.0523</td>
<td>122.5312</td>
<td>126.0822</td>
<td>61.5448</td>
<td>G</td>
<td>1231.6545</td>
<td>669.8309</td>
<td>1231.6279</td>
<td>861.1717</td>
<td>1230.5459</td>
<td>660.8236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>373.1254</td>
<td>187.0713</td>
<td>355.1284</td>
<td>178.0661</td>
<td>E</td>
<td>1152.5904</td>
<td>576.7988</td>
<td>1135.5639</td>
<td>568.2856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>472.2038</td>
<td>236.6055</td>
<td>454.1932</td>
<td>227.6003</td>
<td>V</td>
<td>1152.5904</td>
<td>576.7988</td>
<td>1135.5639</td>
<td>568.2856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>621.2007</td>
<td>311.1040</td>
<td>603.1901</td>
<td>302.0983</td>
<td>C</td>
<td>1093.3220</td>
<td>527.2564</td>
<td>1086.4958</td>
<td>518.7514</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>720.2691</td>
<td>360.6312</td>
<td>702.2586</td>
<td>351.6294</td>
<td>V</td>
<td>904.5251</td>
<td>452.7662</td>
<td>887.4985</td>
<td>444.2529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>898.3747</td>
<td>445.6910</td>
<td>873.3481</td>
<td>437.1777</td>
<td>872.3641</td>
<td>436.6857</td>
<td>872.3641</td>
<td>436.6857</td>
<td>872.3641</td>
<td>436.6857</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1018.4352</td>
<td>508.7293</td>
<td>1001.4067</td>
<td>501.2070</td>
<td>1000.4227</td>
<td>500.7150</td>
<td>A</td>
<td>578.5297</td>
<td>289.6685</td>
<td>561.5301</td>
<td>281.1552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1132.4762</td>
<td>566.7417</td>
<td>1115.4496</td>
<td>558.2284</td>
<td>1114.4656</td>
<td>557.7364</td>
<td>N</td>
<td>507.2926</td>
<td>254.1499</td>
<td>490.2660</td>
<td>245.6366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1231.5446</td>
<td>616.7259</td>
<td>1214.5180</td>
<td>607.7626</td>
<td>1213.5340</td>
<td>607.2706</td>
<td>V</td>
<td>393.2496</td>
<td>197.1285</td>
<td>376.2231</td>
<td>188.6152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1378.6130</td>
<td>689.8101</td>
<td>1361.5864</td>
<td>681.2569</td>
<td>1360.6024</td>
<td>680.8048</td>
<td>F</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>159.0810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1477.6810</td>
<td>729.8101</td>
<td>1460.6544</td>
<td>721.2569</td>
<td>1459.6704</td>
<td>720.8048</td>
<td>K</td>
<td>147.1128</td>
<td>74.0500</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AKLLELEGVENK

Found in D3Z041, Long-chain-fatty-acid-CoA ligase 1 OS=Mus musculus GN=Acs11 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1300 Da Full range

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1298.7081

Fixed modifications: NMTS (C) [apply to specified residues or termini only]

Variable modifications:

R2 : m/z CO2 (K), with neutral loss 43.0000

Ions Score: 25 **Expect:** 0.0088

Matches: 26/204 fragment ions using 62 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>++</sup></th>
<th>b<sup>+</sup></th>
<th>b<sup>+</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>K</td>
<td>1184.6885</td>
<td>592.8479</td>
<td>1167.6620</td>
<td>584.3346</td>
<td>1166.6780</td>
<td>583.8426</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>355.2340</td>
<td>178.1206</td>
<td>338.2074</td>
<td>169.6074</td>
<td>L</td>
<td>1014.5820</td>
<td>507.7951</td>
<td>997.5564</td>
<td>499.2819</td>
<td>996.5724</td>
<td>498.7898</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>468.3189</td>
<td>234.6627</td>
<td>451.2915</td>
<td>226.1494</td>
<td>L</td>
<td>901.4989</td>
<td>451.2531</td>
<td>884.4724</td>
<td>442.7398</td>
<td>883.4884</td>
<td>442.2478</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>581.4021</td>
<td>291.2047</td>
<td>564.3756</td>
<td>282.6914</td>
<td>L</td>
<td>738.4149</td>
<td>394.7111</td>
<td>771.3883</td>
<td>386.1978</td>
<td>770.4043</td>
<td>385.7038</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>710.4447</td>
<td>355.7260</td>
<td>693.4182</td>
<td>347.2127</td>
<td>692.4341</td>
<td>346.7207</td>
<td>E</td>
<td>675.3308</td>
<td>338.1690</td>
<td>658.3042</td>
<td>329.6558</td>
<td>657.3202</td>
<td>329.1638</td>
</tr>
<tr>
<td>7</td>
<td>767.4662</td>
<td>384.2367</td>
<td>750.4396</td>
<td>375.7234</td>
<td>749.4556</td>
<td>375.2314</td>
<td>G</td>
<td>546.2882</td>
<td>273.6477</td>
<td>529.2617</td>
<td>265.1345</td>
<td>528.2776</td>
<td>264.6425</td>
</tr>
<tr>
<td>8</td>
<td>866.5346</td>
<td>433.7709</td>
<td>849.5080</td>
<td>425.2577</td>
<td>848.5240</td>
<td>424.7656</td>
<td>V</td>
<td>489.2667</td>
<td>245.1370</td>
<td>472.2402</td>
<td>236.6357</td>
<td>471.2562</td>
<td>236.1317</td>
</tr>
<tr>
<td>10</td>
<td>1109.6201</td>
<td>555.3137</td>
<td>1092.5936</td>
<td>546.8004</td>
<td>1091.6095</td>
<td>546.3084</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M. B. Fragmentation of KTITVSQDEGVRPSTTMQGLAK
Found in H. B. 3-5, 3-ketosyl-CoA thiolase A, peroxosomal OS = Mus musculus GN = Aceaapes PE = 2 SV = 1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot form: 200 to 1800 DAs
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Pe (m/z): 2481.2227
Fixed modifications: MZ2 (C) (apply to specified residues or terminal only)
Variable modifications:
K1 = : m/z 2.03 with neutral loss 43.955

Matches: 20/226 fragment ions using 66 most intense peaks (unip)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>s</th>
<th>s**</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>p</th>
<th>p**</th>
<th>p</th>
<th>p</th>
<th>p</th>
<th>p</th>
<th>p</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>86.0600</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>272.1695</td>
<td>136.5839</td>
<td>255.3139</td>
<td>128.0700</td>
<td>214.1499</td>
<td>117.5786</td>
<td>T</td>
<td>211.1398</td>
<td>1110.3702</td>
<td>2202.1071</td>
<td>1101.1527</td>
<td>2201.2321</td>
<td>1101.0652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>358.2494</td>
<td>193.1129</td>
<td>283.3129</td>
<td>184.6126</td>
<td>357.2494</td>
<td>184.1296</td>
<td>I</td>
<td>218.0819</td>
<td>1005.3346</td>
<td>2101.0594</td>
<td>1001.0435</td>
<td>2100.0734</td>
<td>1000.5433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>558.3699</td>
<td>293.1840</td>
<td>268.3341</td>
<td>284.6707</td>
<td>557.3501</td>
<td>284.1787</td>
<td>V</td>
<td>1903.0542</td>
<td>852.1407</td>
<td>1886.9277</td>
<td>943.8672</td>
<td>1885.9436</td>
<td>943.4715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>572.3927</td>
<td>336.7000</td>
<td>655.3661</td>
<td>328.1867</td>
<td>654.3821</td>
<td>327.6947</td>
<td>S</td>
<td>1804.8858</td>
<td>902.9465</td>
<td>1787.8592</td>
<td>940.4333</td>
<td>1786.8752</td>
<td>939.4317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>800.4512</td>
<td>400.7293</td>
<td>783.2477</td>
<td>392.2105</td>
<td>782.4407</td>
<td>391.7240</td>
<td>Q</td>
<td>717.8583</td>
<td>859.4305</td>
<td>700.8827</td>
<td>850.9172</td>
<td>1099.8432</td>
<td>850.4252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>915.4782</td>
<td>458.2427</td>
<td>898.5816</td>
<td>449.7293</td>
<td>897.4676</td>
<td>449.2374</td>
<td>D</td>
<td>1589.7512</td>
<td>795.4012</td>
<td>1272.7865</td>
<td>786.8880</td>
<td>1571.7846</td>
<td>786.3915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1044.5506</td>
<td>522.7640</td>
<td>1027.9492</td>
<td>514.2308</td>
<td>1026.3102</td>
<td>513.7587</td>
<td>E</td>
<td>1174.7882</td>
<td>737.8778</td>
<td>1457.7417</td>
<td>729.3742</td>
<td>1456.7377</td>
<td>728.8823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1101.5421</td>
<td>551.2748</td>
<td>1084.3157</td>
<td>542.7613</td>
<td>1083.3517</td>
<td>542.2695</td>
<td>G</td>
<td>1348.7266</td>
<td>673.5660</td>
<td>1528.6991</td>
<td>664.8532</td>
<td>1327.7151</td>
<td>664.3612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1200.6107</td>
<td>600.8090</td>
<td>1183.5841</td>
<td>592.2957</td>
<td>1182.6001</td>
<td>591.8037</td>
<td>V</td>
<td>1288.7042</td>
<td>644.8557</td>
<td>1271.6776</td>
<td>636.3425</td>
<td>1270.6936</td>
<td>635.8504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1356.7118</td>
<td>678.8590</td>
<td>1339.6825</td>
<td>670.8402</td>
<td>1338.7012</td>
<td>669.8542</td>
<td>K</td>
<td>1146.3638</td>
<td>585.3215</td>
<td>1127.6092</td>
<td>586.8092</td>
<td>1171.6252</td>
<td>586.3162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1453.7645</td>
<td>727.3859</td>
<td>1436.7380</td>
<td>718.8786</td>
<td>1435.7440</td>
<td>718.3808</td>
<td>P</td>
<td>1035.5347</td>
<td>517.2710</td>
<td>1016.5061</td>
<td>508.7757</td>
<td>1015.5245</td>
<td>508.2674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1540.7996</td>
<td>770.9019</td>
<td>1523.7700</td>
<td>762.3886</td>
<td>1522.7860</td>
<td>761.8960</td>
<td>S</td>
<td>936.4819</td>
<td>455.7446</td>
<td>919.4433</td>
<td>450.2313</td>
<td>918.4713</td>
<td>452.7935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1641.8442</td>
<td>821.4258</td>
<td>1624.8177</td>
<td>812.9223</td>
<td>1623.8357</td>
<td>812.4203</td>
<td>T</td>
<td>1499.4499</td>
<td>455.2248</td>
<td>1482.4235</td>
<td>456.1735</td>
<td>1481.4595</td>
<td>461.2239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1742.8919</td>
<td>871.9496</td>
<td>1725.9364</td>
<td>863.4655</td>
<td>1724.8814</td>
<td>862.9443</td>
<td>T</td>
<td>1748.4022</td>
<td>574.7047</td>
<td>1731.7976</td>
<td>566.1911</td>
<td>1730.8916</td>
<td>565.6944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1873.9324</td>
<td>937.4696</td>
<td>1856.9059</td>
<td>928.9569</td>
<td>1855.9132</td>
<td>928.4946</td>
<td>M</td>
<td>547.3545</td>
<td>324.1809</td>
<td>630.3260</td>
<td>315.6668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2059.0124</td>
<td>1030.0099</td>
<td>2041.9359</td>
<td>1021.4968</td>
<td>2040.0149</td>
<td>1020.9246</td>
<td>G</td>
<td>388.2554</td>
<td>194.6314</td>
<td>381.2289</td>
<td>180.1781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2172.0965</td>
<td>1086.5118</td>
<td>2155.0760</td>
<td>1078.5384</td>
<td>2154.0589</td>
<td>1077.4566</td>
<td>L</td>
<td>231.3340</td>
<td>166.1205</td>
<td>2154.0706</td>
<td>157.8076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2243.3356</td>
<td>1122.0703</td>
<td>2226.1073</td>
<td>1113.5772</td>
<td>2225.1231</td>
<td>1113.0652</td>
<td>A</td>
<td>218.1499</td>
<td>169.2786</td>
<td>201.2234</td>
<td>104.0653</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.8063</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
KTITVSQDEGVRPSSTTMQGLAK
TITVSQDEGVRPSTTMQGLAKLKPAFK

Non-enriched Mass of neutral peptide N-term (kDa): 200.3239

<table>
<thead>
<tr>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y''''</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>320.0859</td>
<td>51.0637</td>
<td>32.5151</td>
<td>34.0444</td>
<td>42.5326</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315.5901</td>
<td>104.0731</td>
<td>32.7725</td>
<td>26.0467</td>
<td>T</td>
<td>26.0467</td>
<td>34.0444</td>
<td>42.5326</td>
<td>T</td>
</tr>
<tr>
<td>316.5187</td>
<td>115.9250</td>
<td>32.7725</td>
<td>26.0467</td>
<td>T</td>
<td>26.0467</td>
<td>34.0444</td>
<td>42.5326</td>
<td>T</td>
</tr>
<tr>
<td>415.2321</td>
<td>204.1312</td>
<td>32.7725</td>
<td>26.0467</td>
<td>T</td>
<td>26.0467</td>
<td>34.0444</td>
<td>42.5326</td>
<td>T</td>
</tr>
<tr>
<td>502.2871</td>
<td>251.9672</td>
<td>32.7725</td>
<td>26.0467</td>
<td>T</td>
<td>26.0467</td>
<td>34.0444</td>
<td>42.5326</td>
<td>T</td>
</tr>
</tbody>
</table>

Fixed modifications: NMT (C) (apply to specified residues or termini only)

Variable modifications:
- K1: O-Glucosamine (K1), with neutral loss 0.0000 (shown in table), 43.6648
- K2: O-GlcNAc (K2), with neutral loss 43.6648

Leader: No, **Target:** 1.035

Matches: 4/472 fragment ions using 10 most intense peaks
MS/MS Fragmentation of SSCTIIPLMKR

Found in P19066, Fatty acid synthase OS=Mus musculus GN=Fasn PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1379.6611

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K10 : m/z CD2 (K), with neutral loss 43.9898

Ions Score: 29 Expect: 0.015

Matches : 17/28 fragment ions using 34 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>Precursor</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>0++</sup></th>
<th>Seq.</th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup>-</th>
<th>y<sup>-</sup>-<sup>-</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0</sup>-</th>
<th>y<sup>0</sup>-<sup>-</sup></th>
<th>y<sup>0</sup>-<sup>-</sup>-<sup>-</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0398</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td>1249.6465</td>
<td>625.3269</td>
<td>1232.6200</td>
<td>616.8136</td>
<td>1231.6360</td>
<td>616.3216</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>175.0713</td>
<td>88.0398</td>
<td>157.0608</td>
<td>79.0340</td>
<td>S</td>
<td>1249.6465</td>
<td>625.3269</td>
<td>1232.6200</td>
<td>616.8136</td>
<td>1231.6360</td>
<td>616.3216</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>324.0682</td>
<td>162.5378</td>
<td>306.0577</td>
<td>153.5325</td>
<td>C</td>
<td>1162.6445</td>
<td>581.8109</td>
<td>1145.5880</td>
<td>573.2976</td>
<td>1144.6039</td>
<td>572.8056</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>425.1159</td>
<td>213.0616</td>
<td>407.1054</td>
<td>204.0563</td>
<td>T</td>
<td>1013.6176</td>
<td>507.3124</td>
<td>996.5911</td>
<td>498.7992</td>
<td>955.6070</td>
<td>498.3072</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>538.2006</td>
<td>269.6036</td>
<td>520.1894</td>
<td>250.5983</td>
<td>I</td>
<td>912.5690</td>
<td>456.7880</td>
<td>895.5434</td>
<td>448.2753</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>651.2840</td>
<td>326.1457</td>
<td>633.2735</td>
<td>317.1404</td>
<td>I</td>
<td>790.4839</td>
<td>400.2466</td>
<td>782.4593</td>
<td>391.7333</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>748.3368</td>
<td>374.6720</td>
<td>730.3262</td>
<td>365.6658</td>
<td>P</td>
<td>686.4018</td>
<td>343.7045</td>
<td>669.3752</td>
<td>335.1913</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>861.4209</td>
<td>431.2141</td>
<td>843.4103</td>
<td>422.2088</td>
<td>L</td>
<td>589.3490</td>
<td>295.1782</td>
<td>572.3225</td>
<td>286.6649</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>992.4614</td>
<td>496.7343</td>
<td>974.4508</td>
<td>487.7290</td>
<td>M</td>
<td>476.2650</td>
<td>238.6361</td>
<td>459.2384</td>
<td>230.1228</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1162.5668</td>
<td>581.7871</td>
<td>1145.5403</td>
<td>573.2738</td>
<td>L</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0353</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SSCTIIPLMKR

Found in P19096. Fatty acid synthase OS=Mus musculus GN=Fasn PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from <200> to <1400> Da Full range
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1388.4560
Fixed modifications: MINS(C) (apply to specified residues or termini only)
Variable modifications:
- oxidation (M), with neutral losses 0.0000 (shown in table), 69.9883
- ma1:C02 (K), with neutral loss 43.9590
- Ions Score: 28 Expect: 0.013
Matches: 17/196 fragment ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th>Peak</th>
<th>b</th>
<th>b⁻</th>
<th>b⁺</th>
<th>b⁰</th>
<th>b⁻⁻</th>
<th>Seq.</th>
<th>y</th>
<th>y⁻</th>
<th>y⁺</th>
<th>y⁻⁻</th>
<th>y⁰</th>
<th>y⁻⁻</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td>1265.6414</td>
<td>633.3244</td>
<td>1248.6149</td>
<td>624.8111</td>
<td>1247.6309</td>
<td>624.3191</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>175.0713</td>
<td>88.0393</td>
<td>157.008</td>
<td>70.0340</td>
<td>S</td>
<td>1265.6414</td>
<td>633.3244</td>
<td>1248.6149</td>
<td>624.8111</td>
<td>1247.6309</td>
<td>624.3191</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>324.0682</td>
<td>162.5378</td>
<td>306.0577</td>
<td>153.3252</td>
<td>C</td>
<td>1178.6094</td>
<td>589.8083</td>
<td>1161.5829</td>
<td>581.2951</td>
<td>1160.5989</td>
<td>580.8031</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>425.1159</td>
<td>213.0616</td>
<td>407.1054</td>
<td>204.0563</td>
<td>T</td>
<td>1029.6125</td>
<td>515.3099</td>
<td>1012.5860</td>
<td>506.7966</td>
<td>1011.6019</td>
<td>506.3046</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>538.2000</td>
<td>269.6036</td>
<td>220.1804</td>
<td>206.5983</td>
<td>I</td>
<td>928.5648</td>
<td>464.7861</td>
<td>911.5383</td>
<td>456.2728</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>651.2840</td>
<td>326.1457</td>
<td>633.2735</td>
<td>317.1404</td>
<td>I</td>
<td>815.1808</td>
<td>408.2440</td>
<td>798.4542</td>
<td>393.7307</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>748.3368</td>
<td>374.6720</td>
<td>730.3262</td>
<td>365.6668</td>
<td>P</td>
<td>702.3067</td>
<td>351.7020</td>
<td>685.3702</td>
<td>343.1887</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>861.4209</td>
<td>431.2141</td>
<td>843.4103</td>
<td>422.2088</td>
<td>L</td>
<td>605.3439</td>
<td>303.1756</td>
<td>588.3174</td>
<td>284.6623</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1008.4563</td>
<td>504.7318</td>
<td>980.4457</td>
<td>495.7265</td>
<td>M</td>
<td>492.2599</td>
<td>246.6336</td>
<td>475.2333</td>
<td>238.1203</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1178.6518</td>
<td>580.7845</td>
<td>1161.5333</td>
<td>581.2713</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1579</td>
<td>164.6026</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **CTVFPKAQVEDAFR**

Found in P19096, Fatty acid synthase OS:Mus musculus GN:Fasn PE:1 SV:2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1700 Da Full range

Label all possible matches ○ Label matches used for scoring @

Monoisotopic mass of neutral peptide M(cala): 2761.7904

Fixed modifications: HET (C) (apply to specified residues or termini only)

Variable modifications:

K6 : m1.202 (R), with neutral loss 49.9599

Ions Scored: 10 Expect: 0.000

Matches : 16/100 fragment ions using 41 more intense peaks (b/a)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b**</th>
<th>y**</th>
<th>b*</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0042</td>
<td>75.5057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>251.0219</td>
<td>126.0296</td>
<td>233.0413</td>
<td>117.0243</td>
<td>T</td>
<td>1549.8009</td>
<td>775.4041</td>
<td>1532.7744</td>
</tr>
<tr>
<td>3</td>
<td>350.1202</td>
<td>175.5638</td>
<td>332.1097</td>
<td>166.5315</td>
<td>V</td>
<td>1448.7552</td>
<td>724.8803</td>
<td>1431.7267</td>
</tr>
<tr>
<td>4</td>
<td>497.1587</td>
<td>240.0090</td>
<td>479.1781</td>
<td>240.0092</td>
<td>F</td>
<td>1349.6848</td>
<td>675.3461</td>
<td>1332.6583</td>
</tr>
<tr>
<td>5</td>
<td>594.2415</td>
<td>297.6424</td>
<td>576.2309</td>
<td>288.6191</td>
<td>P</td>
<td>1202.6164</td>
<td>601.8118</td>
<td>1185.5899</td>
</tr>
<tr>
<td>6</td>
<td>764.3740</td>
<td>382.6771</td>
<td>747.3204</td>
<td>374.1639</td>
<td>K</td>
<td>1105.5637</td>
<td>552.2853</td>
<td>1088.5371</td>
</tr>
<tr>
<td>7</td>
<td>835.3841</td>
<td>410.1057</td>
<td>818.3373</td>
<td>409.6824</td>
<td>A</td>
<td>828.4581</td>
<td>468.2327</td>
<td>818.4316</td>
</tr>
<tr>
<td>8</td>
<td>963.4427</td>
<td>482.2350</td>
<td>946.4161</td>
<td>473.7117</td>
<td>Q</td>
<td>864.4210</td>
<td>432.7141</td>
<td>847.3945</td>
</tr>
<tr>
<td>9</td>
<td>1062.5111</td>
<td>531.7592</td>
<td>1045.4849</td>
<td>523.2459</td>
<td>V</td>
<td>736.3369</td>
<td>566.8689</td>
<td>719.3599</td>
</tr>
<tr>
<td>10</td>
<td>1191.5537</td>
<td>596.2803</td>
<td>1174.5221</td>
<td>587.7621</td>
<td>E</td>
<td>637.2940</td>
<td>319.1506</td>
<td>620.2675</td>
</tr>
<tr>
<td>11</td>
<td>1308.5806</td>
<td>653.7399</td>
<td>1281.5541</td>
<td>645.2087</td>
<td>D</td>
<td>508.2814</td>
<td>254.6293</td>
<td>491.2249</td>
</tr>
<tr>
<td>12</td>
<td>1377.6177</td>
<td>689.3125</td>
<td>1360.5912</td>
<td>680.7992</td>
<td>A</td>
<td>393.2245</td>
<td>197.1159</td>
<td>376.1979</td>
</tr>
<tr>
<td>13</td>
<td>1524.6862</td>
<td>762.9467</td>
<td>1507.8596</td>
<td>754.3334</td>
<td></td>
<td>408.2072</td>
<td>1505.8758</td>
<td>738.8414</td>
</tr>
<tr>
<td>14</td>
<td>1737.6119</td>
<td>860.0831</td>
<td>1710.6924</td>
<td>852.5693</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14 matches
Fragmentation of FDASFFGVHPKQAHTMDPQLR

Found in P104806, NADIR and HST.

Click mouse within plot area to zoom by a factor of two about that point:

- **Plot from:** 200 to 1000 Da
- **Full range**

Label all possible matches

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>s</th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>s<sup>+</sup></th>
<th>s<sup>++</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>245.0921</td>
<td>123.0497</td>
<td>D</td>
<td>250.2266</td>
<td>76.3029</td>
<td>119.0497</td>
<td>155.1009</td>
</tr>
<tr>
<td>2</td>
<td>263.1026</td>
<td>132.0550</td>
<td>316.1292</td>
<td>158.5882</td>
<td>A</td>
<td>322.0920</td>
<td>113.0497</td>
<td>220.0855</td>
<td>110.4534</td>
</tr>
<tr>
<td>3</td>
<td>354.1397</td>
<td>167.5973</td>
<td>393.1642</td>
<td>211.0893</td>
<td>S</td>
<td>403.1612</td>
<td>202.0804</td>
<td>213.0702</td>
<td>169.0178</td>
</tr>
<tr>
<td>4</td>
<td>431.1769</td>
<td>211.0893</td>
<td>450.2226</td>
<td>257.6185</td>
<td>F</td>
<td>460.2226</td>
<td>257.6185</td>
<td>213.0702</td>
<td>169.0178</td>
</tr>
<tr>
<td>5</td>
<td>581.2402</td>
<td>281.6287</td>
<td>600.2867</td>
<td>330.7125</td>
<td>G</td>
<td>610.2867</td>
<td>330.7125</td>
<td>257.6185</td>
<td>213.0702</td>
</tr>
<tr>
<td>6</td>
<td>671.3186</td>
<td>358.1579</td>
<td>715.3379</td>
<td>397.1797</td>
<td>V</td>
<td>725.3379</td>
<td>397.1797</td>
<td>281.6287</td>
<td>211.0893</td>
</tr>
<tr>
<td>7</td>
<td>772.3301</td>
<td>385.6687</td>
<td>815.3498</td>
<td>435.2029</td>
<td>D</td>
<td>825.2402</td>
<td>435.2029</td>
<td>330.7125</td>
<td>257.6185</td>
</tr>
<tr>
<td>8</td>
<td>871.3985</td>
<td>456.2092</td>
<td>915.4054</td>
<td>497.2179</td>
<td>V</td>
<td>925.4054</td>
<td>497.2179</td>
<td>385.6687</td>
<td>281.6287</td>
</tr>
<tr>
<td>9</td>
<td>1060.4574</td>
<td>594.7253</td>
<td>1164.5727</td>
<td>544.2377</td>
<td>H</td>
<td>1174.5727</td>
<td>544.2377</td>
<td>456.2092</td>
<td>358.1579</td>
</tr>
<tr>
<td>10</td>
<td>1105.5162</td>
<td>553.2587</td>
<td>1209.5319</td>
<td>593.2699</td>
<td>P</td>
<td>1219.5319</td>
<td>593.2699</td>
<td>456.2092</td>
<td>358.1579</td>
</tr>
<tr>
<td>11</td>
<td>1273.6127</td>
<td>638.3112</td>
<td>1377.6281</td>
<td>672.7942</td>
<td>H</td>
<td>1387.6281</td>
<td>672.7942</td>
<td>593.2699</td>
<td>456.2092</td>
</tr>
<tr>
<td>12</td>
<td>2185.6745</td>
<td>702.3048</td>
<td>2289.6877</td>
<td>735.8273</td>
<td>G</td>
<td>2393.6877</td>
<td>735.8273</td>
<td>638.3112</td>
<td>553.2587</td>
</tr>
<tr>
<td>13</td>
<td>1474.7114</td>
<td>737.8595</td>
<td>1579.6814</td>
<td>773.8930</td>
<td>Q</td>
<td>1674.6814</td>
<td>773.8930</td>
<td>638.3112</td>
<td>553.2587</td>
</tr>
<tr>
<td>14</td>
<td>1611.7703</td>
<td>806.3886</td>
<td>1715.7957</td>
<td>843.4224</td>
<td>T</td>
<td>1815.7957</td>
<td>843.4224</td>
<td>737.8595</td>
<td>638.3112</td>
</tr>
<tr>
<td>15</td>
<td>1712.8180</td>
<td>859.9226</td>
<td>1816.8459</td>
<td>897.9673</td>
<td>G</td>
<td>1916.8459</td>
<td>897.9673</td>
<td>806.3886</td>
<td>702.3048</td>
</tr>
<tr>
<td>16</td>
<td>1959.8354</td>
<td>930.4650</td>
<td>2063.8708</td>
<td>975.9983</td>
<td>H</td>
<td>2163.8708</td>
<td>975.9983</td>
<td>859.9226</td>
<td>737.8595</td>
</tr>
<tr>
<td>17</td>
<td>1794.5803</td>
<td>887.9465</td>
<td>1897.5883</td>
<td>932.0569</td>
<td>D</td>
<td>1997.5883</td>
<td>932.0569</td>
<td>930.4650</td>
<td>806.3886</td>
</tr>
<tr>
<td>18</td>
<td>2071.9331</td>
<td>1036.4702</td>
<td>2175.9593</td>
<td>1082.5295</td>
<td>F</td>
<td>2275.9593</td>
<td>1082.5295</td>
<td>930.4650</td>
<td>806.3886</td>
</tr>
<tr>
<td>19</td>
<td>2199.9911</td>
<td>1097.5090</td>
<td>2295.9861</td>
<td>1142.5842</td>
<td>A</td>
<td>2395.9861</td>
<td>1142.5842</td>
<td>1036.4702</td>
<td>930.4650</td>
</tr>
<tr>
<td>20</td>
<td>2313.0757</td>
<td>1157.3417</td>
<td>2419.0628</td>
<td>1198.5362</td>
<td></td>
<td>2519.0628</td>
<td>1198.5362</td>
<td>1097.5090</td>
<td>930.4650</td>
</tr>
</tbody>
</table>

Differences from exact mass of neutral peptide (Neale): 250.1730

Fixed modifications: M(^{CH}3) (^H2) apply to specified residues or termini only

Variable modifications:

- **K1:** +1, +42 (R), with neutral loss 62.0000
- **K2:** +3.000, with neutral losses 0.0000 (shown in table), 62.0000
- **K3:** +5.000, with neutral losses 0.0000

Note: K1 = 24; Expect: 8.058

Matches: 84/600 fragment ions using 106 most intense peaks (H2)

FDASFFGVHPKQAHTMDPQLR
MS/MS Fragmentation of **VKSINNPDMR**

Found in Q3N117, ATP-citrate synthase OS=Mus musculus GN=Acy PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1200 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M_r(calc): 1258.5976

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K2 : met_C02 (K), with neutral loss 43.9888

Ions Score: 38 Expect: 0.002

Matches: 7/98 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td></td>
<td></td>
<td>K</td>
<td>1116.5466</td>
<td>558.7769</td>
<td>1099.5201</td>
<td>550.2637</td>
<td>1098.5361</td>
<td>549.7717</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>470.2973</td>
<td>235.6523</td>
<td>453.2708</td>
<td>227.1390</td>
<td>452.2867</td>
<td>226.6470</td>
<td>I</td>
<td>859.4091</td>
<td>430.2082</td>
<td>842.3825</td>
<td>421.6949</td>
<td>841.3983</td>
<td>421.2029</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>584.3402</td>
<td>292.6738</td>
<td>567.3137</td>
<td>284.1605</td>
<td>566.3297</td>
<td>283.6685</td>
<td>N</td>
<td>746.3250</td>
<td>373.6661</td>
<td>729.2984</td>
<td>365.1529</td>
<td>728.3144</td>
<td>364.6609</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>698.3832</td>
<td>349.6952</td>
<td>681.3566</td>
<td>341.1819</td>
<td>680.3726</td>
<td>340.6899</td>
<td>N</td>
<td>632.2821</td>
<td>316.6447</td>
<td>615.2555</td>
<td>308.1314</td>
<td>614.2715</td>
<td>307.6394</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>910.4629</td>
<td>455.7351</td>
<td>893.4363</td>
<td>447.2218</td>
<td>892.4523</td>
<td>446.7298</td>
<td>D</td>
<td>421.1864</td>
<td>211.0968</td>
<td>404.1598</td>
<td>202.5836</td>
<td>403.1758</td>
<td>202.0915</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1041.5034</td>
<td>521.2553</td>
<td>1024.4768</td>
<td>512.7420</td>
<td>1023.4928</td>
<td>512.2500</td>
<td>M</td>
<td>306.1594</td>
<td>153.5834</td>
<td>289.1329</td>
<td>145.0701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VKSINNPDMR
MS/MS Fragmentation of VKSINNPDMR

Found in Q3V117, ATP-citrate synthase OS=Mus musculus GN=Acy PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range
Label all possible matches ◐ Label matches used for scoring ◐

Monoisotopic mass of neutral peptide Mr(calc): 1274.5925
Fixed modifications: MetS (C) (apply to specified residues or termini only)
Variable modifications:
M2 : oxidation (M), with neutral loss 15.9949
M9 : oxidation (M), with neutral losses 0.0000 (shown in table), 15.9949
Ions Score: 39 Expect: 0.0025
Matches : 12/150 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b^0</th>
<th>b^0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y^0</th>
<th>y^0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>155.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td></td>
<td></td>
<td>K</td>
<td>1132.5415</td>
<td>566.7744</td>
<td>1115.5150</td>
<td>558.2611</td>
<td>1114.5310</td>
<td>557.7691</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>357.2132</td>
<td>179.1103</td>
<td>340.1867</td>
<td>170.3970</td>
<td>339.2027</td>
<td>170.1050</td>
<td>S</td>
<td>962.4360</td>
<td>481.7216</td>
<td>945.4095</td>
<td>473.2084</td>
<td>944.4254</td>
<td>472.7164</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>584.3402</td>
<td>292.6738</td>
<td>567.3137</td>
<td>284.1605</td>
<td>566.3297</td>
<td>283.6685</td>
<td>N</td>
<td>762.3199</td>
<td>381.6536</td>
<td>745.2934</td>
<td>373.1503</td>
<td>744.3093</td>
<td>372.6583</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>698.3832</td>
<td>349.6952</td>
<td>681.3566</td>
<td>341.1819</td>
<td>680.3726</td>
<td>340.6899</td>
<td>N</td>
<td>648.2770</td>
<td>324.6421</td>
<td>631.2504</td>
<td>316.1289</td>
<td>630.2664</td>
<td>315.6368</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>795.4359</td>
<td>398.2216</td>
<td>778.4094</td>
<td>389.7083</td>
<td>777.4254</td>
<td>389.2163</td>
<td>P</td>
<td>534.2341</td>
<td>267.6207</td>
<td>517.2075</td>
<td>259.1074</td>
<td>516.2235</td>
<td>258.6154</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1057.4983</td>
<td>529.2528</td>
<td>1040.4717</td>
<td>520.7395</td>
<td>1039.4877</td>
<td>520.2475</td>
<td>M</td>
<td>322.1544</td>
<td>161.5808</td>
<td>305.1278</td>
<td>153.0675</td>
<td>321.1544</td>
<td>161.5808</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EGKILMIGIGHR
Found in Q8V17, ATP-citrate synthase OS=Mus musculus GN=Acly PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Oc, Plot from 150 Da to 1260 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1296.66666
Fixed modifications: M(128.0989) (apply to specified residues or termini only)
Variable modifications: KE (15.9949), with neutral loss 43.9689
Ions Score: 21 Expect: 0.11
Matches to Peptide: 36/56 fragment ions using 70 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b**</th>
<th>y**</th>
<th>b</th>
<th>*</th>
<th>y</th>
<th>*</th>
<th>b**</th>
<th>*</th>
<th>y**</th>
<th>*</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>*</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>169.0080</td>
<td>85.0340</td>
<td>G</td>
<td>1123.6405</td>
<td>562.3239</td>
<td>1106.6139</td>
<td>553.8106</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>357.1760</td>
<td>179.0021</td>
<td>340.1503</td>
<td>170.5788</td>
<td>339.1663</td>
<td>170.0868</td>
<td>K</td>
<td>1066.6190</td>
<td>533.8131</td>
<td>1049.5924</td>
<td>525.2909</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>470.2609</td>
<td>235.6241</td>
<td>453.2344</td>
<td>227.1208</td>
<td>452.2504</td>
<td>226.6288</td>
<td>L</td>
<td>896.5135</td>
<td>448.7604</td>
<td>879.4869</td>
<td>440.2471</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>583.3450</td>
<td>292.1761</td>
<td>566.3184</td>
<td>283.6529</td>
<td>565.3344</td>
<td>283.1709</td>
<td>I</td>
<td>783.4294</td>
<td>392.2183</td>
<td>766.4029</td>
<td>383.7051</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>714.3855</td>
<td>357.6864</td>
<td>697.3589</td>
<td>349.1831</td>
<td>698.3749</td>
<td>348.6911</td>
<td>M</td>
<td>670.3453</td>
<td>335.6763</td>
<td>653.3188</td>
<td>327.1630</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>771.4069</td>
<td>386.2071</td>
<td>754.3804</td>
<td>377.6938</td>
<td>753.3964</td>
<td>377.2018</td>
<td>G</td>
<td>539.3040</td>
<td>270.1561</td>
<td>522.2783</td>
<td>261.6428</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>884.4910</td>
<td>442.7491</td>
<td>867.4615</td>
<td>434.2359</td>
<td>865.4804</td>
<td>433.7439</td>
<td>I</td>
<td>482.2834</td>
<td>241.6453</td>
<td>465.2568</td>
<td>233.1321</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>941.5125</td>
<td>471.2599</td>
<td>924.4839</td>
<td>462.7466</td>
<td>923.5019</td>
<td>462.2546</td>
<td>G</td>
<td>360.1993</td>
<td>183.1033</td>
<td>352.1728</td>
<td>176.3900</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1078.5714</td>
<td>539.7893</td>
<td>1061.5484</td>
<td>531.2761</td>
<td>1060.5608</td>
<td>530.7840</td>
<td>H</td>
<td>312.1779</td>
<td>156.5926</td>
<td>205.1513</td>
<td>148.0703</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EGLKIMGIGHR
MS/MS Fragmentation of EKLIMGIGHR

Found in O5YV17, ATP-citrate synthase OS=Mus musculus GN=Acty PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1300 Da full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1311.6608

Fixed modifications: NMT (C) (apply to specified residues or termini only)

Variable modifications:

- K3 : mal-CO2 (K), with neutral loss 43.9888
- M6 : Oxidation (M), with neutral losses 0.015 (shown in table), 68.9993

Tone Score: 10 **Expect:** 0.005

Matches: 28/146 fragment ions using 42 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b or b'</th>
<th>b''</th>
<th>b'''</th>
<th>b⁰</th>
<th>b⁺</th>
<th>b⁺⁺</th>
<th>Seq</th>
<th>y</th>
<th>y⁺</th>
<th>y++</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0459</td>
<td>65.5286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>1139.0554</td>
<td>570.3213</td>
<td>1122.6088</td>
<td>561.8081</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>357.1769</td>
<td>170.9210</td>
<td>340.1503</td>
<td>170.5788</td>
<td>359.1663</td>
<td>170.0868</td>
<td>K</td>
<td>1082.6159</td>
<td>541.8106</td>
<td>1065.5874</td>
<td>533.2973</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>583.3450</td>
<td>292.1761</td>
<td>566.3184</td>
<td>283.6202</td>
<td>565.3344</td>
<td>283.1709</td>
<td>I</td>
<td>799.4243</td>
<td>400.2158</td>
<td>782.3078</td>
<td>301.7025</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>750.3804</td>
<td>365.6938</td>
<td>713.3538</td>
<td>357.1806</td>
<td>712.3658</td>
<td>356.6886</td>
<td>M</td>
<td>686.3403</td>
<td>343.8758</td>
<td>669.3137</td>
<td>335.1605</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>787.4019</td>
<td>394.2046</td>
<td>770.3753</td>
<td>385.6913</td>
<td>769.3913</td>
<td>385.1993</td>
<td>G</td>
<td>539.3049</td>
<td>270.1561</td>
<td>522.2783</td>
<td>261.6428</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>900.4859</td>
<td>450.7466</td>
<td>883.4594</td>
<td>442.2333</td>
<td>882.4754</td>
<td>441.7413</td>
<td>I</td>
<td>482.2834</td>
<td>241.6433</td>
<td>465.2568</td>
<td>233.1321</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>957.5074</td>
<td>479.2573</td>
<td>940.4808</td>
<td>470.7441</td>
<td>939.4968</td>
<td>470.2520</td>
<td>G</td>
<td>369.1993</td>
<td>185.1033</td>
<td>352.1728</td>
<td>176.5900</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1094.5683</td>
<td>547.7888</td>
<td>1077.5397</td>
<td>539.2735</td>
<td>1076.5557</td>
<td>538.7815</td>
<td>H</td>
<td>312.1779</td>
<td>156.9526</td>
<td>295.1513</td>
<td>148.0793</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVNQGKIFK
Found in O9DSN0. Elution factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, from 150 to 1100 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1039.5019
Fixed modifications: MetS (C) (apply to specified residues or termini only)
Variable modifications:
K6 : m/z CO2 (K), with neutral loss 43.0000
Ions Score: 32 Expect: 0.0089
Matches : 14/60 fragment ions using 37 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5238</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>85.0600</td>
<td></td>
<td></td>
<td>V</td>
<td>975.5622</td>
<td>488.2847</td>
<td>958.5356</td>
<td>479.7715</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>285.1557</td>
<td>143.0815</td>
<td>268.1292</td>
<td>134.5682</td>
<td>N</td>
<td>876.4938</td>
<td>438.7506</td>
<td>859.4672</td>
<td>430.2373</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>413.2143</td>
<td>207.1108</td>
<td>396.1878</td>
<td>198.5975</td>
<td>Q</td>
<td>762.4509</td>
<td>381.7291</td>
<td>745.4243</td>
<td>373.2153</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>470.2358</td>
<td>235.6215</td>
<td>453.2092</td>
<td>227.1083</td>
<td>G</td>
<td>634.3923</td>
<td>317.6998</td>
<td>617.3657</td>
<td>309.1865</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>640.3413</td>
<td>320.6743</td>
<td>623.3148</td>
<td>312.1610</td>
<td>K</td>
<td>577.3708</td>
<td>289.1890</td>
<td>560.3443</td>
<td>280.6758</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>753.4254</td>
<td>377.2163</td>
<td>736.3988</td>
<td>368.7030</td>
<td>I</td>
<td>467.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>195.6230</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>960.4938</td>
<td>450.7505</td>
<td>883.4672</td>
<td>442.2373</td>
<td>F</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>139.0810</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AKDPFAHLPK**

Found in Q0DL8N0. Elongation factor 1a lambda OS=Mus musculus GN=EF1A DE-1 SV-3

Click mouse within plot area to zoom in by factor of two about that point

![Diagram](image)

Monoisotopic mass of neutral peptide Mr(amu): 1200.6190

Fixed modifications: MET (C) (apply to specified residues or termini only)

Variable modifications:

K2 : mal-COO (K), with neutral loss 44.0090

Ions Score: 96 **Expect:** 0.016

Matches: 10/88 fragment ions using 10 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b*</th>
<th>b**−**</th>
<th>b0</th>
<th>b**−−**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y*</th>
<th>y**−**</th>
<th>y0</th>
<th>y**−−**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>1044.5963</td>
<td>547.8033</td>
<td>1077.5728</td>
<td>539.2900</td>
<td>1076.5887</td>
<td>538.7980</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1459</td>
<td>121.5756</td>
<td>122.1254</td>
<td>113.0653</td>
<td>K</td>
<td>924.4938</td>
<td>462.7505</td>
<td>907.4672</td>
<td>454.2373</td>
<td>453.7912</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>357.1769</td>
<td>179.0921</td>
<td>340.1503</td>
<td>170.5788</td>
<td>339.1653</td>
<td>170.0858</td>
<td>D</td>
<td>809.4668</td>
<td>405.2371</td>
<td>792.4403</td>
<td>396.7238</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>454.2256</td>
<td>227.6185</td>
<td>437.2031</td>
<td>219.1052</td>
<td>436.2191</td>
<td>218.6132</td>
<td>P</td>
<td>809.4668</td>
<td>405.2371</td>
<td>792.4403</td>
<td>396.7238</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>672.3352</td>
<td>336.6712</td>
<td>655.3086</td>
<td>328.1579</td>
<td>654.3246</td>
<td>327.6659</td>
<td>A</td>
<td>565.3457</td>
<td>283.1765</td>
<td>548.3191</td>
<td>274.6632</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>809.3941</td>
<td>405.2007</td>
<td>792.3675</td>
<td>396.6874</td>
<td>791.3835</td>
<td>396.1954</td>
<td>H</td>
<td>494.3085</td>
<td>247.6579</td>
<td>477.2820</td>
<td>239.1448</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>922.4781</td>
<td>461.7427</td>
<td>905.4516</td>
<td>453.2294</td>
<td>904.4576</td>
<td>452.7374</td>
<td>L</td>
<td>357.2466</td>
<td>170.1283</td>
<td>340.2251</td>
<td>170.6152</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1019.5309</td>
<td>510.2691</td>
<td>1002.5043</td>
<td>501.7558</td>
<td>1001.5203</td>
<td>501.2638</td>
<td>P</td>
<td>244.4566</td>
<td>122.5864</td>
<td>227.1390</td>
<td>114.0731</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0800</td>
<td>130.0833</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LCEKMAQFDALK
Found in Q9D8N0, Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1414.5331
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications: K4 : mal,C02 (K), with neutral loss 43.0090
Tons Score: 54 Expect: 0.001
Matches: 21/156 fragment ions using 44 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b***</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>263.0882</td>
<td>132.0478</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>1258.5265</td>
<td>629.7669</td>
<td>1241.4999</td>
<td>621.2536</td>
<td>1240.5159</td>
<td>620.7616</td>
</tr>
<tr>
<td>3</td>
<td>392.1308</td>
<td>196.5691</td>
<td></td>
<td>374.1203</td>
<td>187.5638</td>
<td>E</td>
<td>1110.4296</td>
<td>555.2684</td>
<td>1092.5030</td>
<td>546.7552</td>
<td>1091.5190</td>
<td>546.2531</td>
</tr>
<tr>
<td>4</td>
<td>562.2364</td>
<td>281.6218</td>
<td>545.2098</td>
<td>273.1085</td>
<td>544.2258</td>
<td>272.6165</td>
<td>K</td>
<td>986.1870</td>
<td>490.7471</td>
<td>963.4604</td>
<td>482.2339</td>
<td>962.4764</td>
</tr>
<tr>
<td>5</td>
<td>693.2769</td>
<td>347.1421</td>
<td>676.2503</td>
<td>338.6288</td>
<td>675.2663</td>
<td>338.1368</td>
<td>M</td>
<td>810.3815</td>
<td>402.6944</td>
<td>793.3549</td>
<td>397.1811</td>
<td>792.3709</td>
</tr>
<tr>
<td>7</td>
<td>892.3725</td>
<td>446.6899</td>
<td>875.3460</td>
<td>438.1766</td>
<td>874.3620</td>
<td>437.6846</td>
<td>Q</td>
<td>608.3039</td>
<td>304.6556</td>
<td>591.2773</td>
<td>298.1423</td>
<td>590.2933</td>
</tr>
<tr>
<td>8</td>
<td>1039.4410</td>
<td>520.2241</td>
<td>1022.4144</td>
<td>511.7108</td>
<td>1021.4304</td>
<td>511.2188</td>
<td>F</td>
<td>480.2453</td>
<td>240.6263</td>
<td>463.2187</td>
<td>232.1130</td>
<td>462.2347</td>
</tr>
<tr>
<td>9</td>
<td>1154.4679</td>
<td>577.7576</td>
<td>1137.4414</td>
<td>569.2243</td>
<td>1136.4573</td>
<td>568.7523</td>
<td>D</td>
<td>353.1769</td>
<td>167.0921</td>
<td>316.1503</td>
<td>158.5788</td>
<td>315.1663</td>
</tr>
<tr>
<td>10</td>
<td>1225.5050</td>
<td>613.2561</td>
<td>1208.4785</td>
<td>604.7429</td>
<td>1207.4944</td>
<td>604.2509</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ILGLLDTHLKLTR

Found in Q9DBM0, Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1400 Da Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1464.88200
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K10: +162.085 (Y), with neutral loss 48.08888
Ions Score: 60 Expect: 0.00024
Matches: 20/102 fragment ions using 48 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y+</th>
<th>y+''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>1308.7634</td>
<td>654.8853</td>
<td>1291.7360</td>
<td>646.3721</td>
<td>1290.7528</td>
<td>645.8801</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>L</td>
<td>1195.6793</td>
<td>598.3423</td>
<td>1178.6528</td>
<td>589.8300</td>
<td>1177.6688</td>
<td>589.3380</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>284.1969</td>
<td>142.8021</td>
<td>G</td>
<td>L</td>
<td>1138.6579</td>
<td>569.8326</td>
<td>1121.6313</td>
<td>561.3193</td>
<td>1120.6473</td>
<td>560.8273</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>397.2809</td>
<td>199.1441</td>
<td>L</td>
<td>1625.5753</td>
<td>813.2903</td>
<td>1608.5473</td>
<td>804.7773</td>
<td>1607.5633</td>
<td>804.2853</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>510.3650</td>
<td>255.6861</td>
<td>L</td>
<td>1124.4989</td>
<td>565.4785</td>
<td>1109.4632</td>
<td>556.9752</td>
<td>1108.4892</td>
<td>556.4872</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>625.3919</td>
<td>313.1996</td>
<td>D</td>
<td>T</td>
<td>797.4628</td>
<td>390.2350</td>
<td>780.4363</td>
<td>370.7218</td>
<td>779.4522</td>
<td>390.2298</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>726.4300</td>
<td>363.7324</td>
<td>T</td>
<td>845.4880</td>
<td>423.2476</td>
<td>827.4763</td>
<td>414.2246</td>
<td>817.9829</td>
<td>414.2246</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>863.4985</td>
<td>432.2529</td>
<td>H</td>
<td>L</td>
<td>559.3562</td>
<td>280.1817</td>
<td>542.3297</td>
<td>271.6685</td>
<td>541.3457</td>
<td>271.1765</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>976.5826</td>
<td>488.7849</td>
<td>L</td>
<td>1146.6881</td>
<td>573.8477</td>
<td>1129.6616</td>
<td>565.3344</td>
<td>1128.6776</td>
<td>564.8424</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1124.7358</td>
<td>624.3715</td>
<td>K</td>
<td>T</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>258.1561</td>
<td>129.5817</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1247.7093</td>
<td>615.8503</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DGSPGFSKFR

Found in Q9QXF8, Glycine N-methyltransferase OS=Mus musculus GN=Genm PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches ✘ Label matches used for scoring ✗

Monoisotopic mass of neutral peptide Mr(calc): 1182.5306

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y0</th>
<th>y0''</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td></td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>173.0557</td>
<td>87.0315</td>
<td></td>
<td>155.0451</td>
<td>78.0262</td>
<td>G</td>
<td>1024.5211</td>
<td>512.7642</td>
<td>1007.4945</td>
<td>504.2509</td>
<td>1006.5105</td>
<td>503.7589</td>
</tr>
<tr>
<td>3</td>
<td>280.0877</td>
<td>130.5475</td>
<td></td>
<td>242.0771</td>
<td>121.5422</td>
<td>S</td>
<td>967.4996</td>
<td>484.2534</td>
<td>950.4730</td>
<td>475.7402</td>
<td>949.4890</td>
<td>475.2482</td>
</tr>
<tr>
<td>4</td>
<td>357.1405</td>
<td>179.0739</td>
<td></td>
<td>339.1299</td>
<td>170.0686</td>
<td>P</td>
<td>880.6676</td>
<td>440.3734</td>
<td>863.4410</td>
<td>432.2241</td>
<td>862.4570</td>
<td>431.7321</td>
</tr>
<tr>
<td>5</td>
<td>414.1019</td>
<td>207.5846</td>
<td></td>
<td>396.1514</td>
<td>198.5793</td>
<td>G</td>
<td>783.4148</td>
<td>392.2110</td>
<td>766.3883</td>
<td>383.6978</td>
<td>765.4042</td>
<td>383.2058</td>
</tr>
<tr>
<td>7</td>
<td>648.2624</td>
<td>324.6348</td>
<td></td>
<td>630.2518</td>
<td>315.6295</td>
<td>S</td>
<td>579.3249</td>
<td>290.1661</td>
<td>562.2084</td>
<td>281.0628</td>
<td>561.3144</td>
<td>281.1608</td>
</tr>
</tbody>
</table>
| 8 | 818.3679 | 409.6876 | | 801.3414 | 401.1743 | K | 492.2929 | 246.6501 | 475.2653 | 238.1368 | 4
| 9 | 965.4363 | 483.2218 | | 948.4098 | 474.7083 | F | 522.1874 | 261.5973 | 505.1608 | 253.0840 | 2 |
| 10 | 175.1190 | 88.0631 | | 158.0924 | 79.5498 | R | | | | | | 1 |
MS/MS Fragmentation of LALKNIASMVR
Found in Q9QXF8, Glycine N-methyltransferase OS=Mus musculus GN=Gnt PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1500 Da Full range
Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1316.7122
Fixed modifications: NMTB (C) (apply to specified residues or termini only)
Variable modifications:
N4 : methyl (K), with neutral loss 48.02128
M9 : Oxidation (M), with neutral losses 0.00000(shown in table), 69.9859
Tone Score: 97 Expect: 0.001
Matches: 26/182 fragment ions using 30 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b1</th>
<th>b1**</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y1</th>
<th>y1**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td>A</td>
<td>115.6456</td>
<td>580.8264</td>
<td>1143.6181</td>
<td>572.3132</td>
<td>1142.6350</td>
<td>571.8212</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>298.2125</td>
<td>149.6099</td>
<td>L</td>
<td>1089.6085</td>
<td>545.3079</td>
<td>1072.5819</td>
<td>536.7946</td>
<td>1071.5979</td>
<td>536.3026</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>468.3180</td>
<td>234.6627</td>
<td>451.2915</td>
<td>226.1494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>695.4450</td>
<td>348.2262</td>
<td>678.4185</td>
<td>330.7129</td>
<td>I</td>
<td>692.3760</td>
<td>346.6916</td>
<td>675.3494</td>
<td>338.1783</td>
<td>674.3654</td>
<td>337.6853</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>853.5142</td>
<td>427.2607</td>
<td>836.4676</td>
<td>418.7475</td>
<td>S</td>
<td>598.2548</td>
<td>254.6310</td>
<td>491.2282</td>
<td>246.1178</td>
<td>490.2442</td>
<td>245.6258</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1000.5496</td>
<td>500.7784</td>
<td>983.5230</td>
<td>492.2652</td>
<td>M</td>
<td>421.2228</td>
<td>211.1150</td>
<td>404.1962</td>
<td>202.6017</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1099.6180</td>
<td>550.3126</td>
<td>1082.5914</td>
<td>541.7994</td>
<td>Y</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **NIYYKSDLTK**

Found in **Q9X848**, Glycine N-methyltransferase OS=Mus musculus GN=Guinat PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from **100** to **1200** Ds

Label all possible matches ☑ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1325.6452

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K5 : mal-CO2H (K), with neutral loss 43.01508

Ions Score: 16 **Expect:** 0.67

Matches: 2/36 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b0</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0502</td>
<td>58.0287</td>
<td>98.0237</td>
<td>49.5155</td>
<td>N</td>
<td>1172.6198</td>
<td>586.8135</td>
<td>1155.5932</td>
<td>578.3002</td>
<td>1154.6092</td>
<td>577.8082</td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0575</td>
<td>I</td>
<td>1059.5337</td>
<td>530.2715</td>
<td>1042.5092</td>
<td>521.7582</td>
<td>1041.5251</td>
<td>521.2562</td>
</tr>
<tr>
<td>3</td>
<td>351.1976</td>
<td>196.1024</td>
<td>374.1710</td>
<td>187.5982</td>
<td>Y</td>
<td>554.2609</td>
<td>277.6341</td>
<td>537.2344</td>
<td>269.1208</td>
<td>896.4724</td>
<td>448.3799</td>
</tr>
<tr>
<td>4</td>
<td>554.2609</td>
<td>277.6341</td>
<td>537.2344</td>
<td>269.1208</td>
<td>Y</td>
<td>272.3665</td>
<td>367.8689</td>
<td>707.3369</td>
<td>354.1736</td>
<td>733.4050</td>
<td>367.2082</td>
</tr>
<tr>
<td>5</td>
<td>733.4050</td>
<td>367.2082</td>
<td>716.3825</td>
<td>358.6949</td>
<td>K</td>
<td>811.3985</td>
<td>406.2029</td>
<td>794.3719</td>
<td>397.6896</td>
<td>563.3035</td>
<td>282.1554</td>
</tr>
<tr>
<td>6</td>
<td>926.4254</td>
<td>463.7164</td>
<td>909.3580</td>
<td>455.2031</td>
<td>D</td>
<td>1039.5095</td>
<td>520.2584</td>
<td>1022.4829</td>
<td>511.7451</td>
<td>1001.4989</td>
<td>511.2531</td>
</tr>
<tr>
<td>7</td>
<td>1140.5572</td>
<td>570.7822</td>
<td>1123.5306</td>
<td>562.2689</td>
<td>T</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1140.5572</td>
<td>570.7822</td>
<td>1123.5306</td>
<td>562.2689</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>361.2413</td>
<td>181.1259</td>
</tr>
<tr>
<td>9</td>
<td>1140.5572</td>
<td>570.7822</td>
<td>1123.5306</td>
<td>562.2689</td>
<td>L</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>172.1206</td>
<td>343.2340</td>
</tr>
<tr>
<td>10</td>
<td>1140.5572</td>
<td>570.7822</td>
<td>1123.5306</td>
<td>562.2689</td>
<td>T</td>
<td>248.1605</td>
<td>124.5839</td>
<td>231.1339</td>
<td>116.0706</td>
<td>230.1499</td>
<td>115.5786</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NCIGKQFAMNELK
Found in A2A974, Protein Cyp4a12b OS=Mus musculus GN=Cyp4a12b PE=2 SV=1

Monoisotopic mass of neutral peptide Mr(m/z): 1642.7153
Fixed modifications: N/C (C) (apply to specified residues or termini only)
Variable modifications:
K8 : methionine oxidation (M), with neutral loss 15.99494
M9 : oxidation (M), with neutral losses 0.00000 (shown in table), 48.9568
Ion Score: 85 Expect: 7.4e-65
Matches : 24/188 fragment ions using 28 most intense peaks (f10m)

| u | b | y** | y' | y0 | Seq. | y | y** | y' | y0 | y0 | y' | y0 | y0 |
|----|-----|-----|------|-----|------|-----|-----|------|-----|-----|------|-----|-----|-----|
| 1 | 115 1226 | 38.0827 | 38.0827 | 40.5135 | N | 1483.6599 | 743.3486 | 1668.6533 | 734.3433 | 1667.6793 | 734.3433 | 12
| 2 | 137 1127 | 247.0206 | 247.0206 | 240.0139 | C | 1336.6829 | 668.8301 | 1319.6664 | 660.3368 | 1318.6824 | 659.8494 | 11
| 3 | 151 1133 | 360.1046 | 360.1046 | 355.5660 | I | 1223.6099 | 612.3081 | 1206.5823 | 603.7548 | 1205.5953 | 603.3028 | 10
| 4 | 164 1138 | 417.1261 | 417.1261 | 409.0667 | G | 1166.5874 | 583.7973 | 1149.5609 | 575.2841 | 1148.5769 | 574.7921 | 9
| 5 | 177 1382 | 587.2316 | 587.2316 | 574.1194 | K | 995.4819 | 498.7446 | 979.4553 | 490.2213 | 978.4713 | 490.7593 | 8
| 6 | 150 1347 | 640.6620 | 640.6620 | 635.1487 | Q | 868.4233 | 424.7153 | 851.3968 | 426.2020 | 850.4128 | 425.7100 | 7
| 7 | 183 1355 | 822.3566 | 822.3566 | 817.8629 | F | 721.3549 | 361.1811 | 704.3284 | 352.6678 | 703.3443 | 352.1758 | 6
| 8 | 198 1314 | 993.3957 | 993.3957 | 987.2015 | A | 582.2824 | 252.1448 | 486.2558 | 242.6316 | 485.2718 | 243.1395 | 4
| 9 | 211 1306 | 1194.4740 | 1194.4740 | 1187.7407 | M | 389.2295 | 195.1234 | 372.2129 | 186.6101 | 371.2289 | 186.1181 | 3
| 10 | 225 1343 | 1386.6007 | 1386.6007 | 1375.7800 | E | 1453.6873 | 727.1317 | 1435.6007 | 718.3804 | 1435.6167 | 718.3120 | 12
| 11 | 239 1353 | 1578.7483 | 1578.7483 | 1567.8043 | L | 371.2289 | 186.6101 | 371.2289 | 186.6101 | 371.2289 | 186.6101 | 1
MS/MS Fragmentation of ILKDQDLQDLTR

Found in Protein Cyp4a12b G6-Mus musculus ON-Cyp4a12b PE-2 SV-1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1700 Da

Label all possible matches ○ Label matches used for scoring ●

Molecular mass of neutral peptide M_{calc}: 1605.9750

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K3: = m₇CO2 (K), with neutral loss 46.0930

Intra Score: 7 Expect: 0.0010

Matches: 18/102 fragment ions using 28 most intense peaks (help)

#	b	y	y⁺	y⁺⁺	b[−]	b⁺⁺	b^{+⁺⁺}	Seq.	y[−]	y⁺⁺	y⁺⁺⁺										
1								1													
2	227	114	114.0913	57.5492				1	1499.8064	730.4068	1482.7799	741.8936	1481.7938	741.4016							
3	397	199	199.1441	190.6308				1	1386.7223	693.3646	1369.6958	668.3515	1368.7118	694.3991							
4	512	256	256.8576	248.1443	494.2973	247.8523		1	1110.3199	551.2986	1084.5633	542.7853	1083.5793	542.3933							
5	640	320	320.6869	312.1736	622.3359	311.4816		1	1110.3199	551.2986	1084.5633	542.7853	1083.5793	542.3933							
7	868	434	434.7424	426.2291	850.6689	425.7371		1	858.5043	429.7558	841.4778	421.2425	840.4938	420.7505							
8	996	498	498.7717	490.2584	978.5253	489.7664		1	745.4263	373.2138	728.3957	564.7065	727.4097	364.2085							
9	1111	556	556.3051	547.7719	1093.5524	547.2798		1	617.3617	309.1945	600.3352	300.6712	599.3511	300.1792							
10	1224	612	612.8272	604.3139	1206.6615	603.8219		1	563.3848	251.6710	481.3082	243.1777	484.3242	242.6657							
11	1337	669	669.3692	660.8559	1319.7205	660.3639		1	388.2507	195.1290	372.2241	166.6157	371.2401	186.1237							
12	1438	711	711.9030	711.3788	1420.7682	710.8877		1	216.1666	138.3870	259.1401	120.0737	258.1561	120.3817							
13								1	175.1190	88.0651	158.0924	79.5468									
MS/MS Fragmentation of NCIGKQFAMNELK

Found in A24974. Protein Cvp4a12b OS=Mus musculus GN=Cvp4a12b PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

On or off, Plot from 200 to 1600 Da

Label all possible matches or Label matches used for scoring

Monoisotopic mass of neutral peptide

- *M*_{calc}: 1426.7204

Fixed modifications: MG (C) (apply to specified residues or termini only)

Variable modifications:
- K: am1.C02 (R), with neutral loss 41.0928

Ions Score: 40 **Expect:** 0.0016

Matches: 29/120 Fragment ions using 66 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b'</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>264.0471</td>
<td>152.5272</td>
<td>247.0206</td>
<td>124.0139</td>
<td>C</td>
<td>1469.6949</td>
<td>735.3511</td>
<td>1452.6884</td>
<td>726.8378</td>
<td>1451.6844</td>
<td>726.3458</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>377.3122</td>
<td>189.0692</td>
<td>260.1046</td>
<td>180.5560</td>
<td>I</td>
<td>1329.6980</td>
<td>660.6527</td>
<td>1303.6715</td>
<td>652.3394</td>
<td>1302.6875</td>
<td>651.8474</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>454.1526</td>
<td>217.7900</td>
<td>417.1261</td>
<td>209.0667</td>
<td>G</td>
<td>1297.6149</td>
<td>604.3104</td>
<td>1190.5874</td>
<td>595.7973</td>
<td>1189.6024</td>
<td>595.3053</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>604.2582</td>
<td>302.6327</td>
<td>587.2316</td>
<td>294.1194</td>
<td>K</td>
<td>1159.5925</td>
<td>575.7990</td>
<td>1133.5660</td>
<td>567.2866</td>
<td>1132.5819</td>
<td>566.7946</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>732.3167</td>
<td>366.6620</td>
<td>715.2902</td>
<td>358.1487</td>
<td>Q</td>
<td>989.4870</td>
<td>490.7471</td>
<td>962.4604</td>
<td>482.2339</td>
<td>962.4764</td>
<td>481.7418</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>879.3852</td>
<td>440.1962</td>
<td>862.3286</td>
<td>431.6829</td>
<td>F</td>
<td>852.4234</td>
<td>426.7178</td>
<td>835.4019</td>
<td>418.2046</td>
<td>834.4178</td>
<td>417.7126</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>950.4223</td>
<td>475.7148</td>
<td>933.3957</td>
<td>467.2015</td>
<td>A</td>
<td>785.3600</td>
<td>533.1836</td>
<td>688.3334</td>
<td>544.6704</td>
<td>687.3494</td>
<td>544.1783</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1081.4628</td>
<td>541.2350</td>
<td>1064.4362</td>
<td>532.7217</td>
<td>M</td>
<td>634.3229</td>
<td>317.6651</td>
<td>617.2963</td>
<td>309.1518</td>
<td>616.2123</td>
<td>308.6598</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1195.5957</td>
<td>598.2565</td>
<td>1178.4791</td>
<td>589.7432</td>
<td>N</td>
<td>593.3882</td>
<td>252.1448</td>
<td>486.2558</td>
<td>243.6316</td>
<td>485.2718</td>
<td>243.1395</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1437.6625</td>
<td>719.3158</td>
<td>1420.6658</td>
<td>710.8065</td>
<td>L</td>
<td>269.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.3468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LYSEFLGKR

Found in A2AE89. Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstmu1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plo1t from 150 to 1150 Da Full range

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1197.6030

Fixed modifications: MMIS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>Res</th>
<th>AA</th>
<th>Mod</th>
<th>Charge</th>
<th>m/z</th>
<th>pM</th>
<th>match</th>
<th>ions Score</th>
<th>Expect</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1041.5364</td>
<td>S</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>1024.5098</td>
<td>S</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>878.4730</td>
<td>S</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>791.4410</td>
<td>S</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>662.3984</td>
<td>S</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>515.3300</td>
<td>S</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>402.2459</td>
<td>S</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>345.2245</td>
<td>S</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>S</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Ions Score: 38 **Expect:** 0.0015

Matches: 25/68 fragment ions using 66 most intense peaks (help)
MS/MS Fragmentation of MKLYSEFLGK

Found in A2AE89. Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstm1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1200 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1316.5322

Fixed modifications: MTSS (C) (apply to specified residues or termini only)
Variable modifications:
M1: Oxidation (M), with neutral losses 0.0000 (shown in table), 63.9988
K2: met_002 (K), with neutral loss 49.9998

Ions Score: 95 Expect: 0.0026

Matches: 14/134 fragment ions using 21 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y0</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>318.1482</td>
<td>74.5250</td>
<td>M</td>
<td>1126.6143</td>
<td>563.8108</td>
<td>1109.5877</td>
<td>555.2975</td>
<td>1108.6037</td>
<td>554.8055</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>431.3223</td>
<td>216.1198</td>
<td>L</td>
<td>956.5988</td>
<td>478.7580</td>
<td>939.4822</td>
<td>470.2447</td>
<td>938.4982</td>
<td>469.7527</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>594.2956</td>
<td>297.6514</td>
<td>Y</td>
<td>843.4247</td>
<td>422.2160</td>
<td>826.3981</td>
<td>413.7027</td>
<td>825.4141</td>
<td>413.2107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>681.3276</td>
<td>341.1675</td>
<td>S</td>
<td>680.3614</td>
<td>340.6843</td>
<td>663.3348</td>
<td>332.1710</td>
<td>662.3508</td>
<td>331.6790</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>810.3702</td>
<td>405.6887</td>
<td>F</td>
<td>593.3293</td>
<td>297.1683</td>
<td>576.3028</td>
<td>288.6560</td>
<td>575.3188</td>
<td>288.1630</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>957.4386</td>
<td>479.2230</td>
<td>H</td>
<td>464.2867</td>
<td>232.6470</td>
<td>447.2602</td>
<td>224.1337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1070.5227</td>
<td>535.7650</td>
<td>L</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1127.5442</td>
<td>564.2757</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1471.1128</td>
<td>74.0600</td>
<td>K</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MKLYSEFLGK

Found in A2AF89, Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstm1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

On: Plot from 150 to 1200 Da

Label all possible matches

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>1126.6143</td>
<td>563.8108</td>
<td>1109.5877</td>
<td>555.2975</td>
<td>1108.6037</td>
<td>554.8055</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>302.1533</td>
<td>151.5803</td>
<td>285.1267</td>
<td>143.0670</td>
<td></td>
<td></td>
<td>K</td>
<td>956.5088</td>
<td>478.7580</td>
<td>939.4822</td>
<td>470.2447</td>
<td>938.4982</td>
<td>469.7527</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>415.2374</td>
<td>208.1223</td>
<td>398.2108</td>
<td>199.6090</td>
<td></td>
<td></td>
<td>L</td>
<td>843.4224</td>
<td>422.2160</td>
<td>826.3981</td>
<td>413.7027</td>
<td>825.4141</td>
<td>413.2107</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>578.3007</td>
<td>289.6540</td>
<td>561.2741</td>
<td>281.1407</td>
<td></td>
<td></td>
<td>Y</td>
<td>689.3614</td>
<td>340.6843</td>
<td>663.3348</td>
<td>332.1710</td>
<td>662.3508</td>
<td>331.6790</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>655.3327</td>
<td>333.1700</td>
<td>648.3062</td>
<td>324.6567</td>
<td></td>
<td></td>
<td>S</td>
<td>593.3293</td>
<td>297.1683</td>
<td>576.3028</td>
<td>288.6550</td>
<td>575.3188</td>
<td>288.1630</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>941.4437</td>
<td>471.2255</td>
<td>924.4172</td>
<td>462.7122</td>
<td></td>
<td></td>
<td>F</td>
<td>1036.5172</td>
<td>519.2543</td>
<td>1036.5172</td>
<td>518.7622</td>
<td>306.1918</td>
<td>150.5995</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1054.5278</td>
<td>527.7675</td>
<td>1037.5012</td>
<td>519.2543</td>
<td></td>
<td></td>
<td>L</td>
<td>317.2183</td>
<td>159.1128</td>
<td>306.1918</td>
<td>150.5995</td>
<td>187.1077</td>
<td>94.0575</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1111.5492</td>
<td>556.2738</td>
<td>1094.5227</td>
<td>547.7650</td>
<td></td>
<td></td>
<td>G</td>
<td>204.1343</td>
<td>102.5768</td>
<td>187.1077</td>
<td>94.0575</td>
<td>65.5468</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0500</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **MLEYTDSSYDEKR**
Found in **A2AI89**, Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstmu1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Ok, Plot from 200 to 1800 Da
Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Me(sole): 1834.7391
Fixed modifications: HET3 (C) (apply to specified residues or termini only)
Variable modifications:
K15 : m/z CO2 (R), with neutral loss 44.0158
Ions Score: 45 Expect: 7.5e-065

Matches : 14/122 Fragment ions using 25 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b^+</th>
<th>b^+^+</th>
<th>b^0</th>
<th>b^0^+</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^+^+</th>
<th>y^0</th>
<th>y^0^+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>245.1318</td>
<td>123.0686</td>
<td>L</td>
<td>1669.7701</td>
<td>830.8857</td>
<td>1647.7433</td>
<td>822.3754</td>
<td>1642.7595</td>
<td>821.8533</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>358.2159</td>
<td>179.6516</td>
<td>L</td>
<td>1547.6660</td>
<td>774.3466</td>
<td>1530.6595</td>
<td>765.8334</td>
<td>1529.6754</td>
<td>765.3414</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>487.2582</td>
<td>244.1320</td>
<td>E</td>
<td>482.2479</td>
<td>225.1276</td>
<td>1434.6019</td>
<td>717.8046</td>
<td>1417.5734</td>
<td>709.2913</td>
<td>1416.3914</td>
<td>798.7993</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>650.3218</td>
<td>325.1604</td>
<td>Y</td>
<td>1803.5394</td>
<td>653.2833</td>
<td>1288.5328</td>
<td>644.7700</td>
<td>1287.5488</td>
<td>644.2780</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>751.3695</td>
<td>376.1884</td>
<td>T</td>
<td>1142.4960</td>
<td>571.7316</td>
<td>1125.4695</td>
<td>563.3384</td>
<td>1124.4855</td>
<td>562.7464</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>866.3964</td>
<td>433.7019</td>
<td>D</td>
<td>846.3859</td>
<td>423.6966</td>
<td>1041.4483</td>
<td>521.2278</td>
<td>1024.4218</td>
<td>512.7415</td>
<td>1023.4378</td>
<td>512.2225</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>953.3325</td>
<td>477.2179</td>
<td>S</td>
<td>915.4179</td>
<td>468.2126</td>
<td>926.4214</td>
<td>463.7143</td>
<td>909.3949</td>
<td>453.2011</td>
<td>908.4108</td>
<td>454.7901</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1040.4603</td>
<td>520.7339</td>
<td>S</td>
<td>839.3894</td>
<td>420.1953</td>
<td>822.3623</td>
<td>411.6851</td>
<td>821.3788</td>
<td>411.1950</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1123.5288</td>
<td>502.2655</td>
<td>Y</td>
<td>1182.5135</td>
<td>595.2603</td>
<td>752.3573</td>
<td>378.6823</td>
<td>735.3308</td>
<td>368.1690</td>
<td>734.3468</td>
<td>367.8770</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1318.5508</td>
<td>659.7790</td>
<td>D</td>
<td>389.2940</td>
<td>295.1506</td>
<td>372.2675</td>
<td>286.6374</td>
<td>371.2823</td>
<td>286.1454</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1447.5934</td>
<td>724.3403</td>
<td>E</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6539</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1617.6989</td>
<td>809.3531</td>
<td>K</td>
<td>345.2243</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>164.6026</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>R</td>
<td>173.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.3498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MLMKFGDDPVTK

Found in **A2AQN4**, Acyl-coenzyme A synthetase, cytoplasmic OS=Mus musculus GN=Acss2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches ◎ Label matches used for scoring ◎

Monoisotopic mass of neutral peptide Mr(calc): 1466.6785

Fixed modifications: **MHIS (C)** (apply to specified residues or termini only)

Variable modifications:

- **K4:** m/z OOO2 (K), with neutral loss 44.9899

Tune Score: 46 **Expect:** 0.0012

Matches: 10/122 fragment ions using 36 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b*</th>
<th>b**+**</th>
<th>b0</th>
<th>b0**+**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y*</th>
<th>y**+**</th>
<th>y0</th>
<th>y0**+**</th>
<th>y0*</th>
<th>y0**+**</th>
<th>y0**+**</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>245.1318</td>
<td>123.0696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>376.1723</td>
<td>188.5898</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>546.2778</td>
<td>273.6426</td>
<td>529.2513</td>
<td>265.1293</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>693.3463</td>
<td>347.1768</td>
<td>676.3197</td>
<td>338.6035</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>750.3677</td>
<td>375.6875</td>
<td>733.3412</td>
<td>367.1742</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>865.3947</td>
<td>433.2010</td>
<td>848.3681</td>
<td>424.6877</td>
<td>847.3841</td>
<td>424.1957</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>980.4216</td>
<td>490.7144</td>
<td>963.3951</td>
<td>482.2012</td>
<td>962.4110</td>
<td>481.7092</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1077.4744</td>
<td>539.2408</td>
<td>1060.4478</td>
<td>530.7275</td>
<td>1059.4638</td>
<td>530.2353</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1176.5428</td>
<td>588.7750</td>
<td>1159.5162</td>
<td>580.2018</td>
<td>1158.5322</td>
<td>579.7697</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1277.5905</td>
<td>639.2989</td>
<td>1260.5639</td>
<td>630.7856</td>
<td>1259.5799</td>
<td>630.2936</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

m/z 1466.6785 (calc) vs. **m/z 1464.6785** (found)

Charge: 5

MLMKFGDDPVTK
MS/MS Fragmentation of MLMKFGDDPVTK

Found in A2AQN4, Acetyl-coenzyme A synthetase, cytoplasmic OS=Mus musculus GN=Acsc2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot zoom: 200 to 1400 De Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(m/z): 1492.6795

Fixed modifications: MAET (△) apply to specified residues or termini only.

Variable modifications:
- Oxidation (M)
- N-term. 0.0569 (shown in table), 69.5925
- K 49.0698

Ion Score: Zn: 2.82 Expect: 0.00002

Matches: 10/160 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>−</sup></th>
<th>b<sup>−−</sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>0+</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>−</sup></th>
<th>y<sup>−−</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0+</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>245.1512</td>
<td>123.0696</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>392.1672</td>
<td>196.5813</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>562.2723</td>
<td>281.6400</td>
<td>254.1462</td>
<td>273.1267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>709.3412</td>
<td>355.1742</td>
<td>692.3146</td>
<td>346.6069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>766.3636</td>
<td>383.6850</td>
<td>749.3361</td>
<td>375.1717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>831.3896</td>
<td>416.1984</td>
<td>864.3630</td>
<td>432.6832</td>
<td>963.3709</td>
<td>432.1931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>996.4165</td>
<td>498.7119</td>
<td>979.3900</td>
<td>490.1986</td>
<td>978.4060</td>
<td>489.7065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>1093.4693</td>
<td>547.2383</td>
<td>1076.4427</td>
<td>538.7250</td>
<td>1075.4587</td>
<td>538.2330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>V</td>
<td>1192.5377</td>
<td>596.7725</td>
<td>1175.5111</td>
<td>588.2592</td>
<td>1174.5271</td>
<td>587.7672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
<td>1293.5854</td>
<td>647.2963</td>
<td>1276.5388</td>
<td>638.7831</td>
<td>1275.5748</td>
<td>638.2910</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MLMKFGDDPVTK

Found in A2A0N4. Acetyl-coenzyme A synthetase, cytosolic OS=Mus musculus GN=Acss2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or (Plot from) 200 to 1400 Da (Full range)

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide (Mono): 1493.6684

Fixed modifications: Met(O) (C) (apply to specified residues or termini only)

Variable modifications:
- M1: Oxidation (M, with neutral losses 0.0000 shown in table), 0.0683
- M2: Oxidation (M, with neutral losses 0.0000 shown in table), 0.0683
- M4: N-linked glycosylation (N), with neutral losses 0.0464

Ion Source: ESI **Expect:** 0.02

Matches: 51/172 fragment ions using 22 most intense peaks

<table>
<thead>
<tr>
<th>u</th>
<th>b8</th>
<th>b2</th>
<th>b2++</th>
<th>b0</th>
<th>b1++</th>
<th>Seq</th>
<th>y</th>
<th>y+</th>
<th>y--</th>
<th>y'</th>
<th>y''</th>
<th>y''+</th>
<th>y'0</th>
<th>y''+</th>
<th>y''++</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0427</td>
<td>74.5259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261.1267</td>
<td>151.0670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>408.1621</td>
<td>204.5847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>1195.6566</td>
<td>598.2868</td>
<td>1178.5398</td>
<td>589.7735</td>
<td>1177.5558</td>
<td>589.2815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>578.2677</td>
<td>289.6575</td>
<td>561.2411</td>
<td>281.1242</td>
<td></td>
<td></td>
<td>K</td>
<td>1048.6310</td>
<td>524.7691</td>
<td>1031.5044</td>
<td>516.3233</td>
<td>1030.5204</td>
<td>515.7639</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>725.3361</td>
<td>363.1717</td>
<td>708.3905</td>
<td>354.6584</td>
<td></td>
<td></td>
<td>F</td>
<td>878.4254</td>
<td>439.7164</td>
<td>861.3898</td>
<td>431.2031</td>
<td>860.4149</td>
<td>430.1111</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>782.5320</td>
<td>391.6824</td>
<td>765.3110</td>
<td>381.1691</td>
<td></td>
<td></td>
<td>G</td>
<td>731.2370</td>
<td>366.1391</td>
<td>714.3503</td>
<td>377.6689</td>
<td>713.3464</td>
<td>377.1759</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>897.3845</td>
<td>449.1595</td>
<td>830.3579</td>
<td>440.6826</td>
<td>879.7379</td>
<td>440.1906</td>
<td>D</td>
<td>674.3355</td>
<td>337.6714</td>
<td>657.7090</td>
<td>329.1581</td>
<td>656.3250</td>
<td>328.6661</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1109.4642</td>
<td>555.2257</td>
<td>1092.4376</td>
<td>546.7225</td>
<td>1091.4526</td>
<td>546.3205</td>
<td>P</td>
<td>444.2817</td>
<td>222.6645</td>
<td>427.2551</td>
<td>214.1312</td>
<td>426.2711</td>
<td>212.6924</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1309.5903</td>
<td>655.2938</td>
<td>1292.5537</td>
<td>646.7805</td>
<td>1291.5697</td>
<td>646.3885</td>
<td>T</td>
<td>248.1605</td>
<td>124.5839</td>
<td>231.1339</td>
<td>116.0766</td>
<td>230.1499</td>
<td>115.5786</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0690</td>
<td>139.9863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LCENIAGHLK

Found in A2AL20, Catalase OS=Mus musculus GN=Cat PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1228.5580
Fixed modifications: MHS [C] (apply to specified residues or termini only)
Variable modifications:
K10 : m/z 442.2915 [K], with neutral loss 43.9898
Ions Score: 28 Expect: 0.009
Matches to Fragment ion spectrum: 17/94 fragment ions using 44 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y*''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>263.0882</td>
<td>132.0478</td>
<td>C</td>
<td>1072.4914</td>
<td>336.7493</td>
<td>1055.4619</td>
<td>328.2361</td>
<td>1054.4808</td>
<td>527.7441</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>392.1308</td>
<td>196.5601</td>
<td></td>
<td>374.1203</td>
<td>187.5638</td>
<td>E</td>
<td>923.4945</td>
<td>462.2509</td>
<td>906.4680</td>
<td>453.7376</td>
<td>905.4839</td>
<td>453.2456</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>506.1738</td>
<td>253.5905</td>
<td>489.1472</td>
<td>245.0772</td>
<td>488.1632</td>
<td>244.5822</td>
<td>N</td>
<td>794.4519</td>
<td>397.7296</td>
<td>777.4254</td>
<td>389.2163</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>619.2578</td>
<td>310.1326</td>
<td>602.2313</td>
<td>301.6193</td>
<td>601.2473</td>
<td>301.1273</td>
<td>I</td>
<td>686.4990</td>
<td>340.7081</td>
<td>663.3824</td>
<td>332.1949</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>690.2949</td>
<td>345.6511</td>
<td>673.2684</td>
<td>337.1378</td>
<td>672.2844</td>
<td>336.6458</td>
<td>A</td>
<td>567.3249</td>
<td>284.1661</td>
<td>550.2984</td>
<td>275.6528</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>747.3164</td>
<td>374.1618</td>
<td>730.2899</td>
<td>365.6486</td>
<td>729.3058</td>
<td>365.1566</td>
<td>G</td>
<td>496.2878</td>
<td>248.0475</td>
<td>479.2613</td>
<td>240.1343</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>884.3753</td>
<td>442.9613</td>
<td>867.3488</td>
<td>434.1780</td>
<td>866.3648</td>
<td>433.5860</td>
<td>H</td>
<td>439.2663</td>
<td>220.1368</td>
<td>422.3928</td>
<td>211.0235</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>997.4594</td>
<td>492.2333</td>
<td>980.4378</td>
<td>490.7201</td>
<td>979.4488</td>
<td>490.2280</td>
<td>L</td>
<td>902.2074</td>
<td>151.0074</td>
<td>285.1809</td>
<td>143.0941</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>188.1234</td>
<td>95.0563</td>
<td>172.0963</td>
<td>86.5520</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KALDIAE.NEMPGLMR**

Found in **AZAL.T5**, Adenocytoxinses (Fragment) O5=Mas musculus GN=Ahcy PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, **Plot from** 500 to 1000 Da **Full range**

Label possible matches **Label matches used for scoring**

KALDIAE.NEMPGLMR

Monoisotopic mass of neutral peptide Mr(calc): 1772.2947

Fixed modifications: MMR (apply to specified residues or termini only)
Variable modifications:
K = S, M

last Severe: S8 K = 0.002

Matches : 50/100 fragment ions using 95 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b0</th>
<th>b0'</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1123</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>A</td>
<td>1559.7556</td>
<td>780.3815</td>
<td>1542.7291</td>
<td>771.1862</td>
<td>1541.7451</td>
<td>771.3762</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1524</td>
<td>113.0653</td>
<td>D</td>
<td>L</td>
<td>1148.7185</td>
<td>744.8629</td>
<td>1471.6520</td>
<td>736.3496</td>
<td>1470.7079</td>
<td>725.8276</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>333.2340</td>
<td>178.1206</td>
<td>338.2074</td>
<td>169.6074</td>
<td>D</td>
<td>1375.6344</td>
<td>888.3209</td>
<td>1336.6079</td>
<td>879.6076</td>
<td>1337.6329</td>
<td>869.3156</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>470.2609</td>
<td>225.6341</td>
<td>453.3244</td>
<td>227.1208</td>
<td>I</td>
<td>1260.6075</td>
<td>630.8074</td>
<td>1245.5810</td>
<td>622.2941</td>
<td>1242.5969</td>
<td>621.8021</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>583.3450</td>
<td>292.1761</td>
<td>565.3184</td>
<td>283.6629</td>
<td>A</td>
<td>1147.5234</td>
<td>574.2659</td>
<td>1130.4669</td>
<td>565.7521</td>
<td>1129.5192</td>
<td>565.2601</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>654.3821</td>
<td>327.6947</td>
<td>637.3566</td>
<td>319.1814</td>
<td>F</td>
<td>1076.4863</td>
<td>538.7468</td>
<td>1059.4596</td>
<td>530.2335</td>
<td>1058.4738</td>
<td>529.7415</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>897.4676</td>
<td>440.2374</td>
<td>880.4411</td>
<td>440.7242</td>
<td>N</td>
<td>897.4676</td>
<td>440.2374</td>
<td>930.4172</td>
<td>465.7122</td>
<td>929.4322</td>
<td>465.2202</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1026.5192</td>
<td>512.7587</td>
<td>1009.4837</td>
<td>505.2455</td>
<td>M</td>
<td>1157.5397</td>
<td>576.2790</td>
<td>1140.5242</td>
<td>570.7657</td>
<td>1139.5401</td>
<td>570.2737</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1157.5397</td>
<td>576.2790</td>
<td>1140.5242</td>
<td>570.7657</td>
<td>M</td>
<td>1157.5397</td>
<td>576.2790</td>
<td>1140.5242</td>
<td>570.7657</td>
<td>1139.5401</td>
<td>570.2737</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1254.6053</td>
<td>627.8054</td>
<td>1237.7569</td>
<td>619.3921</td>
<td>P</td>
<td>1254.6053</td>
<td>627.8054</td>
<td>1237.7569</td>
<td>619.3921</td>
<td>1256.5929</td>
<td>618.8001</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1294.5984</td>
<td>647.8028</td>
<td>G</td>
<td>1311.6249</td>
<td>656.3161</td>
<td>1294.5984</td>
<td>647.8028</td>
<td>1310.6249</td>
<td>647.8028</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1535.7453</td>
<td>778.3784</td>
<td>1538.7229</td>
<td>769.8651</td>
<td>M</td>
<td>1535.7453</td>
<td>778.3784</td>
<td>1538.7229</td>
<td>769.8651</td>
<td>1537.7383</td>
<td>769.3731</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>173.1190</td>
<td>88.0651</td>
<td>158.0924</td>
<td>R</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KDAVSFYVSR
Found in A2ANX6. Very long-chain acyl-CoA synthetase (Fragment) OS=Mus musculus GN=Slc27a2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Put from to Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1966.6721
Fixed modifications: YMTS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : m/z 162.002 (K), with neutral loss 43.9999

Ions Score: 11 Expect: 0.25
Matches : 7/114 fragment ions using 11 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b~</th>
<th>b*</th>
<th>b~*</th>
<th>b0</th>
<th>Seq.</th>
<th>y</th>
<th>y~</th>
<th>y*</th>
<th>y~*</th>
<th>y0</th>
<th>y0~*</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td>D</td>
<td>1142.5841</td>
<td>571.7957</td>
<td>1125.5575</td>
<td>563.2824</td>
<td>1124.5735</td>
<td>562.7904</td>
</tr>
<tr>
<td>2</td>
<td>286.1397</td>
<td>143.5735</td>
<td>269.1332</td>
<td>135.0602</td>
<td>268.1292</td>
<td>134.5682</td>
<td>D</td>
<td>1142.5841</td>
<td>571.7957</td>
<td>1125.5575</td>
<td>563.2824</td>
<td>1124.5735</td>
<td>562.7904</td>
</tr>
<tr>
<td>3</td>
<td>357.1769</td>
<td>179.0921</td>
<td>340.1503</td>
<td>170.5788</td>
<td>339.1663</td>
<td>170.0868</td>
<td>A</td>
<td>1027.5571</td>
<td>514.2822</td>
<td>1010.5306</td>
<td>505.7689</td>
<td>1009.5465</td>
<td>505.2769</td>
</tr>
<tr>
<td>4</td>
<td>456.2453</td>
<td>228.8263</td>
<td>439.2187</td>
<td>220.1130</td>
<td>438.2347</td>
<td>219.6210</td>
<td>V</td>
<td>936.3200</td>
<td>478.7636</td>
<td>939.4934</td>
<td>470.2504</td>
<td>938.5094</td>
<td>469.7584</td>
</tr>
<tr>
<td>5</td>
<td>543.2773</td>
<td>272.1423</td>
<td>526.2508</td>
<td>263.6290</td>
<td>525.2667</td>
<td>263.1370</td>
<td>S</td>
<td>837.4516</td>
<td>429.2294</td>
<td>840.4250</td>
<td>420.7162</td>
<td>839.4410</td>
<td>420.2241</td>
</tr>
<tr>
<td>6</td>
<td>642.3457</td>
<td>321.6765</td>
<td>625.3192</td>
<td>313.1632</td>
<td>624.3352</td>
<td>312.6712</td>
<td>V</td>
<td>770.4196</td>
<td>385.7134</td>
<td>753.3950</td>
<td>377.2001</td>
<td>752.4090</td>
<td>376.7081</td>
</tr>
<tr>
<td>7</td>
<td>789.4141</td>
<td>395.2107</td>
<td>772.3876</td>
<td>386.6974</td>
<td>771.4036</td>
<td>386.2054</td>
<td>F</td>
<td>671.3511</td>
<td>336.1792</td>
<td>654.3246</td>
<td>327.6659</td>
<td>653.3406</td>
<td>327.1793</td>
</tr>
<tr>
<td>8</td>
<td>952.4775</td>
<td>476.7424</td>
<td>935.4509</td>
<td>468.2291</td>
<td>934.4659</td>
<td>467.7371</td>
<td>Y</td>
<td>524.2827</td>
<td>262.6450</td>
<td>507.2562</td>
<td>254.1317</td>
<td>506.2722</td>
<td>253.6597</td>
</tr>
<tr>
<td>9</td>
<td>1051.5459</td>
<td>526.2766</td>
<td>1034.5193</td>
<td>517.7633</td>
<td>1033.5333</td>
<td>517.2713</td>
<td>Y</td>
<td>361.2194</td>
<td>181.1133</td>
<td>344.1928</td>
<td>172.6001</td>
<td>343.2088</td>
<td>172.1081</td>
</tr>
<tr>
<td>10</td>
<td>1138.5779</td>
<td>569.7926</td>
<td>1121.5514</td>
<td>561.2793</td>
<td>1120.5673</td>
<td>560.7873</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALEKISR
Found in B1AU25, Apoptosis-inducing factor 1, mitochondrial OS=Mus musculus GN=Aifm1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 901.4869
Fixed modifications: HYS (C) (apply to specified residues or termini only)
Variable modifications:
E4 : mal_COO2 (K), with neutral loss 43.0588

Matches : 6/60 fragment ions using 7 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y'0</th>
<th>y'0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>787.4672</td>
<td>394.2373</td>
<td>770.4407</td>
<td>385.7240</td>
<td>769.4567</td>
<td>385.2320</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | 314.1710 | 157.5892 | | | | | E | 674.3832 | 337.6952 | 657.3566 | 329.1819 | 656.3726 | 328.6899 | 6
| 4 | 484.2766 | 242.6419 | 467.2500 | 234.1287 | 466.2660 | 233.6366 | K | 545.3406 | 273.1739 | 528.3140 | 264.6606 | 527.3300 | 264.1686 | 5
| 5 | 597.3606 | 299.1840 | 580.3341 | 290.6707 | 579.3501 | 290.1787 | I | 375.2350 | 188.1212 | 358.2085 | 179.6079 | 357.2245 | 179.1159 | 4
| 6 | 684.3927 | 342.7000 | 667.3661 | 334.1867 | 666.3821 | 333.6947 | S | 262.1510 | 131.5791 | 245.1244 | 123.0659 | 244.1404 | 122.5738 | 3
| 7 | | | | | | | R | 175.1190 | 88.0631 | 158.0924 | 79.5498 | | | 2

Hosting: Swiss-Prot
Database: IPI_MOUSE_v3.9
MS/MS Fragmentation of VMGLGLSPEE KQR
Found in B1A125, Apoptosis-inducing factor 1, mitochondrial OS-Mus musculus GN-Aif1 PE-2 SV-1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(calc) : 1528.7655
Fixed modifications: NHEGS (C) (apply to specified residues or terminal only)
Variable modifications:
K11 : mal-COOH (R), with neutral loss 43.9500
Ions Score: 20 Expect: 0.088
Matches : 4/106 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b1-30</th>
<th>k1-30</th>
<th>Seqr</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y(2)-y(1)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>231.1182</td>
<td>116.0617</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>1386.7016</td>
<td>693.3529</td>
<td>1569.6789</td>
<td>1598.6946</td>
<td>683.3427</td>
</tr>
<tr>
<td>3</td>
<td>328.1276</td>
<td>144.5725</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>1225.6641</td>
<td>628.3357</td>
<td>1238.8373</td>
<td>1237.8533</td>
<td>619.8224</td>
</tr>
<tr>
<td>4</td>
<td>401.2217</td>
<td>201.1145</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1198.6426</td>
<td>599.3220</td>
<td>1181.6161</td>
<td>591.3117</td>
<td>1180.6231</td>
</tr>
<tr>
<td>5</td>
<td>458.3432</td>
<td>229.6252</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>1083.5386</td>
<td>543.2829</td>
<td>1066.5320</td>
<td>543.7696</td>
<td>1067.5400</td>
</tr>
<tr>
<td>6</td>
<td>571.3272</td>
<td>286.1673</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1028.5371</td>
<td>514.7722</td>
<td>1011.5306</td>
<td>506.2389</td>
<td>1010.5265</td>
</tr>
<tr>
<td>7</td>
<td>658.3593</td>
<td>329.6833</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>915.4530</td>
<td>459.2302</td>
<td>898.4265</td>
<td>449.7169</td>
<td>897.4425</td>
</tr>
<tr>
<td>9</td>
<td>834.4566</td>
<td>442.7309</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>731.3682</td>
<td>366.1878</td>
<td>714.3417</td>
<td>357.6745</td>
<td>713.3777</td>
</tr>
<tr>
<td>10</td>
<td>1013.4972</td>
<td>507.2322</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>955.4866</td>
<td>498.2470</td>
<td>942.2991</td>
<td>498.2470</td>
<td>942.2991</td>
</tr>
<tr>
<td>11</td>
<td>1183.6027</td>
<td>592.3050</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>473.2831</td>
<td>237.1452</td>
<td>456.2565</td>
<td>237.1452</td>
<td>456.2565</td>
</tr>
<tr>
<td>12</td>
<td>1511.6513</td>
<td>656.3343</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>303.1775</td>
<td>152.0224</td>
<td>286.1310</td>
<td>151.0523</td>
<td>286.1310</td>
</tr>
<tr>
<td>13</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GNMVKLNDGSQITFEK

Found in **BLAU25**, Apoptosis-inducing factor 1, mitochondrial OS=**Mus musculus** GN=Aimf1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or: Plot from **200** to **6000** Da

Label all possible matches ☐ Label matches used for scoring ☐

Heteroatomic mass of neutral peptide Hm(m/e): 888.8624

Fixed modifications: M(r2) (C) (Apply to specified residues or terminal only)

Variable modifications:
- **K** (n=1) **CO2H** (E), with neutral loss 0.9890

Tons Score: 25 **Expect:** 0.51

Matches: 25/162 fragment ions using 40 most intense peaks

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>b</td>
<td>b++</td>
<td>b+</td>
<td>b+++</td>
<td>b++</td>
<td>b</td>
<td>b++</td>
<td>b+++</td>
<td>b</td>
<td>b+++</td>
<td>b++</td>
<td>b+++</td>
<td>b++</td>
<td>b+++</td>
<td>b</td>
</tr>
<tr>
<td>58.0287</td>
<td>29.5180</td>
<td>172.0717</td>
<td>86.3959</td>
<td>155.0451</td>
<td>78.0626</td>
<td>N</td>
<td>1765.8789</td>
<td>833.4431</td>
<td>1748.8254</td>
<td>874.4289</td>
<td>1747.8663</td>
<td>874.4378</td>
<td>G</td>
<td>1168.8375</td>
<td>569.7724</td>
</tr>
<tr>
<td>303.1122</td>
<td>152.0597</td>
<td>286.0586</td>
<td>143.5464</td>
<td>M</td>
<td>1651.8360</td>
<td>826.4216</td>
<td>1634.8264</td>
<td>817.9084</td>
<td>1633.8254</td>
<td>817.4163</td>
<td>1421.8227</td>
<td>711.3672</td>
<td>1404.7605</td>
<td>702.8559</td>
<td>1403.7615</td>
</tr>
<tr>
<td>572.2861</td>
<td>286.6467</td>
<td>555.2959</td>
<td>278.1334</td>
<td>K</td>
<td>1421.7271</td>
<td>711.3672</td>
<td>1404.7605</td>
<td>702.8559</td>
<td>1403.7615</td>
<td>702.3619</td>
<td>681.3702</td>
<td>343.1877</td>
<td>666.3436</td>
<td>334.6754</td>
<td>1251.6216</td>
</tr>
<tr>
<td>790.4111</td>
<td>400.2102</td>
<td>782.3855</td>
<td>391.6969</td>
<td>N</td>
<td>1168.8375</td>
<td>569.7724</td>
<td>1121.3199</td>
<td>581.2391</td>
<td>1120.3269</td>
<td>580.7671</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>914.4580</td>
<td>457.7237</td>
<td>897.4135</td>
<td>449.2104</td>
<td>D</td>
<td>1524.8946</td>
<td>752.7509</td>
<td>1507.4680</td>
<td>704.4276</td>
<td>1506.4840</td>
<td>705.7456</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>971.6015</td>
<td>486.2344</td>
<td>954.4349</td>
<td>477.7211</td>
<td>G</td>
<td>909.4674</td>
<td>453.2375</td>
<td>892.4111</td>
<td>446.7242</td>
<td>891.4771</td>
<td>446.2532</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1038.4935</td>
<td>529.7904</td>
<td>1041.4610</td>
<td>521.2371</td>
<td>S</td>
<td>852.4462</td>
<td>426.7267</td>
<td>835.4196</td>
<td>418.1134</td>
<td>834.4367</td>
<td>417.7214</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1136.5231</td>
<td>593.7797</td>
<td>1169.5255</td>
<td>585.2684</td>
<td>Q</td>
<td>765.4141</td>
<td>363.2107</td>
<td>748.3876</td>
<td>374.6974</td>
<td>747.4096</td>
<td>374.2047</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1259.6832</td>
<td>650.3217</td>
<td>1282.0506</td>
<td>641.0848</td>
<td>I</td>
<td>673.8356</td>
<td>319.1814</td>
<td>620.3290</td>
<td>310.6681</td>
<td>619.3450</td>
<td>310.1761</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400.8338</td>
<td>700.8485</td>
<td>1383.6733</td>
<td>692.3232</td>
<td>T</td>
<td>824.2715</td>
<td>362.2649</td>
<td>797.2494</td>
<td>354.1261</td>
<td>796.2609</td>
<td>353.6414</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1427.7532</td>
<td>774.3798</td>
<td>1530.7274</td>
<td>765.8665</td>
<td>F</td>
<td>423.2238</td>
<td>212.1135</td>
<td>406.1973</td>
<td>203.6023</td>
<td>405.2123</td>
<td>203.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1576.7948</td>
<td>838.9011</td>
<td>1659.7683</td>
<td>830.3878</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.6681</td>
<td>258.1449</td>
<td>129.5761</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1676.5948</td>
<td>838.9011</td>
<td>1659.7683</td>
<td>830.3878</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GNMVKLNDGSQITFEK
Found in B1A25, Apoptosis-inducing factor 1, mitochondrial OS=Mus musculus GN=Aif1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da Full range
Label all possible matches Label matches used for scoring

Nonisotopic mass of neutral peptide M+H+ (Da): 1541.3772
Fixed modifications: M+H+ (C) (apply to specified residues or termini only)
Variable modifications:
K : Oxidation (M) with neutral losses 0.001000 shown in table. 63.9983
ES : m/z, Da (R) with neutral losses 0.001000
Ion Score: 44 Feature: 9.9958
M: Matches: 24/242 fragment ions using 54 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b***</th>
<th>Seq. y</th>
<th>y**</th>
<th>y*</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.3180</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>172.0717</td>
<td>86.5395</td>
<td>155.0451</td>
<td>78.0262</td>
<td>N</td>
<td>1781.8738</td>
<td>891.4406</td>
<td>1674.8473</td>
<td>882.9273</td>
</tr>
<tr>
<td>3</td>
<td>319.1071</td>
<td>160.0572</td>
<td>302.0805</td>
<td>151.5439</td>
<td>M</td>
<td>1667.8390</td>
<td>834.4191</td>
<td>1650.3044</td>
<td>825.9058</td>
</tr>
<tr>
<td>4</td>
<td>418.1755</td>
<td>209.5914</td>
<td>401.1489</td>
<td>201.0781</td>
<td>V</td>
<td>1579.7955</td>
<td>760.9014</td>
<td>1563.7690</td>
<td>752.3881</td>
</tr>
<tr>
<td>6</td>
<td>701.3631</td>
<td>351.1882</td>
<td>684.3385</td>
<td>342.5729</td>
<td>L</td>
<td>1231.6216</td>
<td>626.3144</td>
<td>1224.3950</td>
<td>617.8901</td>
</tr>
<tr>
<td>7</td>
<td>815.4680</td>
<td>408.2076</td>
<td>798.3815</td>
<td>399.6944</td>
<td>N</td>
<td>1138.5375</td>
<td>569.7724</td>
<td>1121.5109</td>
<td>561.2591</td>
</tr>
<tr>
<td>8</td>
<td>930.4349</td>
<td>465.7211</td>
<td>912.4086</td>
<td>457.2078</td>
<td>R</td>
<td>1024.6496</td>
<td>512.7259</td>
<td>1007.4680</td>
<td>504.2376</td>
</tr>
<tr>
<td>9</td>
<td>997.4564</td>
<td>494.2318</td>
<td>970.4289</td>
<td>485.7186</td>
<td>G</td>
<td>909.4676</td>
<td>455.2375</td>
<td>892.4411</td>
<td>446.7242</td>
</tr>
<tr>
<td>10</td>
<td>1074.4844</td>
<td>537.7479</td>
<td>1057.4615</td>
<td>529.2346</td>
<td>D</td>
<td>1024.6496</td>
<td>512.7259</td>
<td>1007.4680</td>
<td>504.2376</td>
</tr>
<tr>
<td>11</td>
<td>1120.5470</td>
<td>561.7711</td>
<td>1103.5265</td>
<td>553.2639</td>
<td>Q</td>
<td>765.4141</td>
<td>383.2107</td>
<td>748.3876</td>
<td>374.6974</td>
</tr>
<tr>
<td>12</td>
<td>1213.6311</td>
<td>635.3192</td>
<td>1196.6045</td>
<td>628.3130</td>
<td>I</td>
<td>675.3358</td>
<td>319.1814</td>
<td>650.3290</td>
<td>310.6681</td>
</tr>
<tr>
<td>13</td>
<td>1316.6788</td>
<td>680.8430</td>
<td>1299.8522</td>
<td>672.3297</td>
<td>T</td>
<td>534.7275</td>
<td>262.6394</td>
<td>517.2449</td>
<td>254.1261</td>
</tr>
<tr>
<td>14</td>
<td>1563.7472</td>
<td>782.3772</td>
<td>1546.7206</td>
<td>773.8639</td>
<td>F</td>
<td>423.2238</td>
<td>212.1135</td>
<td>406.1873</td>
<td>208.6023</td>
</tr>
<tr>
<td>15</td>
<td>1692.7898</td>
<td>846.8985</td>
<td>1675.7632</td>
<td>838.3852</td>
<td>E</td>
<td>276.1554</td>
<td>138.3813</td>
<td>259.1288</td>
<td>130.0681</td>
</tr>
<tr>
<td>16</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0683</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **IIKDGQHEDLNEVAK**

Found in **BIAU25**. Apoptosis-inducing factor 1, mitochondrial OS-MyoD1 mouse GN-Arin1 PE-2 SV-1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 300 to 1800 Da Full range

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr (calc): 1922.9221

Fixed modifications: **M** (C) (apply to specified residues or termini only)

Variable modifications:

K ≤ + m1 CCQ (K), with neutral loss 43.01068

Ions Score: 27 Expect: 0.002

Matches: 24/166 fragment ions using 60 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>P</th>
<th>Q</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b^+</th>
<th>b'^+</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y^+</th>
<th>y'^+</th>
<th>y''^+</th>
<th>y'''^+</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0113</td>
<td>57.5403</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1766.8555</td>
<td>881.9114</td>
<td>1748.8290</td>
<td>975.4181</td>
<td>1748.8540</td>
<td>874.9261</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0610</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1653.7715</td>
<td>827.3894</td>
<td>1636.7449</td>
<td>818.9761</td>
<td>1635.7609</td>
<td>818.3441</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>397.2609</td>
<td>199.1441</td>
<td>388.2544</td>
<td>190.6208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1511.6173</td>
<td>756.3124</td>
<td>1494.5760</td>
<td>745.2398</td>
<td>1494.5930</td>
<td>745.2568</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>512.3979</td>
<td>256.6576</td>
<td>495.2813</td>
<td>248.1413</td>
<td>494.2973</td>
<td>247.6523</td>
<td>D</td>
<td>1690.6619</td>
<td>842.3366</td>
<td>1668.6294</td>
<td>833.2133</td>
<td>1668.6564</td>
<td>833.2313</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>568.3293</td>
<td>284.1033</td>
<td>552.0203</td>
<td>276.6550</td>
<td>551.1088</td>
<td>275.6130</td>
<td>G</td>
<td>1580.6390</td>
<td>814.2321</td>
<td>1563.5920</td>
<td>805.4308</td>
<td>1563.6090</td>
<td>805.4488</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>826.6285</td>
<td>413.7189</td>
<td>809.4040</td>
<td>402.2026</td>
<td>808.4190</td>
<td>403.7165</td>
<td>Q</td>
<td>1182.7249</td>
<td>591.7911</td>
<td>1165.6746</td>
<td>583.2775</td>
<td>1165.6916</td>
<td>583.2954</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>963.4894</td>
<td>482.2413</td>
<td>946.4629</td>
<td>473.7351</td>
<td>945.4789</td>
<td>473.2431</td>
<td>H</td>
<td>1054.5164</td>
<td>527.7618</td>
<td>1037.6898</td>
<td>519.2415</td>
<td>1036.7058</td>
<td>518.7295</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1092.5220</td>
<td>546.7696</td>
<td>1075.5055</td>
<td>538.2564</td>
<td>1074.5215</td>
<td>537.7644</td>
<td>F</td>
<td>917.4575</td>
<td>459.2324</td>
<td>900.4309</td>
<td>450.7191</td>
<td>899.4489</td>
<td>450.2271</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1207.5590</td>
<td>604.2831</td>
<td>1180.5324</td>
<td>592.7696</td>
<td>1180.5304</td>
<td>592.2778</td>
<td>D</td>
<td>788.4149</td>
<td>394.7111</td>
<td>771.3883</td>
<td>386.1978</td>
<td>771.4063</td>
<td>385.7058</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1320.6460</td>
<td>660.8231</td>
<td>1303.6165</td>
<td>652.3199</td>
<td>1303.6235</td>
<td>651.8190</td>
<td>L</td>
<td>673.3878</td>
<td>337.1976</td>
<td>656.3614</td>
<td>328.5483</td>
<td>655.3774</td>
<td>328.1925</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1563.7288</td>
<td>782.3679</td>
<td>1546.7020</td>
<td>773.8546</td>
<td>1545.7180</td>
<td>773.3626</td>
<td>E</td>
<td>446.2689</td>
<td>223.6142</td>
<td>439.2244</td>
<td>215.1208</td>
<td>438.2504</td>
<td>214.6288</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1662.7978</td>
<td>831.9021</td>
<td>1645.7704</td>
<td>823.3883</td>
<td>1644.7864</td>
<td>822.8968</td>
<td>V</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1733.8241</td>
<td>867.4207</td>
<td>1716.8075</td>
<td>858.9024</td>
<td>1715.8235</td>
<td>858.4154</td>
<td>A</td>
<td>218.1490</td>
<td>109.5786</td>
<td>210.1234</td>
<td>100.6053</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0883</td>
<td>65.3468</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KIJKDGEQHEDLNEVAK

Found in BLAU15, Apoptosis-inducing factor 1, mitochondrial Os=Muscus musculus GN=Adm1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mz(calc): 2051.0771
Fixed modifications: M+C, (C) (apply to specified residues or term only)
Variable modifications:
E4 + m1-CO2 (R), with neutral loss 44.01236

Matches: 46/176 fragment ions using 97 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b^2</th>
<th>b^3</th>
<th>g^2</th>
<th>g^3</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.1022</td>
<td>65.0548</td>
<td>112.0757</td>
<td>56.5415</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1863</td>
<td>121.5968</td>
<td>225.1198</td>
<td>113.0835</td>
<td>I</td>
<td>1879.9396</td>
<td>940.4724</td>
<td>1862.9130</td>
<td>931.9602</td>
<td>1861.9290</td>
<td>931.4662</td>
</tr>
<tr>
<td>3</td>
<td>365.2700</td>
<td>178.1388</td>
<td>338.2438</td>
<td>169.6255</td>
<td>I</td>
<td>1766.8353</td>
<td>883.9314</td>
<td>1749.8209</td>
<td>875.4181</td>
<td>1748.8450</td>
<td>874.9261</td>
</tr>
<tr>
<td>4</td>
<td>525.3759</td>
<td>263.1916</td>
<td>508.3493</td>
<td>254.8783</td>
<td>K</td>
<td>1653.7715</td>
<td>827.3894</td>
<td>1638.7449</td>
<td>818.8761</td>
<td>1635.7609</td>
<td>818.3841</td>
</tr>
<tr>
<td>5</td>
<td>640.4036</td>
<td>320.7051</td>
<td>623.3763</td>
<td>312.1918</td>
<td>D</td>
<td>1483.6639</td>
<td>742.3366</td>
<td>1466.6394</td>
<td>733.8233</td>
<td>1465.6554</td>
<td>733.3193</td>
</tr>
<tr>
<td>6</td>
<td>697.4234</td>
<td>349.2158</td>
<td>680.3978</td>
<td>340.7025</td>
<td>E</td>
<td>1368.6394</td>
<td>684.8231</td>
<td>1351.6125</td>
<td>676.3099</td>
<td>1350.6284</td>
<td>675.8179</td>
</tr>
<tr>
<td>7</td>
<td>826.4668</td>
<td>413.7371</td>
<td>809.4403</td>
<td>405.2238</td>
<td>E</td>
<td>1211.6175</td>
<td>656.3124</td>
<td>1194.5910</td>
<td>647.7991</td>
<td>1293.6070</td>
<td>647.3071</td>
</tr>
<tr>
<td>8</td>
<td>954.5355</td>
<td>477.7664</td>
<td>937.4089</td>
<td>469.5231</td>
<td>K</td>
<td>1182.5749</td>
<td>591.7971</td>
<td>1165.5484</td>
<td>582.2778</td>
<td>1164.5644</td>
<td>582.7835</td>
</tr>
<tr>
<td>9</td>
<td>1091.5780</td>
<td>546.2939</td>
<td>1074.5788</td>
<td>537.7826</td>
<td>H</td>
<td>1054.5314</td>
<td>527.7618</td>
<td>1037.4989</td>
<td>519.2485</td>
<td>1036.5058</td>
<td>518.7565</td>
</tr>
<tr>
<td>10</td>
<td>1220.6270</td>
<td>610.6171</td>
<td>1203.6004</td>
<td>592.9059</td>
<td>E</td>
<td>917.4673</td>
<td>459.3224</td>
<td>900.4039</td>
<td>450.7091</td>
<td>899.4490</td>
<td>450.2271</td>
</tr>
<tr>
<td>12</td>
<td>1448.7430</td>
<td>724.8726</td>
<td>1431.7141</td>
<td>716.3594</td>
<td>E</td>
<td>673.8370</td>
<td>337.1976</td>
<td>656.3624</td>
<td>328.8643</td>
<td>655.3776</td>
<td>328.1923</td>
</tr>
<tr>
<td>13</td>
<td>1562.8029</td>
<td>781.8941</td>
<td>1545.7544</td>
<td>773.3808</td>
<td>N</td>
<td>560.8039</td>
<td>280.6556</td>
<td>541.2773</td>
<td>272.1423</td>
<td>542.2933</td>
<td>271.6503</td>
</tr>
<tr>
<td>14</td>
<td>1695.8234</td>
<td>846.4181</td>
<td>1678.7970</td>
<td>837.9021</td>
<td>E</td>
<td>466.2609</td>
<td>223.6341</td>
<td>420.2344</td>
<td>215.2085</td>
<td>428.2304</td>
<td>214.6234</td>
</tr>
<tr>
<td>15</td>
<td>1790.8919</td>
<td>905.4946</td>
<td>1773.8584</td>
<td>887.4363</td>
<td>V</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>300.2395</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1861.9600</td>
<td>964.4827</td>
<td>1844.9245</td>
<td>955.9497</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.9653</td>
<td>201.2834</td>
<td>101.6283</td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>147.1128</td>
<td>74.0900</td>
<td>130.0853</td>
<td>65.5465</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M/C/M Fragmentation of KVETDHIVTAVGLEPNVELAK

Found in BLAC25, Apoptosis-inducing factor 1, mitochondrial OS-Musculus NO-Alf1 PE-2 S1-1

Click mouse within plot area to zoom in by factor of two about that point

O 1 Plot range 200 to 1500 Da

Nonisotopic mass of neutral peptide [M+H](calc): 2247.2271

Fused modifications: M</sub>15</sup> (G) (apply to specified residues or term only)

Variable modifications:

K = [m+239](K), with neutral loss 43.0285

Table 1: 18/22 fragment ions using 28 most intense peaks

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>y<sup>++++</sup></th>
<th>n</th>
<th>m</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td>V</td>
<td>2134.1900</td>
<td>1067.5732</td>
<td>2117.1125</td>
<td>1029.0536</td>
<td>2116.1235</td>
<td>1028.5879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>300.2715</td>
<td>250.6594</td>
<td>483.2449</td>
<td>242.1261</td>
<td>482.2069</td>
<td>241.6341</td>
<td>T</td>
<td>1906.0620</td>
<td>933.5176</td>
<td>1889.0015</td>
<td>945.0044</td>
<td>1888.0175</td>
<td>944.2124</td>
</tr>
<tr>
<td>5</td>
<td>615.2884</td>
<td>508.1529</td>
<td>598.2719</td>
<td>598.6596</td>
<td>597.2875</td>
<td>596.1476</td>
<td>D</td>
<td>1804.9803</td>
<td>902.9918</td>
<td>1787.9358</td>
<td>894.4805</td>
<td>1786.9698</td>
<td>893.8858</td>
</tr>
<tr>
<td>6</td>
<td>172.3753</td>
<td>79.6623</td>
<td>735.3028</td>
<td>368.1690</td>
<td>734.3468</td>
<td>367.6770</td>
<td>H</td>
<td>1839.9534</td>
<td>845.4803</td>
<td>1727.2268</td>
<td>836.9671</td>
<td>1717.9428</td>
<td>836.4712</td>
</tr>
<tr>
<td>7</td>
<td>815.5414</td>
<td>435.2243</td>
<td>848.4149</td>
<td>424.7111</td>
<td>847.4508</td>
<td>424.2181</td>
<td>T</td>
<td>1552.8845</td>
<td>776.9050</td>
<td>1535.8679</td>
<td>768.4376</td>
<td>1534.8859</td>
<td>767.8456</td>
</tr>
<tr>
<td>8</td>
<td>294.5098</td>
<td>482.7283</td>
<td>947.4823</td>
<td>474.2423</td>
<td>946.4992</td>
<td>473.7325</td>
<td>V</td>
<td>1439.8104</td>
<td>720.0838</td>
<td>1422.7829</td>
<td>711.8956</td>
<td>1421.7999</td>
<td>711.4038</td>
</tr>
<tr>
<td>9</td>
<td>1065.5357</td>
<td>553.2824</td>
<td>1048.5310</td>
<td>524.7691</td>
<td>1047.5469</td>
<td>524.2771</td>
<td>T</td>
<td>1340.7420</td>
<td>670.8746</td>
<td>1323.7155</td>
<td>662.3614</td>
<td>1322.7314</td>
<td>661.8694</td>
</tr>
<tr>
<td>10</td>
<td>1336.5995</td>
<td>658.8009</td>
<td>1119.5961</td>
<td>590.2877</td>
<td>1118.5941</td>
<td>590.7927</td>
<td>A</td>
<td>1259.6945</td>
<td>620.3080</td>
<td>1222.8678</td>
<td>611.8735</td>
<td>1221.8635</td>
<td>611.3425</td>
</tr>
<tr>
<td>11</td>
<td>1255.6630</td>
<td>618.5573</td>
<td>1218.6565</td>
<td>609.8219</td>
<td>1217.6525</td>
<td>609.3589</td>
<td>V</td>
<td>1186.6572</td>
<td>584.8322</td>
<td>1151.6307</td>
<td>576.3196</td>
<td>1150.6467</td>
<td>575.8270</td>
</tr>
<tr>
<td>12</td>
<td>1292.6845</td>
<td>645.8459</td>
<td>1275.6579</td>
<td>638.3326</td>
<td>1274.6739</td>
<td>637.8406</td>
<td>G</td>
<td>1099.5888</td>
<td>535.2980</td>
<td>1072.5623</td>
<td>526.7648</td>
<td>1051.5782</td>
<td>525.2928</td>
</tr>
<tr>
<td>13</td>
<td>1002.7686</td>
<td>703.3879</td>
<td>388.7420</td>
<td>694.8746</td>
<td>387.7580</td>
<td>694.3826</td>
<td>L</td>
<td>1022.5673</td>
<td>566.7873</td>
<td>955.5048</td>
<td>494.2740</td>
<td>994.5568</td>
<td>497.7820</td>
</tr>
<tr>
<td>14</td>
<td>1534.8112</td>
<td>767.5090</td>
<td>1517.7846</td>
<td>759.3959</td>
<td>1516.8066</td>
<td>758.9097</td>
<td>E</td>
<td>899.4933</td>
<td>450.2483</td>
<td>882.4657</td>
<td>441.7302</td>
<td>881.4727</td>
<td>441.2040</td>
</tr>
<tr>
<td>15</td>
<td>1631.8599</td>
<td>816.4326</td>
<td>1614.8374</td>
<td>807.9223</td>
<td>1613.8333</td>
<td>807.4063</td>
<td>P</td>
<td>770.4407</td>
<td>385.7240</td>
<td>753.4141</td>
<td>377.2107</td>
<td>752.4301</td>
<td>376.7187</td>
</tr>
<tr>
<td>16</td>
<td>1745.9068</td>
<td>873.4571</td>
<td>1728.9003</td>
<td>864.9438</td>
<td>1727.8963</td>
<td>864.4518</td>
<td>N</td>
<td>673.3879</td>
<td>397.1976</td>
<td>656.3646</td>
<td>328.6864</td>
<td>655.3774</td>
<td>328.1923</td>
</tr>
<tr>
<td>17</td>
<td>1849.9272</td>
<td>922.9253</td>
<td>1825.9487</td>
<td>914.4780</td>
<td>1824.9664</td>
<td>913.9860</td>
<td>V</td>
<td>539.9452</td>
<td>280.1761</td>
<td>524.2184</td>
<td>271.6629</td>
<td>521.8424</td>
<td>271.1706</td>
</tr>
<tr>
<td>19</td>
<td>2081.1019</td>
<td>1044.0546</td>
<td>2067.0754</td>
<td>1035.5412</td>
<td>2069.0912</td>
<td>1035.0493</td>
<td>L</td>
<td>331.2840</td>
<td>166.1206</td>
<td>314.2074</td>
<td>157.6074</td>
<td>313.2074</td>
<td>157.6074</td>
</tr>
</tbody>
</table>

K = KVETDHIVTAVGLEPNVELAK
MS/MS Fragmentation of VVAGVAAALAHKYH

Found in ADRKX4. Remnant: OS=Mouse; entrezGene: CN=5718; h) P|E=57 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot area. 200 to 1400. Dz. Full range.
Label all possible matches. Label matches used for scoring.

Monoisotopic mass of neutral peptide Mr(mono): 1461.7526

Fixed modifications: **NMT2 (C)** (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b-</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y-</th>
<th>p</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>90.5415</td>
<td>V</td>
<td>V</td>
<td>1349.7324</td>
<td>673.3699</td>
<td>1352.7079</td>
<td>666.8566</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>199.1441</td>
<td>100.0757</td>
<td>V</td>
<td>V</td>
<td>1349.7324</td>
<td>673.3699</td>
<td>1352.7079</td>
<td>666.8566</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>270.1812</td>
<td>135.3942</td>
<td>A</td>
<td>1250.6640</td>
<td>625.8357</td>
<td>1253.6375</td>
<td>617.3224</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>327.2027</td>
<td>164.1050</td>
<td>G</td>
<td>1179.6269</td>
<td>590.3171</td>
<td>1162.6004</td>
<td>531.8033</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>426.2711</td>
<td>213.6392</td>
<td>V</td>
<td>1122.6033</td>
<td>561.8064</td>
<td>1105.5789</td>
<td>533.2931</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>497.3082</td>
<td>249.1577</td>
<td>A</td>
<td>1023.5370</td>
<td>512.2722</td>
<td>1006.2163</td>
<td>503.7389</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>568.3453</td>
<td>284.6763</td>
<td>A</td>
<td>952.4999</td>
<td>476.7526</td>
<td>955.4724</td>
<td>468.2403</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>619.3824</td>
<td>320.1049</td>
<td>A</td>
<td>881.4623</td>
<td>441.3230</td>
<td>864.4363</td>
<td>432.7218</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>732.4665</td>
<td>376.7369</td>
<td>L</td>
<td>810.4257</td>
<td>403.7165</td>
<td>793.3992</td>
<td>397.2032</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>823.5016</td>
<td>412.2374</td>
<td>A</td>
<td>697.5434</td>
<td>349.1745</td>
<td>680.3131</td>
<td>340.6612</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>960.5628</td>
<td>480.7849</td>
<td>H</td>
<td>526.3049</td>
<td>313.6599</td>
<td>509.2780</td>
<td>305.1426</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1130.6681</td>
<td>585.8377</td>
<td>1113.6415</td>
<td>557.3244</td>
<td>K</td>
<td>489.2456</td>
<td>245.1284</td>
<td>472.2191</td>
<td>236.6132</td>
</tr>
<tr>
<td>13</td>
<td>1293.7314</td>
<td>647.3693</td>
<td>1276.7048</td>
<td>638.8561</td>
<td>Y</td>
<td>319.1401</td>
<td>169.0737</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>H</td>
<td>156.0768</td>
<td>78.5420</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b'</td>
<td>b''</td>
<td>b'''</td>
<td>b''''</td>
<td>C</td>
<td>y</td>
<td>y'</td>
<td>y''</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>58.0237</td>
<td>29.3150</td>
<td>141.0659</td>
<td>71.0366</td>
<td>1273.5938</td>
<td>2529.1537</td>
<td>2125.0803</td>
<td>2528.1697</td>
<td>1264.5853</td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td>238.1343</td>
<td>144.5708</td>
<td>1259.0659</td>
<td>2428.1050</td>
<td>1314.5167</td>
<td>2427.1220</td>
<td>1214.0646</td>
</tr>
<tr>
<td>3</td>
<td>306.1418</td>
<td>153.5761</td>
<td>289.1714</td>
<td>180.0893</td>
<td>1259.0659</td>
<td>2381.0376</td>
<td>1411.0224</td>
<td>2280.0354</td>
<td>1140.5014</td>
</tr>
<tr>
<td>4</td>
<td>377.1819</td>
<td>189.6946</td>
<td>299.0383</td>
<td>225.6085</td>
<td>1211.0472</td>
<td>2121.0005</td>
<td>1105.5009</td>
<td>2209.0165</td>
<td>1102.0191</td>
</tr>
<tr>
<td>5</td>
<td>460.6140</td>
<td>232.6106</td>
<td>329.2637</td>
<td>263.5675</td>
<td>1070.5011</td>
<td>2122.9858</td>
<td>1061.9879</td>
<td>1121.9854</td>
<td>1061.4959</td>
</tr>
<tr>
<td>6</td>
<td>577.2800</td>
<td>289.1527</td>
<td>429.0357</td>
<td>310.1847</td>
<td>859.2785</td>
<td>2139.9890</td>
<td>1070.5011</td>
<td>2122.9858</td>
<td>1061.9879</td>
</tr>
<tr>
<td>7</td>
<td>664.3801</td>
<td>332.6657</td>
<td>466.3195</td>
<td>323.6634</td>
<td>864.7826</td>
<td>2026.9110</td>
<td>1013.9891</td>
<td>2009.8944</td>
<td>1005.4458</td>
</tr>
<tr>
<td>8</td>
<td>793.7727</td>
<td>397.1900</td>
<td>775.3811</td>
<td>388.1847</td>
<td>843.7298</td>
<td>1939.8789</td>
<td>970.4431</td>
<td>1922.8254</td>
<td>961.9298</td>
</tr>
<tr>
<td>9</td>
<td>906.4567</td>
<td>453.7230</td>
<td>888.4462</td>
<td>444.7267</td>
<td>810.8553</td>
<td>1810.8553</td>
<td>905.9118</td>
<td>1793.8099</td>
<td>897.4085</td>
</tr>
<tr>
<td>10</td>
<td>1043.5128</td>
<td>522.2615</td>
<td>1025.2051</td>
<td>512.2552</td>
<td>780.8503</td>
<td>1563.8668</td>
<td>772.3370</td>
<td>1542.8628</td>
<td>771.8540</td>
</tr>
<tr>
<td>11</td>
<td>1192.5125</td>
<td>596.7559</td>
<td>1176.5020</td>
<td>587.7456</td>
<td>750.8503</td>
<td>1543.8668</td>
<td>772.3370</td>
<td>1542.8628</td>
<td>771.8540</td>
</tr>
<tr>
<td>12</td>
<td>1297.8398</td>
<td>654.2724</td>
<td>1289.5269</td>
<td>645.2861</td>
<td>706.3519</td>
<td>1594.6699</td>
<td>897.8388</td>
<td>1593.8589</td>
<td>897.3666</td>
</tr>
<tr>
<td>13</td>
<td>1377.6498</td>
<td>739.3251</td>
<td>1366.6183</td>
<td>730.8129</td>
<td>1549.6544</td>
<td>736.3209</td>
<td>1549.6544</td>
<td>736.3209</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>1390.7598</td>
<td>753.6828</td>
<td>1373.7025</td>
<td>747.3549</td>
<td>1572.7135</td>
<td>786.8629</td>
<td>1572.7135</td>
<td>786.8629</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>727.7880</td>
<td>584.8767</td>
<td>1710.7634</td>
<td>855.8844</td>
<td>1709.7744</td>
<td>855.8844</td>
<td>1709.7744</td>
<td>855.8844</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>586.8546</td>
<td>413.9318</td>
<td>1808.8399</td>
<td>905.4186</td>
<td>1808.8399</td>
<td>905.4186</td>
<td>1808.8399</td>
<td>905.4186</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>541.8835</td>
<td>371.4457</td>
<td>1924.8585</td>
<td>962.9200</td>
<td>1923.8738</td>
<td>962.4400</td>
<td>1923.8738</td>
<td>962.4400</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>2167.9789</td>
<td>1084.4929</td>
<td>2150.9522</td>
<td>1075.9797</td>
<td>2149.9681</td>
<td>1075.4878</td>
<td>2149.9681</td>
<td>1075.4878</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2282.0216</td>
<td>1141.5145</td>
<td>2264.9951</td>
<td>1133.0012</td>
<td>2264.0111</td>
<td>1132.5092</td>
<td>2264.0111</td>
<td>1132.5092</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>2429.0900</td>
<td>1125.0487</td>
<td>2412.0635</td>
<td>1206.5254</td>
<td>2411.0795</td>
<td>1206.0464</td>
<td>2411.0795</td>
<td>1206.0464</td>
<td>1</td>
</tr>
</tbody>
</table>
AKGGGALVENTTTLGSR

MS/MS Fragmentation of AKGGGALVENTTTLGSR
Found in A2ARH3, Phosphotransferase-related protein (Fragment) O6-Musculus GN-Prot PE-2 SV-1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 0 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide M(calc): 1716.6042
Fixed modifications: Met7 (C) (apply to specified residues or termini only)
Variable modifications:
X : m/z C02 H1, with neutral loss 49.0264
Ions Scanned: 24, Exponent: 0.002
Matches: 12/172 fragment ions using 62 most intense peaks [help]
MS/MS Fragmentation of LQSLLKGQK

Monoisotopic mass of neutral peptide Mr(calc): 1099.6237
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K6 : rac.COOH (R), with neutral loss 43.00898
Ions Score: 34 Expect: 0.015
Matches : 25/78 fragment ions using 42 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td></td>
<td></td>
<td>Q</td>
<td>943.5571</td>
<td>472.2822</td>
<td>926.5306</td>
<td>463.7689</td>
<td>925.5465</td>
<td>463.2769</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>329.1819</td>
<td>105.0946</td>
<td>312.1554</td>
<td>156.5813</td>
<td>311.1714</td>
<td>156.0893</td>
<td>S</td>
<td>815.4985</td>
<td>408.2529</td>
<td>798.4720</td>
<td>399.7396</td>
<td>797.4880</td>
<td>399.2476</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>442.2660</td>
<td>221.6366</td>
<td>425.2395</td>
<td>213.1234</td>
<td>424.2554</td>
<td>212.6314</td>
<td>L</td>
<td>728.4665</td>
<td>364.7369</td>
<td>711.4400</td>
<td>356.2236</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>555.3501</td>
<td>278.1787</td>
<td>538.3235</td>
<td>269.6654</td>
<td>537.3395</td>
<td>269.1734</td>
<td>L</td>
<td>615.3824</td>
<td>308.1949</td>
<td>598.3599</td>
<td>299.6816</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>782.4771</td>
<td>391.7422</td>
<td>765.4505</td>
<td>383.2289</td>
<td>764.4665</td>
<td>382.7369</td>
<td>G</td>
<td>332.1928</td>
<td>166.6001</td>
<td>315.1663</td>
<td>158.0688</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>910.5356</td>
<td>455.7713</td>
<td>893.5061</td>
<td>447.2582</td>
<td>892.5251</td>
<td>446.7662</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **IFKSGQTALEK**

Found in **B1ATQ3**, Malate dehydrogenase, cytoplasmic (Fragment) O8=Mus musculus GN=Mdh1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from **150** to **1200** Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1306.4765

Fixed modifications: **NMTS [C]** (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**±**</th>
<th>b**±±**</th>
<th>y</th>
<th>y**±**</th>
<th>y**±±**</th>
<th>Seq.</th>
<th>y(calc)</th>
<th>y(exp)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td>I</td>
<td>115.06103</td>
<td>575.8088</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261.1568</td>
<td>131.0835</td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>K</td>
<td>1005.5419</td>
<td>502.2746</td>
<td>986.5153</td>
</tr>
<tr>
<td>3</td>
<td>451.2653</td>
<td>216.1363</td>
<td>414.2387</td>
<td>207.6230</td>
<td>833.4363</td>
<td>373.7058</td>
<td>G</td>
<td>659.3457</td>
<td>309.8765</td>
<td>501.2708</td>
</tr>
<tr>
<td>4</td>
<td>518.2973</td>
<td>259.6523</td>
<td>501.2708</td>
<td>251.1390</td>
<td>590.2876</td>
<td>260.1647</td>
<td>S</td>
<td>816.4098</td>
<td>408.7085</td>
<td>815.4258</td>
</tr>
<tr>
<td>5</td>
<td>646.3559</td>
<td>323.6816</td>
<td>629.3293</td>
<td>315.1683</td>
<td>628.3453</td>
<td>314.6763</td>
<td>Q</td>
<td>746.4043</td>
<td>373.7058</td>
<td>729.3777</td>
</tr>
<tr>
<td>6</td>
<td>703.3774</td>
<td>352.9192</td>
<td>685.3508</td>
<td>343.6790</td>
<td>685.3688</td>
<td>343.1870</td>
<td>G</td>
<td>659.3457</td>
<td>309.8765</td>
<td>501.2708</td>
</tr>
<tr>
<td>7</td>
<td>804.4250</td>
<td>402.7162</td>
<td>787.3985</td>
<td>394.2029</td>
<td>786.4145</td>
<td>393.7109</td>
<td>T</td>
<td>561.3243</td>
<td>281.1658</td>
<td>544.2977</td>
</tr>
<tr>
<td>8</td>
<td>875.4621</td>
<td>438.2347</td>
<td>858.4356</td>
<td>429.7124</td>
<td>857.4516</td>
<td>429.2294</td>
<td>A</td>
<td>460.2766</td>
<td>230.6419</td>
<td>443.2500</td>
</tr>
<tr>
<td>9</td>
<td>988.5462</td>
<td>494.7767</td>
<td>971.5197</td>
<td>486.2635</td>
<td>970.5356</td>
<td>485.7715</td>
<td>L</td>
<td>589.2935</td>
<td>295.1230</td>
<td>572.1220</td>
</tr>
<tr>
<td>10</td>
<td>1117.5888</td>
<td>559.2980</td>
<td>1100.5023</td>
<td>550.7848</td>
<td>1099.5782</td>
<td>550.2928</td>
<td>E</td>
<td>276.1534</td>
<td>138.5813</td>
<td>259.1283</td>
</tr>
<tr>
<td>11</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **ANVKIFK**

Found in **B1ATQ3. Malate dehydrogenase, cytoplasmic (Fragment)** OS=Mus musculus GN=Mdh1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 900 Da

Label all possible matches Label matches used for scoring

**Monoisotopic mass of neutral peptide Mr(calc): **904.5018

**Fixed modifications: **M+H (C) (apply to specified residues or termini only)

**Variable modifications: **

- K: mal+CO2 (K), with neutral loss 93.9898

**Ions Score: **28 Expect: 0.064

Matches: 9/46 fragment ions using 16 most intense peaks **(help)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>186.0873</td>
<td>93.5473</td>
<td>169.0608</td>
<td>85.0340</td>
<td>N</td>
<td>790.4822</td>
<td>395.7447</td>
<td>773.4556</td>
<td>387.2314</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>285.1557</td>
<td>143.0815</td>
<td>268.1292</td>
<td>134.5682</td>
<td>V</td>
<td>676.4392</td>
<td>338.7233</td>
<td>659.4127</td>
<td>330.2100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>455.2613</td>
<td>228.1343</td>
<td>438.2347</td>
<td>219.6210</td>
<td>K</td>
<td>577.3708</td>
<td>289.1890</td>
<td>560.3443</td>
<td>280.6758</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>568.3453</td>
<td>284.6763</td>
<td>551.3188</td>
<td>276.1630</td>
<td>I</td>
<td>407.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>195.6230</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>715.4137</td>
<td>358.2108</td>
<td>698.3872</td>
<td>349.6972</td>
<td>F</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>139.0810</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AAIKHALSAGYR**

Found in BIANW3, Alcohol dehydrogenase [NADP(+)](Fragment) OS=Mus musculus GN=Akr1a1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1400 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1342.6939

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

| K4 | =nal C02 (K), with neutral loss 43.0088 |

List of monoisotopic ions:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>0++</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0++</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1228.6797</td>
<td>614.8433</td>
<td>1211.6531</td>
<td>606.3302</td>
<td>1210.6691</td>
<td>605.8382</td>
</tr>
<tr>
<td>2</td>
<td>143.0815</td>
<td>72.0444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1228.6797</td>
<td>614.8433</td>
<td>1211.6531</td>
<td>606.3302</td>
<td>1210.6691</td>
<td>605.8382</td>
</tr>
<tr>
<td>3</td>
<td>256.1656</td>
<td>128.5884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>1157.6426</td>
<td>579.3249</td>
<td>1140.6160</td>
<td>570.8116</td>
<td>1139.6380</td>
<td>570.3196</td>
</tr>
<tr>
<td>4</td>
<td>426.2711</td>
<td>213.6359</td>
<td>409.2445</td>
<td>205.1259</td>
<td></td>
<td></td>
<td>K</td>
<td>1044.5582</td>
<td>522.7829</td>
<td>1027.5320</td>
<td>514.2696</td>
<td>1026.5479</td>
<td>513.7776</td>
</tr>
<tr>
<td>5</td>
<td>563.3300</td>
<td>282.1686</td>
<td>546.3035</td>
<td>273.6554</td>
<td></td>
<td></td>
<td>H</td>
<td>874.4530</td>
<td>437.7301</td>
<td>857.4254</td>
<td>429.2159</td>
<td>856.4424</td>
<td>428.7248</td>
</tr>
<tr>
<td>6</td>
<td>634.3671</td>
<td>317.6872</td>
<td>617.3406</td>
<td>309.1750</td>
<td></td>
<td></td>
<td>A</td>
<td>737.3941</td>
<td>369.2007</td>
<td>720.3675</td>
<td>360.6874</td>
<td>719.3835</td>
<td>360.1054</td>
</tr>
<tr>
<td>7</td>
<td>747.4512</td>
<td>374.2292</td>
<td>730.4246</td>
<td>365.7160</td>
<td></td>
<td></td>
<td>L</td>
<td>666.3570</td>
<td>333.6821</td>
<td>649.3304</td>
<td>325.1888</td>
<td>648.3464</td>
<td>324.6768</td>
</tr>
<tr>
<td>8</td>
<td>834.4832</td>
<td>417.7452</td>
<td>817.4567</td>
<td>409.2320</td>
<td>816.4726</td>
<td>408.7400</td>
<td>S</td>
<td>555.2729</td>
<td>277.1401</td>
<td>536.2463</td>
<td>268.6268</td>
<td>535.2623</td>
<td>268.1348</td>
</tr>
<tr>
<td>9</td>
<td>905.5203</td>
<td>453.2638</td>
<td>888.4938</td>
<td>444.7505</td>
<td>872.5098</td>
<td>444.2585</td>
<td>A</td>
<td>466.2409</td>
<td>233.6241</td>
<td>449.2143</td>
<td>225.1108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>962.5418</td>
<td>481.7745</td>
<td>945.5152</td>
<td>473.2613</td>
<td>944.5312</td>
<td>472.7693</td>
<td>G</td>
<td>395.2037</td>
<td>198.1055</td>
<td>378.1772</td>
<td>189.5922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1125.6031</td>
<td>563.3062</td>
<td>1108.5786</td>
<td>554.7920</td>
<td>1107.5946</td>
<td>554.3000</td>
<td>Y</td>
<td>339.1823</td>
<td>169.5948</td>
<td>321.1557</td>
<td>161.0815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>175.1190</td>
<td>88.0631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GDNPFPKNADGTVR

Found in **BLAXW3**. Alcohol dehydrogenase [NADP(+)] (Fragment) OS=Mus musculus GN=Akri1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two around that point

- For full range

Label all possible matches ○ Label matches used for scoring ◇

Monoisotopic mass of neutral peptide Mr(m/z): 1572.7166

Fixed modifications: MetO (+) (apply to specified residues or termini only)

Variable modifications:

- K7: mal-COOH (K), with neutral loss 43.0565

Input:

- Exp: 1.1e-05

Match: 1/16 Fragment ions using 24 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>Seq</th>
<th>y*</th>
<th>y''</th>
<th>y**</th>
<th>y**</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>173.0557</td>
<td>87.5175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>1472.7128</td>
<td>736.8601</td>
<td>1455.9683</td>
<td>728.3468</td>
<td>1454.7023</td>
<td>727.8548</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>287.0966</td>
<td>144.0332</td>
<td>270.0721</td>
<td>135.5367</td>
<td>269.0880</td>
<td>135.0477</td>
<td>N</td>
<td>1357.6999</td>
<td>679.3468</td>
<td>1240.6593</td>
<td>670.8333</td>
<td>1339.6753</td>
<td>670.3413</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>354.1514</td>
<td>152.5114</td>
<td>367.1248</td>
<td>184.0661</td>
<td>366.1408</td>
<td>183.5740</td>
<td>P</td>
<td>1243.6670</td>
<td>622.3251</td>
<td>1226.6164</td>
<td>613.8118</td>
<td>1225.6324</td>
<td>613.3190</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>531.2198</td>
<td>266.1135</td>
<td>541.1921</td>
<td>257.6003</td>
<td>513.2092</td>
<td>257.1082</td>
<td>F</td>
<td>1146.5902</td>
<td>573.7987</td>
<td>1129.5637</td>
<td>565.2855</td>
<td>1128.5706</td>
<td>564.7955</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>628.2762</td>
<td>314.6399</td>
<td>611.2460</td>
<td>306.1266</td>
<td>610.2620</td>
<td>305.6346</td>
<td>P</td>
<td>999.5218</td>
<td>500.2645</td>
<td>982.4952</td>
<td>491.7513</td>
<td>981.5112</td>
<td>491.2592</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>798.3781</td>
<td>399.6097</td>
<td>781.3515</td>
<td>391.7191</td>
<td>780.3675</td>
<td>390.8674</td>
<td>K</td>
<td>992.4690</td>
<td>451.7381</td>
<td>885.4425</td>
<td>444.2249</td>
<td>884.4585</td>
<td>442.7329</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>912.4210</td>
<td>456.7141</td>
<td>895.3945</td>
<td>448.2009</td>
<td>894.4104</td>
<td>447.7089</td>
<td>N</td>
<td>732.3635</td>
<td>366.6854</td>
<td>715.3369</td>
<td>358.1721</td>
<td>714.3529</td>
<td>357.6801</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>983.4819</td>
<td>492.2227</td>
<td>966.4316</td>
<td>483.7194</td>
<td>955.4476</td>
<td>483.2274</td>
<td>A</td>
<td>618.3206</td>
<td>309.6639</td>
<td>601.2940</td>
<td>301.1506</td>
<td>600.3100</td>
<td>300.6566</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1098.4841</td>
<td>549.7463</td>
<td>1081.4385</td>
<td>541.2329</td>
<td>1080.4745</td>
<td>540.7409</td>
<td>D</td>
<td>547.2835</td>
<td>274.1454</td>
<td>530.2659</td>
<td>265.6231</td>
<td>529.2729</td>
<td>265.1401</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1155.5065</td>
<td>578.2568</td>
<td>1138.4800</td>
<td>569.7436</td>
<td>1137.4960</td>
<td>569.2516</td>
<td>G</td>
<td>432.2568</td>
<td>216.6139</td>
<td>415.2300</td>
<td>200.1186</td>
<td>414.2459</td>
<td>207.8626</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1286.5234</td>
<td>628.8707</td>
<td>1259.5277</td>
<td>620.2673</td>
<td>1258.5436</td>
<td>619.7752</td>
<td>I</td>
<td>375.2320</td>
<td>188.1212</td>
<td>358.2083</td>
<td>179.6070</td>
<td>357.2245</td>
<td>179.1129</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1355.6226</td>
<td>678.3149</td>
<td>1338.5961</td>
<td>669.8017</td>
<td>1337.6121</td>
<td>669.3097</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>173.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.3498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
ATAVMPDGQF KDISLSEYK
MS/MS Fragmentation of VVKQASEGPLK

Found in DvV108 Citrobacter rodhodferox dehydrogenase CN=Mus musculus CN=Gim6316 PF=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 150 to 1200 Da
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1240.6663
Fixed modifications: Mono (C) (apply to specified residues or termini only)
Variable modifications:
KX : malate (K), with neutral loss 43.05598
Ions Score: 92 Expect: 0.012
Matches : 50/98 fragment ions using 78 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>199.1141</td>
<td>100.0757</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>369.2496</td>
<td>185.1285</td>
<td>352.2231</td>
<td>176.6152</td>
<td></td>
<td>K</td>
<td>999.5469</td>
<td>500.2771</td>
<td>982.5204</td>
<td>491.7638</td>
<td>981.5364</td>
<td>491.2718</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>497.3682</td>
<td>249.1577</td>
<td>480.2817</td>
<td>240.6445</td>
<td></td>
<td>Q</td>
<td>829.4414</td>
<td>415.2243</td>
<td>812.4149</td>
<td>406.7111</td>
<td>811.4308</td>
<td>406.2191</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>568.3453</td>
<td>284.6765</td>
<td>551.3188</td>
<td>276.1630</td>
<td></td>
<td>A</td>
<td>701.3828</td>
<td>351.1951</td>
<td>684.3565</td>
<td>342.6818</td>
<td>683.3723</td>
<td>342.1898</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>784.4199</td>
<td>392.7136</td>
<td>767.3934</td>
<td>384.2003</td>
<td>766.4094</td>
<td>383.7083</td>
<td>E</td>
<td>543.3137</td>
<td>272.1605</td>
<td>526.2871</td>
<td>263.6472</td>
<td>525.3031</td>
<td>263.1552</td>
</tr>
<tr>
<td>8</td>
<td>841.4414</td>
<td>421.2243</td>
<td>824.4149</td>
<td>412.7111</td>
<td>823.4308</td>
<td>412.2191</td>
<td>G</td>
<td>414.2711</td>
<td>207.6392</td>
<td>397.2445</td>
<td>199.1259</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>938.4942</td>
<td>469.7507</td>
<td>921.4676</td>
<td>461.2375</td>
<td>920.4836</td>
<td>460.7454</td>
<td>P</td>
<td>357.2496</td>
<td>179.1285</td>
<td>340.2231</td>
<td>170.6152</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1051.5782</td>
<td>526.2928</td>
<td>1034.5517</td>
<td>517.7795</td>
<td>1033.5677</td>
<td>517.2875</td>
<td>L</td>
<td>260.1599</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TVDGPSGKLWR
Found in D3YU05, Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gmd6316 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 10 to 1400 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(c大胆): 1200.6412
Fixed modifications: MSGD (C) (apply to specified residues or termini only)
Variable modifications:
MSK: [mal-COO] (K), with neutral loss 42.0608
Ions Score: 97 Expect: 0.00027
Matches : 17/96 fragment ions using 92 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^-</th>
<th>b^++</th>
<th>b^0</th>
<th>b^0</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^-</th>
<th>y^+</th>
<th>y^0</th>
<th>y^0</th>
<th>y^0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td>4.0444</td>
<td>45.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>201.1224</td>
<td>101.0653</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td>1136.6091</td>
<td>578.8091</td>
<td>1139.5844</td>
<td>570.2958</td>
<td>1138.6004</td>
<td>569.8038</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>316.1503</td>
<td>158.5788</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>1057.5425</td>
<td>529.2749</td>
<td>1040.5160</td>
<td>520.7616</td>
<td>1039.5320</td>
<td>520.2696</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>573.1718</td>
<td>287.0893</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>942.5156</td>
<td>471.7614</td>
<td>925.4890</td>
<td>463.2482</td>
<td>924.5050</td>
<td>462.7561</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>470.2245</td>
<td>235.6159</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>885.4941</td>
<td>442.2507</td>
<td>868.4676</td>
<td>434.7374</td>
<td>867.4835</td>
<td>434.2454</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>557.2566</td>
<td>279.1319</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>788.4413</td>
<td>394.7243</td>
<td>771.4148</td>
<td>386.2100</td>
<td>770.4208</td>
<td>385.7190</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>614.2780</td>
<td>307.6427</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>701.4093</td>
<td>351.2083</td>
<td>684.3828</td>
<td>342.6970</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>784.3383</td>
<td>392.6954</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td>644.3879</td>
<td>322.6976</td>
<td>627.3613</td>
<td>314.1843</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>897.4676</td>
<td>449.2375</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>476.2833</td>
<td>237.6448</td>
<td>457.2558</td>
<td>229.1315</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1083.5469</td>
<td>542.2771</td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td>361.1883</td>
<td>181.1028</td>
<td>344.1717</td>
<td>172.5892</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>75.9488</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

TVDGPSGKLWR
LVINGKPITIFQER

Monoisotopic mass of neutral peptide Mr(calc): 1712.9461
Fixed modifications: MGSK (C) (apply to specified residues or termini only)
Variable modifications:
K6 : m1(C5) (R), with neutral loss 48.05895
Ions Score: 46 Expect: 9.00616
Matches : 44/142 fragment ions using 80 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b'</th>
<th>y'</th>
<th>b''</th>
<th>y''</th>
<th>Seq.</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5491</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0833</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>326.2438</td>
<td>163.6235</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>440.2867</td>
<td>220.1470</td>
<td>423.2602</td>
<td>212.1337</td>
<td>N</td>
<td>1134.7270</td>
<td>572.3872</td>
<td>1327.7085</td>
<td>684.3539</td>
<td>1126.7165</td>
<td>685.8619</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>497.3082</td>
<td>249.1577</td>
<td>490.2817</td>
<td>240.6445</td>
<td>G</td>
<td>1230.6841</td>
<td>615.8457</td>
<td>1213.8576</td>
<td>607.3324</td>
<td>1212.6735</td>
<td>606.8404</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>667.4137</td>
<td>334.2105</td>
<td>650.3872</td>
<td>325.6972</td>
<td>K</td>
<td>1173.6626</td>
<td>587.3350</td>
<td>1156.6361</td>
<td>578.8217</td>
<td>1155.6521</td>
<td>578.3297</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>764.4665</td>
<td>382.2736</td>
<td>747.4400</td>
<td>374.2236</td>
<td>P</td>
<td>1063.5571</td>
<td>502.2822</td>
<td>986.5306</td>
<td>493.7689</td>
<td>985.5465</td>
<td>493.2769</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>877.5506</td>
<td>439.2738</td>
<td>850.5240</td>
<td>430.7656</td>
<td>I</td>
<td>906.5943</td>
<td>453.7558</td>
<td>899.4778</td>
<td>445.2425</td>
<td>888.4938</td>
<td>444.7505</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>978.5927</td>
<td>489.0828</td>
<td>961.5717</td>
<td>481.2898</td>
<td>G</td>
<td>860.5877</td>
<td>469.7975</td>
<td>T</td>
<td>783.4263</td>
<td>397.2138</td>
<td>776.3937</td>
<td>388.7005</td>
</tr>
<tr>
<td>10</td>
<td>1091.6823</td>
<td>546.3448</td>
<td>1074.6558</td>
<td>537.8315</td>
<td>1073.6717</td>
<td>537.3395</td>
<td>I</td>
<td>692.3726</td>
<td>316.6899</td>
<td>675.3461</td>
<td>331.1767</td>
<td>674.3620</td>
</tr>
<tr>
<td>12</td>
<td>1366.8093</td>
<td>683.0831</td>
<td>1349.7823</td>
<td>675.3950</td>
<td>1348.7987</td>
<td>674.9030</td>
<td>Q</td>
<td>432.2261</td>
<td>216.6137</td>
<td>415.1936</td>
<td>208.1004</td>
<td>414.2966</td>
</tr>
<tr>
<td>13</td>
<td>1495.8513</td>
<td>748.4296</td>
<td>1478.8233</td>
<td>739.9163</td>
<td>1477.8413</td>
<td>739.4243</td>
<td>E</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1330</td>
<td>144.0711</td>
<td>286.1510</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVGKVIPELNGK
Found in D3YU05, Glyceroldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gmd316 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot from] 150 to 1200 Da [Full range]
Label all possible matches ○ Label matches used for scoring ♦

Monoisotopic mass of neutral peptide M(calc): 1509.7242
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K4 = met 552 (K), with neutral loss 43.0549
Ions Score: 60 Expect: 0.00568
Matches : 27/104 fragment ions using 60 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>V</td>
<td>1195.7045</td>
<td>598.3559</td>
<td>1178.6780</td>
<td>589.8426</td>
<td>1177.6399</td>
<td>589.3506</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>G</td>
<td>K</td>
<td>1096.6361</td>
<td>548.8217</td>
<td>1079.6095</td>
<td>540.3084</td>
<td>1078.6255</td>
<td>539.8164</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>228.1345</td>
<td>114.5708</td>
<td>V</td>
<td>869.5091</td>
<td>435.2582</td>
<td>852.4825</td>
<td>426.7449</td>
<td>851.4985</td>
<td>426.2529</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>398.2398</td>
<td>199.6235</td>
<td>381.2132</td>
<td>191.1103</td>
<td>K</td>
<td>1039.6146</td>
<td>520.3106</td>
<td>1022.5881</td>
<td>511.7977</td>
<td>1021.6641</td>
<td>511.3057</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>497.3582</td>
<td>249.1577</td>
<td>480.2817</td>
<td>240.6445</td>
<td>V</td>
<td>770.4407</td>
<td>385.7240</td>
<td>753.4141</td>
<td>377.2107</td>
<td>752.4301</td>
<td>376.7187</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>619.3923</td>
<td>305.6908</td>
<td>591.3657</td>
<td>297.1865</td>
<td>I</td>
<td>657.3566</td>
<td>329.1819</td>
<td>640.3301</td>
<td>320.6687</td>
<td>639.3481</td>
<td>320.1767</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>707.4456</td>
<td>354.2262</td>
<td>690.4185</td>
<td>345.7129</td>
<td>P</td>
<td>560.3039</td>
<td>280.6556</td>
<td>543.2773</td>
<td>272.1423</td>
<td>542.2933</td>
<td>271.6503</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836.4876</td>
<td>418.7475</td>
<td>819.4611</td>
<td>410.2342</td>
<td>E</td>
<td>548.8217</td>
<td>280.6556</td>
<td>531.2073</td>
<td>272.1423</td>
<td>542.2933</td>
<td>271.6503</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>949.5727</td>
<td>475.2895</td>
<td>932.5451</td>
<td>466.7762</td>
<td>L</td>
<td>431.2613</td>
<td>216.1343</td>
<td>414.2347</td>
<td>207.6210</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1063.6146</td>
<td>532.3109</td>
<td>1046.5881</td>
<td>523.7977</td>
<td>N</td>
<td>318.1772</td>
<td>159.5922</td>
<td>301.1506</td>
<td>151.0790</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1120.6361</td>
<td>560.8217</td>
<td>1103.6095</td>
<td>552.3084</td>
<td>G</td>
<td>204.1345</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GAAQNIIPASTGAAKAVGK**

Found in DSYUM. Glyoxylate 3-phosphate dehydrogenase
OS=Mus musculus
GN=Gmds16
PE=3
SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from 200 to 1700 Da. Full range.

Label all possible matches. Label matches used for scoring.

Monoisotopic mass of neutral peptide (MISDa): 1091.5006

Fixed modifications: MMTS (C) (apply to specified residues or terminal only)

Variable modifications:

K15 : no MOD (X), with neutral loss 43.9458

Ion score: 82, Repeat: 24-66

Matches: 62/176 fragment ions using 100 most intense peaks (main)

<table>
<thead>
<tr>
<th>#</th>
<th>y</th>
<th>b</th>
<th>y**</th>
<th>b**</th>
<th>y***</th>
<th>b***</th>
<th>Seq.</th>
<th>y(2)</th>
<th>y(3)</th>
<th>y(4)</th>
<th>y(5)</th>
<th>y(6)</th>
<th>y(7)</th>
<th>y(8)</th>
<th>y(9)</th>
<th>y(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0827</td>
<td>29.5180</td>
<td>G</td>
<td>1789.9545</td>
<td>655.4809</td>
<td>1692.9279</td>
<td>846.9676</td>
<td>1691.9439</td>
<td>846.4756</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129.0659</td>
<td>65.0316</td>
<td>A</td>
<td>1638.9173</td>
<td>819.9622</td>
<td>1621.8908</td>
<td>811.4490</td>
<td>1620.9068</td>
<td>810.9570</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>500.1030</td>
<td>100.5551</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>228.1615</td>
<td>164.5844</td>
<td>311.1350</td>
<td>156.0711</td>
<td>Q</td>
<td>1587.8807</td>
<td>784.4439</td>
<td>1550.8237</td>
<td>775.9303</td>
<td>1540.8697</td>
<td>775.4835</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>442.2045</td>
<td>221.6039</td>
<td>423.1779</td>
<td>213.0926</td>
<td>N</td>
<td>1439.8217</td>
<td>720.4145</td>
<td>1422.7951</td>
<td>711.9012</td>
<td>1421.8111</td>
<td>711.4092</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>555.8883</td>
<td>278.1479</td>
<td>538.2620</td>
<td>269.6346</td>
<td>I</td>
<td>1325.7787</td>
<td>663.3930</td>
<td>1308.7522</td>
<td>654.8797</td>
<td>1307.7682</td>
<td>654.3877</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>668.3726</td>
<td>334.6899</td>
<td>611.3461</td>
<td>326.1767</td>
<td>T</td>
<td>1212.6947</td>
<td>606.8310</td>
<td>1195.6681</td>
<td>598.3377</td>
<td>1194.6841</td>
<td>597.8457</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>765.4292</td>
<td>382.2163</td>
<td>748.3983</td>
<td>374.7030</td>
<td>P</td>
<td>1099.6166</td>
<td>550.3069</td>
<td>1082.5841</td>
<td>541.7957</td>
<td>1081.6000</td>
<td>541.3037</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>836.4625</td>
<td>418.7249</td>
<td>819.4359</td>
<td>410.2216</td>
<td>A</td>
<td>1002.5578</td>
<td>501.7826</td>
<td>985.3513</td>
<td>492.2693</td>
<td>984.5473</td>
<td>492.7773</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>923.4965</td>
<td>462.2509</td>
<td>906.4680</td>
<td>453.7376</td>
<td>S</td>
<td>931.8207</td>
<td>466.2640</td>
<td>914.4942</td>
<td>457.7307</td>
<td>913.5102</td>
<td>457.2535</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1024.5422</td>
<td>512.7747</td>
<td>1007.5156</td>
<td>504.2615</td>
<td>T</td>
<td>841.4887</td>
<td>422.7480</td>
<td>827.4621</td>
<td>414.2247</td>
<td>826.4781</td>
<td>413.7427</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1201.5617</td>
<td>541.2853</td>
<td>1184.5371</td>
<td>532.7722</td>
<td>G</td>
<td>743.4410</td>
<td>372.2241</td>
<td>726.4149</td>
<td>363.7109</td>
<td>725.4835</td>
<td>363.2014</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1223.6379</td>
<td>612.3226</td>
<td>1206.6113</td>
<td>603.8093</td>
<td>A</td>
<td>615.3824</td>
<td>308.1949</td>
<td>598.3596</td>
<td>299.8616</td>
<td>597.8616</td>
<td>299.3596</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1593.7847</td>
<td>697.3735</td>
<td>1576.7169</td>
<td>688.8621</td>
<td>K</td>
<td>541.3453</td>
<td>272.6703</td>
<td>527.3186</td>
<td>264.1630</td>
<td>526.1630</td>
<td>264.6703</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1464.7895</td>
<td>732.8399</td>
<td>1447.7504</td>
<td>724.3806</td>
<td>A</td>
<td>571.2398</td>
<td>287.8323</td>
<td>557.2138</td>
<td>279.1231</td>
<td>556.7138</td>
<td>279.6231</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1562.8489</td>
<td>782.4281</td>
<td>1546.8224</td>
<td>773.9148</td>
<td>Y</td>
<td>903.2027</td>
<td>452.1050</td>
<td>886.1761</td>
<td>445.5917</td>
<td>885.6917</td>
<td>445.0917</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1670.8796</td>
<td>810.9388</td>
<td>1653.8438</td>
<td>802.4256</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VFANPEDCAGFGKGENAK
Found in DJyU00. Microsomal glutathione S-transferase 1 OS=Mus musculus GN=Mgst1 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Methionine is neutral, peptide Met(cys): 1564.5105
Fixed modifications: MM3 (C) (apply to specified residues or termini only)
Variable modifications: KE : Nε-Lys (R), with neutral loss 48.0861
Ions Score: 104 Expect: 1e-100
Matches : 81/152 fragment ions using 46 most intense peaks

<table>
<thead>
<tr>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y'''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0737</td>
<td>30.5415</td>
<td>V</td>
<td>F</td>
<td>1584.7783</td>
<td>921.8020</td>
<td>1823.7520</td>
<td>913.3796</td>
<td>1824.7680</td>
<td>912.3876</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1441</td>
<td>124.0757</td>
<td>A</td>
<td>N</td>
<td>1695.7601</td>
<td>318.3317</td>
<td>1678.6836</td>
<td>339.8415</td>
<td>1677.6996</td>
<td>339.3534</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>318.1812</td>
<td>159.5942</td>
<td>P</td>
<td>1510.6304</td>
<td>756.8187</td>
<td>1463.6085</td>
<td>747.3054</td>
<td>1492.6195</td>
<td>746.8134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>432.2241</td>
<td>216.6157</td>
<td>E</td>
<td>1413.7773</td>
<td>707.2923</td>
<td>1396.5208</td>
<td>698.7790</td>
<td>1395.5668</td>
<td>698.2870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>529.2769</td>
<td>265.1421</td>
<td>D</td>
<td>1234.3447</td>
<td>642.7710</td>
<td>1207.5082</td>
<td>634.2577</td>
<td>1206.5242</td>
<td>633.7657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>638.3153</td>
<td>329.6561</td>
<td>C</td>
<td>1109.6798</td>
<td>585.2575</td>
<td>1092.4812</td>
<td>576.7443</td>
<td>1111.4972</td>
<td>576.2529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>733.3464</td>
<td>387.1169</td>
<td>B</td>
<td>1079.3109</td>
<td>519.7571</td>
<td>1062.4841</td>
<td>502.2458</td>
<td>1062.4909</td>
<td>501.7538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>822.3434</td>
<td>461.6753</td>
<td>A</td>
<td>993.3801</td>
<td>497.1593</td>
<td>976.3539</td>
<td>488.8086</td>
<td>975.3699</td>
<td>488.1866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>993.3801</td>
<td>497.1593</td>
<td>G</td>
<td>892.6532</td>
<td>466.7298</td>
<td>875.4238</td>
<td>458.2165</td>
<td>874.4417</td>
<td>437.7243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1093.4019</td>
<td>525.7046</td>
<td>F</td>
<td>765.3839</td>
<td>373.1068</td>
<td>728.3773</td>
<td>364.6833</td>
<td>727.3753</td>
<td>364.1003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1197.6702</td>
<td>599.2382</td>
<td>E</td>
<td>682.6264</td>
<td>344.6480</td>
<td>671.3359</td>
<td>335.1716</td>
<td>670.3519</td>
<td>335.6796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1254.4018</td>
<td>627.7495</td>
<td>D</td>
<td>518.3560</td>
<td>239.6231</td>
<td>501.2304</td>
<td>231.1188</td>
<td>500.2462</td>
<td>230.6268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1342.5972</td>
<td>712.8225</td>
<td>C</td>
<td>461.3534</td>
<td>231.1214</td>
<td>444.2098</td>
<td>222.6081</td>
<td>443.2249</td>
<td>222.1161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1418.6181</td>
<td>741.3130</td>
<td>B</td>
<td>322.9238</td>
<td>166.6001</td>
<td>315.1663</td>
<td>158.0868</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1510.6614</td>
<td>803.8343</td>
<td>A</td>
<td>218.1499</td>
<td>109.5736</td>
<td>201.1234</td>
<td>101.0653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1610.7403</td>
<td>862.8558</td>
<td>K</td>
<td>147.1124</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ITNKVFANPDECAGFGK

Monoisotopic mass of neutral peptide Mz (decimal): 1041.8601
Found modifications: NHESS (C) (apply to specified residues or terminal only)
Variable modifications:
X8 = m/z arabic (4), with neutral loss 43.9185
Fasta Source: Rl. Expect: 0.00017
Matches: 17/174 fragments ionized using 69 most intense peaks (in a)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq</th>
<th>y'</th>
<th>y''</th>
<th>y''''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0613</td>
<td>37.5493</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.8731</td>
<td>197.1265</td>
<td>99.9679</td>
<td>T</td>
<td>1785.7953</td>
<td>893.4004</td>
<td>1768.7669</td>
<td>884.8871</td>
<td>1767.7829</td>
<td>884.3695</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>329.8191</td>
<td>185.0394</td>
<td>312.1354</td>
<td>156.8313</td>
<td>311.1714</td>
<td>156.0893</td>
<td>N</td>
<td>1684.7438</td>
<td>842.8765</td>
<td>547.7129</td>
<td>873.4603</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>409.2875</td>
<td>250.1474</td>
<td>482.2609</td>
<td>241.6341</td>
<td>481.2769</td>
<td>241.4121</td>
<td>K</td>
<td>1170.7020</td>
<td>785.8251</td>
<td>1533.6763</td>
<td>777.3418</td>
<td>1182.9229</td>
<td>776.8489</td>
</tr>
<tr>
<td>5</td>
<td>598.3599</td>
<td>299.6819</td>
<td>581.1293</td>
<td>291.1682</td>
<td>581.2453</td>
<td>290.7683</td>
<td>Y</td>
<td>1498.3973</td>
<td>709.8023</td>
<td>1381.5708</td>
<td>692.2890</td>
<td>1382.3486</td>
<td>691.9790</td>
</tr>
<tr>
<td>6</td>
<td>745.4243</td>
<td>375.2138</td>
<td>728.3978</td>
<td>364.7025</td>
<td>727.4137</td>
<td>364.2102</td>
<td>F</td>
<td>1391.5239</td>
<td>651.2681</td>
<td>1281.3024</td>
<td>642.7548</td>
<td>1281.3184</td>
<td>642.6258</td>
</tr>
<tr>
<td>7</td>
<td>816.4614</td>
<td>408.7343</td>
<td>799.4349</td>
<td>400.2211</td>
<td>798.4509</td>
<td>399.7291</td>
<td>A</td>
<td>1154.4965</td>
<td>577.7339</td>
<td>1137.4340</td>
<td>569.2206</td>
<td>1136.4499</td>
<td>568.7286</td>
</tr>
<tr>
<td>8</td>
<td>929.5045</td>
<td>462.7538</td>
<td>912.4778</td>
<td>457.2422</td>
<td>912.4938</td>
<td>456.7202</td>
<td>N</td>
<td>1488.5254</td>
<td>742.2153</td>
<td>1388.3968</td>
<td>652.7021</td>
<td>1385.4138</td>
<td>652.2101</td>
</tr>
<tr>
<td>9</td>
<td>1027.5571</td>
<td>514.2322</td>
<td>1010.5366</td>
<td>506.7569</td>
<td>1009.5458</td>
<td>506.2766</td>
<td>P</td>
<td>964.9305</td>
<td>485.1939</td>
<td>932.5359</td>
<td>476.6806</td>
<td>931.3699</td>
<td>476.1886</td>
</tr>
<tr>
<td>10</td>
<td>1156.5997</td>
<td>578.8013</td>
<td>1139.5732</td>
<td>570.2902</td>
<td>1138.5891</td>
<td>569.7982</td>
<td>E</td>
<td>1472.3077</td>
<td>741.6673</td>
<td>1385.3012</td>
<td>648.1342</td>
<td>1384.3171</td>
<td>647.6622</td>
</tr>
<tr>
<td>11</td>
<td>1271.6260</td>
<td>636.3170</td>
<td>1254.6001</td>
<td>627.8087</td>
<td>1253.6161</td>
<td>627.3117</td>
<td>D</td>
<td>742.3831</td>
<td>372.1462</td>
<td>726.2596</td>
<td>365.6329</td>
<td>725.2745</td>
<td>365.1409</td>
</tr>
<tr>
<td>12</td>
<td>1420.6273</td>
<td>710.8154</td>
<td>1403.5970</td>
<td>702.3021</td>
<td>1402.6130</td>
<td>701.8101</td>
<td>C</td>
<td>638.2582</td>
<td>314.6327</td>
<td>611.2316</td>
<td>306.1194</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1541.6097</td>
<td>786.3410</td>
<td>1524.5894</td>
<td>776.8207</td>
<td>1523.5531</td>
<td>775.9237</td>
<td>A</td>
<td>479.2426</td>
<td>256.2143</td>
<td>462.2347</td>
<td>241.6210</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1654.6621</td>
<td>841.4417</td>
<td>1637.6552</td>
<td>832.9504</td>
<td>1636.6611</td>
<td>832.4543</td>
<td>G</td>
<td>408.2241</td>
<td>204.6157</td>
<td>391.1976</td>
<td>196.1024</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1695.7950</td>
<td>840.7869</td>
<td>1678.7240</td>
<td>839.2656</td>
<td>1677.7400</td>
<td>839.3736</td>
<td>F</td>
<td>351.2027</td>
<td>176.1030</td>
<td>334.1781</td>
<td>167.5917</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1752.7720</td>
<td>876.8896</td>
<td>1735.7453</td>
<td>868.3764</td>
<td>1734.7614</td>
<td>867.8844</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0375</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VAFTQVNSEDKGALAK

Found in O3YU93. Uncharacterized protein OB-Mus musculus Q1=R017a.93 PE=4 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, [Fit form] 300 to 2000 Da [Full range]

Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide Mr(m/z): 2115.0317

Fixed modifications: MM2 (C) apply to specified residues or terminal only

Variable modifications:

- Ox : m/z 202.98, with neutral loss 41.0828

- Nε : 62 Repet: 1 m/z-0.66

Matches: 22/200 fragment ions using 10 most intense peaks. [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>k</th>
<th>l</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>m/z</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0559</td>
<td>51.5311</td>
<td></td>
<td></td>
<td>84.0444</td>
<td></td>
<td></td>
<td>42.5258</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.6519</td>
<td>126.0256</td>
<td></td>
<td></td>
<td>233.0413</td>
<td></td>
<td></td>
<td>117.0243</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>352.0985</td>
<td>176.5554</td>
<td></td>
<td></td>
<td>334.0890</td>
<td></td>
<td></td>
<td>167.5481</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>453.1472</td>
<td>227.0772</td>
<td></td>
<td></td>
<td>435.1367</td>
<td></td>
<td></td>
<td>218.0720</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>552.2126</td>
<td>276.6115</td>
<td></td>
<td></td>
<td>534.2031</td>
<td></td>
<td></td>
<td>267.6062</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>652.2527</td>
<td>312.1300</td>
<td></td>
<td></td>
<td>634.2422</td>
<td></td>
<td></td>
<td>303.1247</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>770.3212</td>
<td>385.6564</td>
<td></td>
<td></td>
<td>752.3105</td>
<td></td>
<td></td>
<td>376.6459</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>871.3683</td>
<td>438.1881</td>
<td></td>
<td></td>
<td>853.3583</td>
<td></td>
<td></td>
<td>427.1782</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>999.4274</td>
<td>500.2173</td>
<td>P82.6009</td>
<td></td>
<td>981.4169</td>
<td></td>
<td></td>
<td>481.2121</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1098.4953</td>
<td>548.7516</td>
<td>1081.4693</td>
<td></td>
<td>531.2854</td>
<td></td>
<td></td>
<td>250.4853</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1212.5398</td>
<td>609.7720</td>
<td>1195.5122</td>
<td></td>
<td>592.2597</td>
<td></td>
<td></td>
<td>299.5822</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1399.5708</td>
<td>650.2890</td>
<td>1282.5442</td>
<td></td>
<td>631.7735</td>
<td></td>
<td></td>
<td>281.5600</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1422.6134</td>
<td>714.8103</td>
<td>1411.5868</td>
<td></td>
<td>706.2971</td>
<td></td>
<td></td>
<td>340.6038</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1530.6314</td>
<td>772.3258</td>
<td>1525.6183</td>
<td></td>
<td>763.8103</td>
<td></td>
<td></td>
<td>353.6298</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1713.7429</td>
<td>857.7566</td>
<td>1699.7193</td>
<td></td>
<td>841.8635</td>
<td></td>
<td></td>
<td>419.8373</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1770.7573</td>
<td>882.8873</td>
<td>1758.7408</td>
<td></td>
<td>877.5740</td>
<td></td>
<td></td>
<td>421.7257</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1841.8044</td>
<td>921.4059</td>
<td>1824.7779</td>
<td></td>
<td>912.8926</td>
<td></td>
<td></td>
<td>438.7993</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1954.8585</td>
<td>977.8479</td>
<td>1937.8616</td>
<td></td>
<td>969.4346</td>
<td></td>
<td></td>
<td>456.8177</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2025.9256</td>
<td>1031.4664</td>
<td>2008.8991</td>
<td></td>
<td>1004.8132</td>
<td></td>
<td></td>
<td>489.4612</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2147.0123</td>
<td>1090.9788</td>
<td></td>
<td></td>
<td>1063.9230</td>
<td></td>
<td></td>
<td>447.5685</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Note: The above table contains precursor ion mass-to-charge (m/z) values for the fragment ions generated from the protein sequence VAFTQVNSEDKGALAK. The table provides details such as the masses of the b- and y-series ions, their respective charge states (e.g., b2, b3, b4), and the corresponding y-series ions.
MS/MS Fragmentation of **GKNCVAIAADR**

Found in **D3YUM8**, Proteasome subunit beta type

OS=Mus musculus GN=Gm4950 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 750 to 1100 Da [Full range]

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1248.6891

Fixed modifications: **NMT5 (C)** (apply to specified residues or termini only)
Variable modifications:
K2 : mal-COO2 (K), with neutral loss 43.0000

Ions Score: 16 Expect: 0.040

Matches: 9/30 frequent ions using 27 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0575</td>
<td>K</td>
<td>1148.5551</td>
<td>574.7812</td>
<td>1131.5263</td>
<td>566.2679</td>
</tr>
<tr>
<td>3</td>
<td>342.1772</td>
<td>171.5922</td>
<td>325.1506</td>
<td>163.0790</td>
<td>N</td>
<td>978.4495</td>
<td>485.7284</td>
<td>961.4230</td>
<td>481.2151</td>
</tr>
<tr>
<td>4</td>
<td>491.1741</td>
<td>246.0607</td>
<td>474.1476</td>
<td>237.5774</td>
<td>C</td>
<td>864.4066</td>
<td>432.7069</td>
<td>847.3801</td>
<td>424.1937</td>
</tr>
<tr>
<td>5</td>
<td>590.2425</td>
<td>295.6249</td>
<td>573.2160</td>
<td>287.1115</td>
<td>V</td>
<td>715.1097</td>
<td>358.2085</td>
<td>698.3322</td>
<td>349.6952</td>
</tr>
<tr>
<td>6</td>
<td>661.2796</td>
<td>331.1435</td>
<td>644.2531</td>
<td>322.6302</td>
<td>A</td>
<td>616.3413</td>
<td>308.6743</td>
<td>599.3148</td>
<td>300.1610</td>
</tr>
<tr>
<td>7</td>
<td>774.3637</td>
<td>387.6858</td>
<td>757.3731</td>
<td>379.1722</td>
<td>I</td>
<td>545.3042</td>
<td>273.1557</td>
<td>528.2776</td>
<td>264.6425</td>
</tr>
<tr>
<td>8</td>
<td>845.4008</td>
<td>423.2040</td>
<td>828.3743</td>
<td>414.6908</td>
<td>A</td>
<td>432.2201</td>
<td>216.6137</td>
<td>415.1936</td>
<td>208.1004</td>
</tr>
<tr>
<td>9</td>
<td>916.4379</td>
<td>458.7226</td>
<td>899.4114</td>
<td>450.2093</td>
<td>A</td>
<td>361.1830</td>
<td>181.0651</td>
<td>344.1565</td>
<td>172.5819</td>
</tr>
<tr>
<td>10</td>
<td>1031.4649</td>
<td>516.2361</td>
<td>1014.4383</td>
<td>507.7228</td>
<td>D</td>
<td>280.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0633</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **FVTNTTKESK**

Found in **D3VUN7** Histacid dehalogenase-like hydrolase domain-containing protein 2 (Fragment) OS=Mus musculus GN=Hdhp1 PF=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>Or.</th>
<th>Pic from</th>
<th>to</th>
<th>Da</th>
<th>Full range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>1100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1299.6982
Fixed modifications: **M+57** (G) (apply to specified residues or termini only)
Variable modifications:
K7 : **mal-CO2** (K), with neutral loss 43.9399

Ion Source: ESI Exp Int: 0.631
Matches: 21/96 fragment ions using 62 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b*</th>
<th>b**-**</th>
<th>b0</th>
<th>b0**-**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y*</th>
<th>y**-**</th>
<th>y0</th>
<th>y0**-**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1441</td>
<td>124.0757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1049.5473</td>
<td>525.2773</td>
<td>1032.5208</td>
<td>516.7640</td>
<td>1031.5368</td>
<td>516.2720</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>348.1918</td>
<td>174.0595</td>
<td>330.1812</td>
<td>165.5912</td>
<td></td>
<td></td>
<td>T</td>
<td>950.4789</td>
<td>475.7431</td>
<td>933.4524</td>
<td>467.2298</td>
<td>932.4654</td>
<td>466.7378</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>462.2347</td>
<td>231.6210</td>
<td>445.2082</td>
<td>223.1077</td>
<td>444.2241</td>
<td>222.6137</td>
<td>N</td>
<td>849.4312</td>
<td>425.2193</td>
<td>832.4047</td>
<td>416.7060</td>
<td>831.4207</td>
<td>416.2140</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>654.3301</td>
<td>332.6687</td>
<td>647.3035</td>
<td>324.1554</td>
<td>646.3195</td>
<td>323.6634</td>
<td>T</td>
<td>634.3406</td>
<td>317.8740</td>
<td>617.3141</td>
<td>309.1607</td>
<td>616.3301</td>
<td>308.6875</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>834.4556</td>
<td>417.7214</td>
<td>817.4090</td>
<td>409.2082</td>
<td>816.4250</td>
<td>408.7162</td>
<td>K</td>
<td>532.2930</td>
<td>267.1351</td>
<td>516.2664</td>
<td>258.6368</td>
<td>515.2824</td>
<td>258.1448</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>963.4782</td>
<td>482.2427</td>
<td>946.4516</td>
<td>473.7295</td>
<td>945.4676</td>
<td>473.2375</td>
<td>E</td>
<td>363.1874</td>
<td>182.0974</td>
<td>346.1600</td>
<td>173.5841</td>
<td>345.1765</td>
<td>173.0921</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1050.5102</td>
<td>525.7587</td>
<td>1033.4837</td>
<td>517.2455</td>
<td>1032.4997</td>
<td>516.7535</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1345</td>
<td>108.5708</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of CATITPDEKR
Found in D3VYV3, Isocitrate dehydrogenase [NADP] cytoplasmic (Fragment) OS=Mus musculus GN=Idh1 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calcd): 1264.5428
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K9 : me₇GSO₂ (K), with neutral loss 49.9980
Ions Score: 25 Expect: 0.015
Matches: 12/84 fragment ions using 19 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b---</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y---</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0042</td>
<td>75.5057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>1072.5683</td>
<td>536.7853</td>
<td>1055.5365</td>
<td>528.2720</td>
<td>1054.5528</td>
<td>527.7800</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>221.0413</td>
<td>111.0243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1072.5683</td>
<td>536.7853</td>
<td>1055.5365</td>
<td>528.2720</td>
<td>1054.5528</td>
<td>527.7800</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>322.0850</td>
<td>161.5481</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1001.5262</td>
<td>501.2667</td>
<td>984.4897</td>
<td>492.7355</td>
<td>983.5155</td>
<td>492.2615</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>455.1730</td>
<td>218.0902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>900.4785</td>
<td>450.7429</td>
<td>883.4520</td>
<td>442.2296</td>
<td>882.4680</td>
<td>441.7376</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>633.2735</td>
<td>317.1404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>686.3168</td>
<td>343.6770</td>
<td>669.3202</td>
<td>335.1638</td>
<td>668.3362</td>
<td>334.6717</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>748.3004</td>
<td>374.6339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>589.2940</td>
<td>295.1506</td>
<td>572.2675</td>
<td>286.6374</td>
<td>571.2835</td>
<td>286.1454</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>877.3430</td>
<td>439.1751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6319</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1047.4485</td>
<td>524.2279</td>
<td>1030.4220</td>
<td>515.7146</td>
<td>5129.4380</td>
<td>515.2226</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YKLLGGLAVR
Found in D3YV43.40S ribosomal protein S3 OS=Mus musculus GN=Rps3 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 750 to 1150 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1174.6710
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
R2 : male_002 (R), with neutral loss 43.0050
Score: 40 Expect: 0.0011
Matches: 20/70 fragment ions using 57 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^−</th>
<th>b^+</th>
<th>b^+++</th>
<th>Seq.</th>
<th>y</th>
<th>y^−</th>
<th>y^+</th>
<th>y^+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td></td>
<td></td>
<td>K</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>167.5917</td>
<td>317.1496</td>
<td>159.0784</td>
<td>R</td>
<td>968.6251</td>
<td>484.8162</td>
<td>951.5986</td>
<td>476.3029</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>447.2602</td>
<td>224.1337</td>
<td>430.2336</td>
<td>215.6205</td>
<td>L</td>
<td>795.5196</td>
<td>399.7634</td>
<td>781.4931</td>
<td>391.2502</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>560.3443</td>
<td>280.6758</td>
<td>543.3177</td>
<td>272.1625</td>
<td>L</td>
<td>685.4355</td>
<td>343.2214</td>
<td>668.4090</td>
<td>334.7081</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>617.3657</td>
<td>309.1865</td>
<td>600.3392</td>
<td>300.6732</td>
<td>G</td>
<td>572.3515</td>
<td>286.6794</td>
<td>555.3249</td>
<td>278.1601</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>674.3872</td>
<td>337.6972</td>
<td>657.3606</td>
<td>329.1840</td>
<td>G</td>
<td>515.3300</td>
<td>258.1686</td>
<td>498.3035</td>
<td>249.6554</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>787.4713</td>
<td>394.2393</td>
<td>770.4447</td>
<td>385.7250</td>
<td>L</td>
<td>458.3085</td>
<td>229.6579</td>
<td>441.2820</td>
<td>221.1446</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>858.5084</td>
<td>429.7578</td>
<td>841.4818</td>
<td>421.2445</td>
<td>A</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>957.5768</td>
<td>479.2920</td>
<td>940.5502</td>
<td>470.7788</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DATNDQVTKDAEAEIK
Found in DJ3V31. Isocitrate dehydrogenase (NADP) cytosolic (Fragment) OS=Mus musculus GN=Idh1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1776.5221
Fixed modifications: NMT S (C) (apply to specified residues or termini only)
Variable modifications: H2N : can2 (R), with neutral loss 0.0938
Loss Score: 20 Expect: 0.002
Matches : 56/169 fragments ions using 55 most intense peaks (hla)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b#</th>
<th>b##</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y#</th>
<th>y##</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>A</td>
<td>1616.8126</td>
<td>808.9099</td>
<td>1599.7861</td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.6393</td>
<td>169.0608</td>
<td>85.0340</td>
<td>A</td>
<td>1616.8126</td>
<td>808.9099</td>
<td>1599.7861</td>
<td>800.8397</td>
</tr>
<tr>
<td>3</td>
<td>238.1190</td>
<td>141.5611</td>
<td>270.1086</td>
<td>133.5179</td>
<td>T</td>
<td>1545.7725</td>
<td>773.3911</td>
<td>1528.7489</td>
<td>764.8781</td>
</tr>
<tr>
<td>4</td>
<td>402.1619</td>
<td>201.5846</td>
<td>385.1354</td>
<td>193.0713</td>
<td>N</td>
<td>1444.7278</td>
<td>722.8675</td>
<td>1427.7023</td>
<td>714.3543</td>
</tr>
<tr>
<td>5</td>
<td>517.1889</td>
<td>259.0981</td>
<td>500.1625</td>
<td>250.0748</td>
<td>K</td>
<td>499.1783</td>
<td>259.0928</td>
<td>1313.8583</td>
<td>655.5626</td>
</tr>
<tr>
<td>6</td>
<td>645.2475</td>
<td>323.1274</td>
<td>628.2209</td>
<td>314.1641</td>
<td>Q</td>
<td>627.2369</td>
<td>314.1221</td>
<td>1198.6514</td>
<td>599.3119</td>
</tr>
<tr>
<td>7</td>
<td>744.3159</td>
<td>372.6616</td>
<td>727.5983</td>
<td>364.1483</td>
<td>V</td>
<td>1067.5894</td>
<td>544.3039</td>
<td>1050.5728</td>
<td>535.7900</td>
</tr>
<tr>
<td>8</td>
<td>845.3565</td>
<td>423.1854</td>
<td>828.3370</td>
<td>414.6721</td>
<td>T</td>
<td>908.5310</td>
<td>494.7691</td>
<td>971.5044</td>
<td>486.2558</td>
</tr>
<tr>
<td>9</td>
<td>1015.4981</td>
<td>508.3282</td>
<td>984.4625</td>
<td>499.7249</td>
<td>K</td>
<td>887.4833</td>
<td>444.2453</td>
<td>870.5087</td>
<td>435.7320</td>
</tr>
<tr>
<td>10</td>
<td>1130.4960</td>
<td>565.7317</td>
<td>1113.6965</td>
<td>557.2384</td>
<td>K</td>
<td>1112.8435</td>
<td>556.7464</td>
<td>717.7777</td>
<td>359.1923</td>
</tr>
<tr>
<td>11</td>
<td>1201.5383</td>
<td>601.1072</td>
<td>1184.5066</td>
<td>592.7569</td>
<td>A</td>
<td>1183.5326</td>
<td>592.2649</td>
<td>602.2698</td>
<td>301.6790</td>
</tr>
<tr>
<td>12</td>
<td>1272.5763</td>
<td>636.7888</td>
<td>1255.5473</td>
<td>628.2755</td>
<td>A</td>
<td>1254.5597</td>
<td>627.7835</td>
<td>631.3317</td>
<td>326.1605</td>
</tr>
<tr>
<td>13</td>
<td>1401.6128</td>
<td>701.1011</td>
<td>1384.6589</td>
<td>692.7981</td>
<td>E</td>
<td>1383.0022</td>
<td>692.3048</td>
<td>469.2766</td>
<td>250.8419</td>
</tr>
<tr>
<td>14</td>
<td>1472.6500</td>
<td>736.8286</td>
<td>1455.6234</td>
<td>728.3158</td>
<td>A</td>
<td>1454.6394</td>
<td>727.8233</td>
<td>1431.2840</td>
<td>666.1206</td>
</tr>
<tr>
<td>15</td>
<td>1585.7340</td>
<td>793.3706</td>
<td>1568.7075</td>
<td>784.8574</td>
<td>I</td>
<td>1567.7235</td>
<td>784.3654</td>
<td>1567.7235</td>
<td>784.3654</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1126</td>
<td>74.0500</td>
<td>130.0863</td>
<td>65.5486</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SKSLFK
Found in D3YWR7. Dihydroxyproline reductase OS=Mus musculus GN=Odar PE=4 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 700 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 794.4174
Fixed modifications: MMIS (C) (apply to specified residues or termini only)
Variable modifications:
K2 : mal CO2 (K), with neutral loss 63.9898
Ions Score: 34 Expect: 0.016
Matches : 8/52 fragment ions using 6 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>258.1448</td>
<td>129.5761</td>
<td>241.1183</td>
<td>121.0628</td>
<td>240.1343</td>
<td>120.5708</td>
<td>K</td>
<td>664.4028</td>
<td>332.7051</td>
<td>647.3763</td>
<td>324.1918</td>
<td>646.3923</td>
<td>323.6998</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>345.1769</td>
<td>173.0921</td>
<td>328.1503</td>
<td>164.5788</td>
<td>327.1663</td>
<td>164.0868</td>
<td>S</td>
<td>494.2973</td>
<td>247.6523</td>
<td>477.2708</td>
<td>239.1390</td>
<td>476.2867</td>
<td>238.6470</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>458.2060</td>
<td>229.6341</td>
<td>441.2344</td>
<td>221.1208</td>
<td>440.2504</td>
<td>220.6288</td>
<td>L</td>
<td>407.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>195.6230</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>605.3293</td>
<td>303.1683</td>
<td>588.3028</td>
<td>294.6550</td>
<td>587.3188</td>
<td>294.1630</td>
<td>F</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>139.0810</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>K</td>
<td>147.1128</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AADLKYIEACAR**

Found in **D3YX99**, UDP-glucose 6-dehydrogenase (Fragment) OS=Mus musculus GN=Ugdh PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Set range: 200 to 1400 Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1454.6583

Fixed modifications: MMTS (C) [apply to specified residues or termini only]

Variable modifications:

K5 = m(+15)Da, with neutral loss 43.9590

Ions Score: 33, Expscore: 0.084

Matches: 8/112 fragment ions using 12 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b^+</th>
<th>b'^+</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'^</th>
<th>y'^'</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>143.0815</td>
<td>72.0444</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>258.1084</td>
<td>129.5539</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>371.1925</td>
<td>185.0999</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>451.2980</td>
<td>225.1527</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>704.3614</td>
<td>352.6843</td>
<td>687.3348</td>
<td>344.1710</td>
<td>686.3508</td>
<td>343.6790</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>817.4454</td>
<td>409.2264</td>
<td>800.4189</td>
<td>400.7131</td>
<td>799.4349</td>
<td>400.2211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>946.4880</td>
<td>473.7477</td>
<td>929.4615</td>
<td>465.2344</td>
<td>928.4775</td>
<td>464.7424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1017.5251</td>
<td>509.2662</td>
<td>1000.4986</td>
<td>500.7292</td>
<td>999.5146</td>
<td>500.2609</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1166.5220</td>
<td>583.7647</td>
<td>1149.4955</td>
<td>575.2514</td>
<td>1148.5115</td>
<td>574.7594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1237.5592</td>
<td>619.2832</td>
<td>1220.5326</td>
<td>610.7699</td>
<td>1219.5486</td>
<td>610.2779</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LEKPAKYDDIKK

Found in D3Y15, Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gm7293 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ○

LEKPAKYDDIKK

Monoisotopic mass of neutral peptide Mr(calc): 1832.8086
Fixed modifications: M(8) S(7) C(1) (apply to specified residues or terminal only)
Variable modifications:
K : ma1.CO2 (K), with neutral loss 43.0088
Ions Score: 29 Expect: 0.0004
Matches : 21/120 fragment ions using 38 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b**</th>
<th>b0</th>
<th>b0+</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y**</th>
<th>y*</th>
<th>y***</th>
<th>y0</th>
<th>y0+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>243.1330</td>
<td>122.0700</td>
<td>225.1234</td>
<td>113.0653</td>
<td>E</td>
<td>1376.7420</td>
<td>688.8746</td>
<td>1359.7155</td>
<td>680.3614</td>
<td>1358.7314</td>
<td>670.8694</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>371.2289</td>
<td>186.1181</td>
<td>354.2023</td>
<td>177.6048</td>
<td>353.2183</td>
<td>177.1128</td>
<td>K</td>
<td>1247.6994</td>
<td>624.3533</td>
<td>1230.6729</td>
<td>615.8401</td>
<td>1229.6889</td>
<td>615.3481</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>539.3188</td>
<td>270.1630</td>
<td>522.2922</td>
<td>261.6498</td>
<td>521.3082</td>
<td>261.1577</td>
<td>A</td>
<td>1002.5517</td>
<td>511.7795</td>
<td>1005.5251</td>
<td>503.2662</td>
<td>1004.5411</td>
<td>502.7742</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>670.4243</td>
<td>355.2158</td>
<td>692.3978</td>
<td>346.7025</td>
<td>691.4137</td>
<td>346.2105</td>
<td>K</td>
<td>951.5146</td>
<td>476.2609</td>
<td>944.4880</td>
<td>467.7477</td>
<td>933.5040</td>
<td>457.2556</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>872.4876</td>
<td>436.7475</td>
<td>855.4611</td>
<td>428.2342</td>
<td>854.4771</td>
<td>427.7422</td>
<td>Y</td>
<td>781.0400</td>
<td>391.2082</td>
<td>764.3823</td>
<td>382.6260</td>
<td>763.3983</td>
<td>382.2020</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>987.5146</td>
<td>494.2609</td>
<td>970.4880</td>
<td>485.7477</td>
<td>969.5040</td>
<td>485.2556</td>
<td>D</td>
<td>618.3457</td>
<td>309.6765</td>
<td>601.3192</td>
<td>301.1632</td>
<td>600.3352</td>
<td>300.6712</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1102.5415</td>
<td>551.7744</td>
<td>1085.5150</td>
<td>543.2811</td>
<td>1084.5310</td>
<td>542.7691</td>
<td>D</td>
<td>563.3188</td>
<td>252.1630</td>
<td>486.2922</td>
<td>243.6498</td>
<td>485.3082</td>
<td>243.1577</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1215.6236</td>
<td>608.3164</td>
<td>1198.5990</td>
<td>590.8032</td>
<td>1197.6150</td>
<td>590.3111</td>
<td>T</td>
<td>388.2918</td>
<td>194.6496</td>
<td>371.2653</td>
<td>186.1363</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1343.7205</td>
<td>672.3639</td>
<td>1326.6940</td>
<td>663.8506</td>
<td>1325.7100</td>
<td>663.3586</td>
<td>K</td>
<td>275.2078</td>
<td>138.1075</td>
<td>258.1812</td>
<td>129.5942</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1471.8118</td>
<td>672.3639</td>
<td>1326.6940</td>
<td>663.8506</td>
<td>1325.7100</td>
<td>663.3586</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of RYEEIVKEVSTYIK
Found in D3Y768. Elongation factor 1-alpha 1 (Fragment) OS=Mus musculus GN=Elf1al PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or Plot from 200 to 1700 Da Full range Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide [M+H] + (calc) : 1641.6411
Fixed modifications: NMTD (C) (apply to specified residues or terminus only)
Variable modifications:
K1 : allyl CO2 (K), with neutral loss 42.0202
Ions Score: 52 Expect: 0.0028
Matches : 69/516 fragment ions using 97 most intense peaks (kda)

<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>b**</th>
<th>b***</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157.1084</td>
<td>79.0273</td>
<td>140.0818</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>320.1717</td>
<td>160.3928</td>
<td>303.1452</td>
<td>152.0752</td>
<td>Y</td>
<td>1642.8357</td>
<td>821.932</td>
</tr>
<tr>
<td>3</td>
<td>449.2143</td>
<td>223.1165</td>
<td>422.1878</td>
<td>216.5976</td>
<td>431.2037</td>
<td>216.1055</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>578.2524</td>
<td>289.6221</td>
<td>561.2343</td>
<td>281.1188</td>
<td>560.2453</td>
<td>280.6268</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>691.3410</td>
<td>346.1741</td>
<td>674.3144</td>
<td>337.6608</td>
<td>673.3304</td>
<td>337.1688</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>790.4094</td>
<td>395.7083</td>
<td>773.3828</td>
<td>387.1951</td>
<td>772.3988</td>
<td>386.7030</td>
<td>V</td>
</tr>
<tr>
<td>7</td>
<td>960.5149</td>
<td>480.7611</td>
<td>943.4844</td>
<td>472.2478</td>
<td>942.5063</td>
<td>471.7585</td>
<td>K</td>
</tr>
<tr>
<td>8</td>
<td>1089.5575</td>
<td>545.2824</td>
<td>1072.4311</td>
<td>536.7691</td>
<td>1071.4469</td>
<td>536.2773</td>
<td>E</td>
</tr>
<tr>
<td>10</td>
<td>1235.6579</td>
<td>638.3326</td>
<td>1218.5314</td>
<td>629.8193</td>
<td>1217.5474</td>
<td>629.3273</td>
<td>S</td>
</tr>
<tr>
<td>12</td>
<td>1539.7699</td>
<td>730.8381</td>
<td>1522.7242</td>
<td>716.8748</td>
<td>1521.7384</td>
<td>716.3828</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>1652.8530</td>
<td>826.9301</td>
<td>1635.8265</td>
<td>818.4169</td>
<td>1634.8425</td>
<td>817.9249</td>
<td>I</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
</tbody>
</table>
KDGSASGTTLLEALDCILPPTRPTDKPLR
MS/MS Fragmentation of SLNPELGTDADKEQWK
Found in D3YQ9, L-lactate dehydrogenase (Fragment) OS=Mus musculus GN=Ldhb PE=2 SV=1

Crop mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1515.6789
Fixed modifications: M + 16(C) (apply to specified residues or termini only)
Variable modifications:
KES : +150.9496 (K, with neutral loss 49.0949)
Ion Score: 32 Expect: 0.0001
Matches: 56/157 (fragment ions using 67 most intense peaks)
SLNPELGTDADKEQWKEVHK

MS/MS Fragmentation of SLNPELGTDADKEQWKEVHK
Found in D0Y7C9 T-Lactate dehydrogenase (Fragment) OfaMis marina GNaf2_0_1

Click mouse within plot area to zoom in by factor of two about that point
Or: [Pan Tool] 200 to 1900 [X] [Pan Tool] Full range
Label all possible matches □ Label matches used for scoring □

Neutron and mass of neutral peptide M(sole) : 2490.1468
Fixed modifications: IMS (C) (apply to specified residues or termini only)
Variable modifications:
K12 sulph02 (C) , with neutral loss 44.0596
Ion Score: 26.0 Expect: 0.13
Matches : 26/213 fragment ions using 11 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b+++</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y++</th>
<th>y+++</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0399</td>
<td>44.5253</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>106.0612</td>
<td>183.1128</td>
<td>92.0400</td>
<td>L</td>
<td>2279.1363</td>
<td>1140.0568</td>
<td>2262.1037</td>
<td>1311.5553</td>
<td>2261.1197</td>
</tr>
<tr>
<td>3</td>
<td>315.1663</td>
<td>158.0838</td>
<td>298.1397</td>
<td>149.5753</td>
<td>N</td>
<td>2166.0462</td>
<td>1083.5627</td>
<td>2149.0196</td>
<td>1075.0135</td>
<td>2148.0376</td>
</tr>
<tr>
<td>4</td>
<td>412.2191</td>
<td>206.6132</td>
<td>295.1925</td>
<td>188.0496</td>
<td>P</td>
<td>2052.0353</td>
<td>1026.5053</td>
<td>2034.9767</td>
<td>1017.9920</td>
<td>2035.9827</td>
</tr>
<tr>
<td>5</td>
<td>541.2691</td>
<td>271.1345</td>
<td>524.2321</td>
<td>262.3124</td>
<td>L</td>
<td>1954.9505</td>
<td>977.9789</td>
<td>1937.9229</td>
<td>969.4656</td>
<td>1936.8809</td>
</tr>
<tr>
<td>6</td>
<td>654.3547</td>
<td>327.6765</td>
<td>537.3192</td>
<td>319.1632</td>
<td>L</td>
<td>1825.9079</td>
<td>913.4576</td>
<td>1808.8814</td>
<td>904.4641</td>
<td>1807.8973</td>
</tr>
<tr>
<td>7</td>
<td>713.5672</td>
<td>356.1872</td>
<td>694.5406</td>
<td>547.6740</td>
<td>G</td>
<td>1712.8320</td>
<td>856.9166</td>
<td>1695.8793</td>
<td>848.4002</td>
<td>1684.8153</td>
</tr>
<tr>
<td>8</td>
<td>812.4149</td>
<td>406.7111</td>
<td>785.3883</td>
<td>398.1975</td>
<td>T</td>
<td>1655.8204</td>
<td>828.4048</td>
<td>1638.7728</td>
<td>819.8916</td>
<td>1637.7918</td>
</tr>
<tr>
<td>9</td>
<td>927.4413</td>
<td>464.2245</td>
<td>910.4133</td>
<td>455.7115</td>
<td>T</td>
<td>1554.7547</td>
<td>777.8810</td>
<td>1537.7281</td>
<td>769.5877</td>
<td>1536.7441</td>
</tr>
<tr>
<td>10</td>
<td>998.4708</td>
<td>499.7431</td>
<td>981.4534</td>
<td>491.2298</td>
<td>L</td>
<td>1349.7278</td>
<td>690.7675</td>
<td>1322.7012</td>
<td>671.8542</td>
<td>1321.7172</td>
</tr>
<tr>
<td>11</td>
<td>1133.5958</td>
<td>557.2566</td>
<td>1069.4793</td>
<td>548.7433</td>
<td>A</td>
<td>1136.6856</td>
<td>554.8490</td>
<td>1115.6641</td>
<td>567.3377</td>
<td>1114.6801</td>
</tr>
<tr>
<td>12</td>
<td>1283.6513</td>
<td>642.5039</td>
<td>1235.5908</td>
<td>633.5294</td>
<td>K</td>
<td>1253.6537</td>
<td>627.3355</td>
<td>1236.6511</td>
<td>618.8222</td>
<td>1235.6531</td>
</tr>
<tr>
<td>13</td>
<td>1412.6540</td>
<td>705.8306</td>
<td>1335.6274</td>
<td>696.3174</td>
<td>K</td>
<td>1253.6537</td>
<td>627.3355</td>
<td>1236.6511</td>
<td>618.8222</td>
<td>1235.6531</td>
</tr>
<tr>
<td>14</td>
<td>1540.7126</td>
<td>770.8109</td>
<td>1435.8380</td>
<td>762.3465</td>
<td>Q</td>
<td>1454.7547</td>
<td>711.6714</td>
<td>1437.6908</td>
<td>706.4820</td>
<td>1436.5030</td>
</tr>
<tr>
<td>15</td>
<td>1726.7919</td>
<td>869.8994</td>
<td>1670.7635</td>
<td>853.8563</td>
<td>Q</td>
<td>1634.7547</td>
<td>711.6714</td>
<td>1627.6908</td>
<td>706.4820</td>
<td>1626.5030</td>
</tr>
<tr>
<td>16</td>
<td>1854.8848</td>
<td>927.9471</td>
<td>1807.8603</td>
<td>910.4358</td>
<td>K</td>
<td>1712.8320</td>
<td>856.9166</td>
<td>1695.8793</td>
<td>848.4002</td>
<td>1684.8153</td>
</tr>
<tr>
<td>18</td>
<td>2082.9978</td>
<td>1042.0026</td>
<td>2028.9713</td>
<td>1034.4893</td>
<td>V</td>
<td>1833.2401</td>
<td>912.1237</td>
<td>1816.2156</td>
<td>906.3196</td>
<td>1815.2104</td>
</tr>
<tr>
<td>19</td>
<td>2220.0588</td>
<td>1110.5320</td>
<td>2203.0302</td>
<td>1102.0187</td>
<td>H</td>
<td>2241.1717</td>
<td>124.3989</td>
<td>2224.1522</td>
<td>123.4076</td>
<td>2223.1472</td>
</tr>
<tr>
<td>20</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5468</td>
<td>K</td>
<td>2241.1717</td>
<td>124.3989</td>
<td>2224.1522</td>
<td>123.4076</td>
<td>2223.1472</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of $IVSSKDYC\text{CVTANSK}$
Found in D3YZQ9, L-lactate dehydrogenase (Fragment) OS=Mus musculus GN=Ldhpe2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1600 Da
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide m/z (mDa) : 1468.7827
Fixed modifications: NMTMR (2) (apply to specified residue or termini only)
Variable modifications:
K5 : male CO2 (K), with neutral loss 48.0356
Total Score: 87 Expect: 0.00005

Matches : 22/142 Fragment ions using 27 most intense peaks (half)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b++</th>
<th>k</th>
<th>k+</th>
<th>k++</th>
<th>Seq</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y^2</th>
<th>y^2+</th>
<th>y^0</th>
<th>y^0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>1</td>
<td>V</td>
<td>1482.6661</td>
<td>745.3567</td>
<td>1472.6398</td>
<td>768.8234</td>
<td>1471.6555</td>
<td>756.3314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0635</td>
<td>2</td>
<td>V</td>
<td>300.1918</td>
<td>150.5995</td>
<td>282.1812</td>
<td>141.5942</td>
<td>1399.5977</td>
<td>765.8025</td>
<td>1373.5712</td>
<td>687.2892</td>
<td>1372.5872</td>
<td>686.7972</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>387.3238</td>
<td>194.1655</td>
<td>4</td>
<td>V</td>
<td>557.3283</td>
<td>279.1683</td>
<td>540.3028</td>
<td>270.6550</td>
<td>539.3188</td>
<td>270.1630</td>
<td>K</td>
<td>1216.5337</td>
<td>606.7703</td>
<td>1199.5071</td>
<td>600.2572</td>
</tr>
<tr>
<td>5</td>
<td>672.3563</td>
<td>336.6018</td>
<td>6</td>
<td>V</td>
<td>835.4196</td>
<td>418.2134</td>
<td>818.3931</td>
<td>409.7002</td>
<td>817.4090</td>
<td>409.2082</td>
<td>Y</td>
<td>921.4012</td>
<td>466.2042</td>
<td>914.3747</td>
<td>457.6910</td>
</tr>
<tr>
<td>7</td>
<td>984.4165</td>
<td>492.7119</td>
<td>8</td>
<td>V</td>
<td>1083.4849</td>
<td>542.2361</td>
<td>1066.4584</td>
<td>533.7328</td>
<td>1065.4744</td>
<td>533.2408</td>
<td>V</td>
<td>619.3410</td>
<td>310.1741</td>
<td>602.344</td>
<td>301.6608</td>
</tr>
<tr>
<td>10</td>
<td>1184.5326</td>
<td>592.7099</td>
<td>10</td>
<td>V</td>
<td>1258.5697</td>
<td>628.2852</td>
<td>1238.3452</td>
<td>619.7772</td>
<td>1237.5592</td>
<td>619.2832</td>
<td>A</td>
<td>419.2248</td>
<td>210.1161</td>
<td>402.1985</td>
<td>201.0928</td>
</tr>
<tr>
<td>13</td>
<td>1436.6447</td>
<td>728.8260</td>
<td>13</td>
<td>V</td>
<td>1471.1128</td>
<td>74.0600</td>
<td>130.0868</td>
<td>65.3468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LTTDVQEFKSSFK
Found in D3LQ02, ATP-binding cassette sub-family B member 8, mitochondrial Os=Mus musculus GN=Abo8 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da
Full range
Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1026.7777
Fixed modifications: METS (C) (apply to specified residues or termini only)
Variable modifications:
K9 : mal [CGG] (K), with neutral loss 43.00883
Ions Source: DEEI Ejection: 0.0001
Matches : 12/120 fragment ions using 14 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>Seq.</th>
<th>y<sup>9</sup></th>
<th>y<sup>10</sup></th>
<th>y<sup>11</sup></th>
<th>y<sup>12</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>215.1390</td>
<td>108.0731</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>216.1867</td>
<td>138.5970</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>431.2156</td>
<td>216.1105</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>536.2821</td>
<td>265.6447</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>658.3400</td>
<td>329.6740</td>
<td>641.3141</td>
<td>321.1607</td>
<td>640.3301</td>
<td>320.8087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>787.3832</td>
<td>394.1953</td>
<td>770.3567</td>
<td>387.6820</td>
<td>769.3727</td>
<td>385.1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>934.4516</td>
<td>467.7295</td>
<td>917.4251</td>
<td>459.2162</td>
<td>916.4411</td>
<td>458.7242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1104.5572</td>
<td>552.7822</td>
<td>1087.5306</td>
<td>544.2689</td>
<td>1086.5460</td>
<td>543.7769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1191.5892</td>
<td>596.2982</td>
<td>1174.5626</td>
<td>587.7850</td>
<td>1173.5780</td>
<td>587.2930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1278.6212</td>
<td>639.8143</td>
<td>1261.5947</td>
<td>631.1010</td>
<td>1260.6107</td>
<td>630.3090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1425.6896</td>
<td>713.3483</td>
<td>1408.6833</td>
<td>704.8352</td>
<td>1407.6791</td>
<td>704.3432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **DQFTTLPEVKDR**
Found in D524U1. Uricase OS=Mus musculus GN-Uox PE=3 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from **200** to **1500** Da **Full range**
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1583.7831
**Fixed modifications: **MS/MS (C) (apply to specified residues or termini only)
Variable modifications:
K10 : mal_C02 (E); with neutral loss 43.0590
Ions Score: 26 Expect: 0.01
Matches: 32/128 fragment ions using 107 most intense peaks

<table>
<thead>
<tr>
<th>m/z</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>y<sup>++++</sup></th>
<th>µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>244.0928</td>
<td>122.5500</td>
<td>227.0562</td>
<td>114.0268</td>
<td>226.0522</td>
<td>113.5448</td>
<td>Q</td>
<td>1375.7216</td>
<td>698.3644</td>
<td>1358.6951</td>
<td>679.8512</td>
<td>1357.7130</td>
</tr>
<tr>
<td>3</td>
<td>291.1612</td>
<td>196.0642</td>
<td>374.1337</td>
<td>187.5710</td>
<td>372.1596</td>
<td>187.0790</td>
<td>F</td>
<td>1247.6620</td>
<td>624.3252</td>
<td>1230.6365</td>
<td>615.8219</td>
<td>1229.6252</td>
</tr>
<tr>
<td>5</td>
<td>593.2566</td>
<td>397.1319</td>
<td>576.2300</td>
<td>288.6186</td>
<td>575.2450</td>
<td>288.1266</td>
<td>T</td>
<td>999.5469</td>
<td>500.2771</td>
<td>982.5204</td>
<td>491.7638</td>
<td>981.5664</td>
</tr>
<tr>
<td>6</td>
<td>706.3406</td>
<td>510.3141</td>
<td>345.1607</td>
<td>188.3301</td>
<td>344.6687</td>
<td>L</td>
<td>888.4993</td>
<td>440.7533</td>
<td>881.4727</td>
<td>441.2400</td>
<td>880.4887</td>
<td>440.7480</td>
</tr>
<tr>
<td>7</td>
<td>800.3934</td>
<td>502.3003</td>
<td>785.3968</td>
<td>393.6871</td>
<td>785.3828</td>
<td>393.1951</td>
<td>P</td>
<td>785.4152</td>
<td>392.2112</td>
<td>762.2886</td>
<td>384.6980</td>
<td>757.4046</td>
</tr>
<tr>
<td>8</td>
<td>932.4360</td>
<td>606.7216</td>
<td>915.4094</td>
<td>458.2083</td>
<td>914.4254</td>
<td>457.7164</td>
<td>E</td>
<td>688.2624</td>
<td>344.6849</td>
<td>671.3539</td>
<td>336.1716</td>
<td>670.3519</td>
</tr>
<tr>
<td>9</td>
<td>1081.5044</td>
<td>616.2558</td>
<td>1014.4779</td>
<td>507.7426</td>
<td>1013.4938</td>
<td>507.2566</td>
<td>V</td>
<td>559.3190</td>
<td>280.1636</td>
<td>542.2933</td>
<td>271.6503</td>
<td>541.3093</td>
</tr>
<tr>
<td>10</td>
<td>1201.6099</td>
<td>601.3085</td>
<td>1181.3838</td>
<td>592.7593</td>
<td>1180.3994</td>
<td>592.3033</td>
<td>K</td>
<td>460.2514</td>
<td>230.6293</td>
<td>443.2249</td>
<td>222.1681</td>
<td>442.2029</td>
</tr>
<tr>
<td>11</td>
<td>1316.6589</td>
<td>658.8221</td>
<td>1299.8103</td>
<td>650.3088</td>
<td>1298.8286</td>
<td>649.8198</td>
<td>D</td>
<td>290.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0633</td>
<td>272.1353</td>
</tr>
<tr>
<td>12</td>
<td>1501.7742</td>
<td>755.8610</td>
<td>1484.8293</td>
<td>748.3155</td>
<td>1483.8374</td>
<td>747.8394</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of PGLLDLKGK

Found in D3Z563. Acyl-CoA binding protein OS=Mus musculus GN=Dbi PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1025.5757
Fixed modifications: MMA (C) (apply to specified residues or termini only)
Variable modifications:
K7 : mas_002 (K), with neutral loss 43.9598

Ions Score: 51 Expect: 4.3e-009
Matches: 16/68 fragment ions using 24 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b^a</th>
<th>b++</th>
<th>b^0</th>
<th>b^0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y^+</th>
<th>y++</th>
<th>y^0</th>
<th>y^0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.0600</td>
<td>49.5337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>155.0815</td>
<td>78.0444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>885.5404</td>
<td>443.2738</td>
<td>868.5138</td>
<td>434.7606</td>
<td>867.5298</td>
<td>434.2686</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>268.1656</td>
<td>134.5864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>828.5189</td>
<td>414.7631</td>
<td>811.4924</td>
<td>406.2498</td>
<td>810.5084</td>
<td>405.7578</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>381.2496</td>
<td>191.1283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>715.4349</td>
<td>358.2211</td>
<td>698.4083</td>
<td>349.7078</td>
<td>697.4243</td>
<td>349.2158</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>496.2766</td>
<td>248.6419</td>
<td>478.2660</td>
<td>239.6366</td>
<td></td>
<td></td>
<td>D</td>
<td>602.3508</td>
<td>301.6790</td>
<td>585.3243</td>
<td>293.1658</td>
<td>584.3402</td>
<td>292.6738</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>609.3606</td>
<td>305.1840</td>
<td>591.3503</td>
<td>296.1787</td>
<td></td>
<td></td>
<td>L</td>
<td>487.3239</td>
<td>244.1656</td>
<td>470.2973</td>
<td>235.6523</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>779.4662</td>
<td>390.2367</td>
<td>762.4396</td>
<td>381.7234</td>
<td>381.4556</td>
<td>381.2314</td>
<td>K</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>836.4876</td>
<td>418.7475</td>
<td>819.4611</td>
<td>410.2342</td>
<td>518.4771</td>
<td>409.7422</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AKWDSWNK**
Found in **D32563**, Acyl-CoA-binding protein OS=Mus musculus GN=Dbi PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1119.4985
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K : mal002 (K), with neutral loss 43.0090
Ions Score: 26 Expect: 0.011
Matches : 9/70 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b++</th>
<th>b'0</th>
<th>b'++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y'</th>
<th>y++</th>
<th>y'0</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1005.4789</td>
<td>503.2431</td>
<td>988.4523</td>
<td>494.7298</td>
<td>987.4683</td>
<td>494.2378</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td></td>
<td></td>
<td>K</td>
<td>835.3733</td>
<td>418.1903</td>
<td>818.3468</td>
<td>409.6770</td>
<td>817.3628</td>
<td>409.1850</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>428.2292</td>
<td>214.6183</td>
<td>411.2027</td>
<td>206.1050</td>
<td></td>
<td></td>
<td>W</td>
<td>649.2940</td>
<td>325.1596</td>
<td>632.2675</td>
<td>316.6374</td>
<td>631.2834</td>
<td>316.1454</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>543.2562</td>
<td>272.1317</td>
<td>526.2296</td>
<td>263.6185</td>
<td>525.2456</td>
<td>263.1264</td>
<td>D</td>
<td>534.2671</td>
<td>267.6372</td>
<td>517.2405</td>
<td>259.1239</td>
<td>516.2565</td>
<td>258.6319</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>630.2882</td>
<td>315.6477</td>
<td>613.2617</td>
<td>307.1345</td>
<td>612.2776</td>
<td>306.6425</td>
<td>S</td>
<td>447.2350</td>
<td>224.1212</td>
<td>430.2085</td>
<td>215.6079</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>816.3675</td>
<td>408.6874</td>
<td>799.3410</td>
<td>400.1741</td>
<td>798.3569</td>
<td>399.6821</td>
<td>W</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>930.4104</td>
<td>465.7089</td>
<td>913.3839</td>
<td>457.1956</td>
<td>912.3999</td>
<td>456.7036</td>
<td>N</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS-MS Fragmentation of **LTFDTTFSPNTGKK**

Found in **D3YZZ**. Voltage-dependent anion-selective channel protein 2 (Fragment) OS=Mus musculus GN=Vdac2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or [Full range]

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calcd): 1641.7056
Fixed modifications: Met(5) [C] (apply to specified residues or termini only)
Variable modifications:
K14 : m+2CO2 (H), with neutral loss 48.0358
Ions Score: 21 Expect: 0.04

Matches : 12/130 fragment ions using 26 most intense peaks

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>y</th>
<th>b</th>
<th>y</th>
<th>Seq</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>dy</th>
<th>dy</th>
<th>dy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>197.1285</td>
<td>59.0679</td>
<td>T</td>
<td>1485.7220</td>
<td>743.3646</td>
<td>1458.6955</td>
<td>734.8514</td>
<td>1457.7114</td>
<td>734.3594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>362.2074</td>
<td>181.0674</td>
<td>459.2155</td>
<td>230.1125</td>
<td>D</td>
<td>1237.6059</td>
<td>619.3066</td>
<td>1220.5794</td>
<td>610.7933</td>
<td>1213.583</td>
<td>610.8913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>477.2344</td>
<td>239.1128</td>
<td>560.2715</td>
<td>280.6394</td>
<td>T</td>
<td>1122.5790</td>
<td>561.7931</td>
<td>1105.5924</td>
<td>553.2978</td>
<td>1104.604</td>
<td>552.7878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>578.2821</td>
<td>289.6417</td>
<td>661.3192</td>
<td>331.1623</td>
<td>T</td>
<td>1612.5313</td>
<td>711.2693</td>
<td>1594.5047</td>
<td>702.7500</td>
<td>1593.527</td>
<td>702.6640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>679.3279</td>
<td>340.1685</td>
<td>808.3876</td>
<td>404.6974</td>
<td>F</td>
<td>920.4836</td>
<td>460.7454</td>
<td>903.4571</td>
<td>452.2322</td>
<td>903.4720</td>
<td>454.7402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>825.3891</td>
<td>413.7072</td>
<td>905.4986</td>
<td>448.2134</td>
<td>S</td>
<td>773.6152</td>
<td>387.2112</td>
<td>756.5868</td>
<td>378.6980</td>
<td>756.4046</td>
<td>378.2060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>913.4202</td>
<td>457.2187</td>
<td>992.4724</td>
<td>406.7398</td>
<td>P</td>
<td>688.3832</td>
<td>343.6925</td>
<td>689.3960</td>
<td>352.1819</td>
<td>688.3726</td>
<td>354.8895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1010.4829</td>
<td>505.7411</td>
<td>1106.5353</td>
<td>554.2533</td>
<td>N</td>
<td>589.3304</td>
<td>292.1083</td>
<td>572.3059</td>
<td>286.6556</td>
<td>571.3198</td>
<td>284.1656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1124.5259</td>
<td>562.7666</td>
<td>1106.5313</td>
<td>554.2533</td>
<td>T</td>
<td>473.2875</td>
<td>238.1474</td>
<td>458.2969</td>
<td>232.6341</td>
<td>456.2769</td>
<td>232.1421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1225.5735</td>
<td>613.2904</td>
<td>1106.5353</td>
<td>554.2533</td>
<td>T</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2133</td>
<td>179.1103</td>
<td>357.2133</td>
<td>179.1103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1282.5956</td>
<td>641.8011</td>
<td>1264.5843</td>
<td>633.2970</td>
<td>G</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1401.6900</td>
<td>705.8486</td>
<td>1393.6684</td>
<td>697.3534</td>
<td>K</td>
<td>189.1234</td>
<td>92.0853</td>
<td>172.0968</td>
<td>86.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1501.6900</td>
<td>705.8486</td>
<td>1393.6684</td>
<td>697.3534</td>
<td>K</td>
<td>189.1234</td>
<td>92.0853</td>
<td>172.0968</td>
<td>86.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LTFDTTFSPNTGKK
MS/MS Fragmentation of VLKSHGQDYLVGNR

Found in BYAVX (Omphalospermum monspessulanum CN=Flata7 PF=7 SV=1)

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 206 to 1500 Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(calc): 1670.8076
Fixed modifications: MTH (C) (apply to specified residues or termini only)
Variable modifications:
K3 = +16.052 (C), with neutral loss 45.0288

Ion Score: 30 Expect: 0.0007
Matches: 26/184 fragment ions using 52 most intense peaks (help)

<table>
<thead>
<tr>
<th>b</th>
<th>y</th>
<th>Seq</th>
<th>y</th>
<th>y</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.5415</td>
<td>V</td>
<td>1328.7867</td>
<td>764.8970</td>
<td>1311.7601</td>
</tr>
<tr>
<td>2</td>
<td>107.0835</td>
<td>L</td>
<td>1391.7661</td>
<td>758.3837</td>
<td>1310.7761</td>
</tr>
<tr>
<td>3</td>
<td>383.2653</td>
<td>K</td>
<td>1415.7026</td>
<td>708.3549</td>
<td>1398.6761</td>
</tr>
<tr>
<td>4</td>
<td>470.2973</td>
<td>S</td>
<td>1245.5971</td>
<td>623.3202</td>
<td>1228.3703</td>
</tr>
<tr>
<td>5</td>
<td>607.3562</td>
<td>H</td>
<td>1158.5650</td>
<td>579.7862</td>
<td>1141.5283</td>
</tr>
<tr>
<td>6</td>
<td>661.3777</td>
<td>G</td>
<td>1021.5061</td>
<td>511.2557</td>
<td>1004.4796</td>
</tr>
<tr>
<td>7</td>
<td>792.4363</td>
<td>Q</td>
<td>964.4847</td>
<td>482.7460</td>
<td>947.4581</td>
</tr>
<tr>
<td>8</td>
<td>907.4632</td>
<td>D</td>
<td>836.4261</td>
<td>418.1767</td>
<td>819.3995</td>
</tr>
<tr>
<td>9</td>
<td>1070.5265</td>
<td>Y</td>
<td>721.3991</td>
<td>361.2032</td>
<td>704.3726</td>
</tr>
<tr>
<td>10</td>
<td>1183.6106</td>
<td>L</td>
<td>558.3358</td>
<td>279.6715</td>
<td>541.3093</td>
</tr>
<tr>
<td>11</td>
<td>1282.6790</td>
<td>V</td>
<td>445.2818</td>
<td>223.1295</td>
<td>428.2252</td>
</tr>
<tr>
<td>12</td>
<td>1379.7005</td>
<td>G</td>
<td>346.1833</td>
<td>173.5953</td>
<td>329.1568</td>
</tr>
<tr>
<td>13</td>
<td>1453.7434</td>
<td>N</td>
<td>289.1619</td>
<td>145.0384</td>
<td>272.1253</td>
</tr>
<tr>
<td>14</td>
<td>1570.7990</td>
<td>R</td>
<td>175.1190</td>
<td>88.0621</td>
<td>158.0924</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b*</th>
<th>y*</th>
<th>y*</th>
<th>y*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>7</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EPWVEQD KFGK

Found in D521U3, 4-hydroxypyruvate dioxygenase (Fragment) OS=Mus musculus GN=Hpd PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1497.6620
Fixed modifications: AMT (C) (apply to specified residues or termini only)
Variable modifications:
K : m1_C02 (K), with neutral loss 48.0264
Ions Score: 20 Expect: 0.081

Matches : 19/102 Fragment ions using 15 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b***</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y***</th>
<th>y0</th>
<th>y0**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0400</td>
<td>65.5286</td>
<td>112.0899</td>
<td>56.5283</td>
<td>E</td>
<td>1273.6362</td>
<td>618.3220</td>
<td>1258.6103</td>
<td>629.8088</td>
<td>1237.6263</td>
<td>629.3168</td>
</tr>
<tr>
<td>2</td>
<td>227.1028</td>
<td>114.0350</td>
<td>209.0921</td>
<td>103.0457</td>
<td>P</td>
<td>1273.6362</td>
<td>618.3220</td>
<td>1258.6103</td>
<td>629.8088</td>
<td>1237.6263</td>
<td>629.3168</td>
</tr>
<tr>
<td>3</td>
<td>413.1181</td>
<td>207.0946</td>
<td>395.1714</td>
<td>198.0893</td>
<td>W</td>
<td>1175.5841</td>
<td>589.7957</td>
<td>1161.5575</td>
<td>581.2824</td>
<td>1160.5715</td>
<td>580.7904</td>
</tr>
<tr>
<td>4</td>
<td>512.2304</td>
<td>256.6288</td>
<td>494.2398</td>
<td>247.6235</td>
<td>V</td>
<td>992.5047</td>
<td>496.7560</td>
<td>975.4782</td>
<td>488.2427</td>
<td>974.4942</td>
<td>487.7507</td>
</tr>
<tr>
<td>6</td>
<td>769.3513</td>
<td>385.1794</td>
<td>752.3250</td>
<td>376.6651</td>
<td>Q</td>
<td>764.3987</td>
<td>382.7005</td>
<td>747.3673</td>
<td>374.1872</td>
<td>746.3832</td>
<td>373.6953</td>
</tr>
<tr>
<td>7</td>
<td>884.3785</td>
<td>442.6929</td>
<td>867.3519</td>
<td>434.1796</td>
<td>D</td>
<td>636.3252</td>
<td>318.6712</td>
<td>619.3086</td>
<td>310.1579</td>
<td>618.3246</td>
<td>309.6659</td>
</tr>
<tr>
<td>8</td>
<td>1054.4840</td>
<td>527.7456</td>
<td>1037.4575</td>
<td>519.2324</td>
<td>K</td>
<td>521.3082</td>
<td>261.1577</td>
<td>504.2817</td>
<td>252.6445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1201.5524</td>
<td>601.2798</td>
<td>1184.5292</td>
<td>592.7666</td>
<td>F</td>
<td>351.2027</td>
<td>176.1020</td>
<td>334.1761</td>
<td>167.2917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1258.5739</td>
<td>629.7906</td>
<td>1241.5473</td>
<td>621.2773</td>
<td>G</td>
<td>204.1543</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.0863</td>
<td>56.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the fragmentation ions and their corresponding mass values for the peptide EPWVEQD KFGK.
VLLGGDETPEGQKAVR

MS/MS Fragmentation of **VLLGGDETPEGQKAVR**

Found in D123F, UDP-glucose 6-dehydrogenase OS=Mus musculus GN=Ugfd PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from [200] to [1700] Da Full range

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(calc): 1773.8940

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K13 = m1_O2O (K), with neutral loss 95.9999

T913 = m1_O2O (K), with neutral loss 95.9999

Tons Score: 43 Expect: 0.00005

Matches: 48/126 fragment ions using 128 most intense peaks (help)

Precursor	b1	b1+	b1++	b1+++	y1	y1+	y1++	y1+++	y2	y2+	y2++	y3	y3+	y3++	y4	y4+	y4++	y5	y5+	y5++	y6	y6+	y6++	y7	y7+	y7++	y8	y8+	y8++						
Peptide																																			
1	100.0727	50.5412																																	
2	213.1598	107.0835			L																														
3	326.2438	163.6255			I																														
4	383.2535	192.1363			G																														
5	480.2667	240.6704			G																														
6	555.3137	278.1601			D																														
7	681.3583	341.6816			E																														
8	785.4049	393.2058			T																														
9	832.4567	416.2330			P																														
10	1011.4993	506.2533			E																														
11	1088.5208	544.7640			G																														
12	1196.5794	598.7933			Q																														
13	1366.6549	683.3261			K																														
14	1437.7220	719.3646			A																														
15	1536.7964	768.8988			V																														
16	175.1190	88.0631			R																														
MS/MS Fragmentation of VEA AVG KDL FR

Found in D3Z3XS, Glutathione S-transferase theta 1 OS=Mus musculus GN=Gstt1 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1200 Da Full range

Label all possible matches ☑ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide M+ (calc): 1205.6618
Fixed modifications: MSTR (C) (apply to specified residues or termini only)
Variable modifications:
K7 : mal_CO2 (K), with neutral loss 43.0958
Ions Score: 58 Expect: 0.002
Matches : 27/100 fragment ions using 60 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y+2</th>
<th>b*</th>
<th>y*</th>
<th>b*+2</th>
<th>y*+2</th>
<th>Seq</th>
<th>y+</th>
<th>y+2</th>
<th>y+3</th>
<th>y+4</th>
<th>y+5</th>
<th>y+6</th>
<th>y+8</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>220.1183</td>
<td>115.0628</td>
<td>211.1077</td>
<td>106.6575</td>
<td>E</td>
<td>1147.6106</td>
<td>574.3089</td>
<td>1130.5841</td>
<td>565.7057</td>
<td>1129.6000</td>
<td>565.3037</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300.1554</td>
<td>150.5813</td>
<td>282.1448</td>
<td>141.5761</td>
<td>A</td>
<td>1018.6580</td>
<td>509.7876</td>
<td>1001.5415</td>
<td>491.2744</td>
<td>1000.5574</td>
<td>500.7824</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>371.1925</td>
<td>186.0999</td>
<td>353.1819</td>
<td>177.0446</td>
<td>A</td>
<td>947.5309</td>
<td>474.2691</td>
<td>890.3043</td>
<td>465.7358</td>
<td>924.3209</td>
<td>485.2698</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>470.2609</td>
<td>235.6341</td>
<td>452.2506</td>
<td>226.6283</td>
<td>V</td>
<td>876.4938</td>
<td>438.7563</td>
<td>859.4672</td>
<td>430.2373</td>
<td>858.4832</td>
<td>429.7452</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>527.2824</td>
<td>264.1448</td>
<td>509.2718</td>
<td>255.1596</td>
<td>G</td>
<td>777.4254</td>
<td>389.2163</td>
<td>760.3988</td>
<td>380.7030</td>
<td>759.4148</td>
<td>380.2110</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>925.4569</td>
<td>463.2551</td>
<td>908.4724</td>
<td>454.7398</td>
<td>907.4384</td>
<td>454.2472</td>
<td>453.2714</td>
<td>218.1394</td>
<td>418.2449</td>
<td>209.6361</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1072.5673</td>
<td>536.7873</td>
<td>1055.5408</td>
<td>528.2740</td>
<td>1054.5568</td>
<td>527.7820</td>
<td>F</td>
<td>532.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>536.7873</td>
<td>1055.5408</td>
<td>528.2740</td>
<td>1054.5568</td>
<td>527.7820</td>
<td>F</td>
<td>532.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IVAPISDSPKPPPQR

Found in D3Z4X1, 6-phosphogluconolactonase OS=Mus musculus GN=Phg1 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Plot from 200 to 1600 Da

Label all possible matches

Monoisotopic mass of neutral peptide Ne(male): 1866.9441

Fixed modifications: MGFS (C) (apply to specified residues or termini only)

Variable modifications:

K(In) 5: ma(H)(K), with neutral loss 43.0055

Ions Score: 77 **Expect:** 0.00002

Matches: 22/126 fragment ions using 50 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.1095</td>
<td>57.5439</td>
<td></td>
<td></td>
<td>I</td>
<td>1350.8275</td>
<td>765.9174</td>
<td>1513.8009</td>
<td>757.4041</td>
<td>1512.8169</td>
<td>736.9121</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>213.1398</td>
<td>107.0833</td>
<td>A</td>
<td></td>
<td>V</td>
<td>1414.7325</td>
<td>707.8699</td>
<td>1413.7483</td>
<td>707.3779</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>288.1969</td>
<td>142.6021</td>
<td>A</td>
<td></td>
<td>1428.7591</td>
<td>716.3832</td>
<td>1414.7325</td>
<td>707.8699</td>
<td>1413.7483</td>
<td>707.3779</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>381.2606</td>
<td>191.1282</td>
<td>P</td>
<td></td>
<td>1343.6954</td>
<td>672.3513</td>
<td>1342.7114</td>
<td>671.8593</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>404.3337</td>
<td>247.6705</td>
<td>I</td>
<td></td>
<td>1263.6662</td>
<td>632.3383</td>
<td>1246.6426</td>
<td>623.8250</td>
<td>1245.6586</td>
<td>623.3320</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>581.3657</td>
<td>291.1865</td>
<td>S</td>
<td></td>
<td>1150.5851</td>
<td>575.7626</td>
<td>1133.5586</td>
<td>567.2829</td>
<td>1132.5745</td>
<td>566.7909</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>696.3927</td>
<td>348.7000</td>
<td>D</td>
<td></td>
<td>1063.5311</td>
<td>532.2802</td>
<td>1046.5265</td>
<td>521.7669</td>
<td>1045.5423</td>
<td>523.2749</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>783.4267</td>
<td>392.2160</td>
<td>S</td>
<td></td>
<td>948.5261</td>
<td>474.7667</td>
<td>931.4998</td>
<td>466.2514</td>
<td>930.5156</td>
<td>465.7614</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>880.4778</td>
<td>440.7424</td>
<td>D</td>
<td></td>
<td>862.4669</td>
<td>431.5371</td>
<td>844.4676</td>
<td>422.7374</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1050.5830</td>
<td>525.2789</td>
<td>K</td>
<td></td>
<td>764.4413</td>
<td>382.7243</td>
<td>747.4148</td>
<td>374.2110</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1147.6358</td>
<td>574.3215</td>
<td>E</td>
<td></td>
<td>594.3358</td>
<td>297.6715</td>
<td>577.3093</td>
<td>289.1383</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1244.6885</td>
<td>622.8479</td>
<td>P</td>
<td></td>
<td>497.2831</td>
<td>249.1452</td>
<td>480.2565</td>
<td>240.6139</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1341.7413</td>
<td>671.3743</td>
<td>P</td>
<td></td>
<td>400.2303</td>
<td>200.6188</td>
<td>382.2037</td>
<td>192.1055</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1469.7099</td>
<td>735.4036</td>
<td>Q</td>
<td></td>
<td>303.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1575.7438</td>
<td>808.8063</td>
<td>R</td>
<td></td>
<td>157.1190</td>
<td>80.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QATVDGVNVTDRPGLLDDLKKGK
MS/MS Fragmentation of **ISEQSDAKLK**

Found in **D3Z6FS**. ATP synthase subunit alpha OS=Mus musculus GN=Ato5a1 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Plot from 150 to 1100 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1203.5930

Fixed modifications: **MHTS (C)** (apply to specified residues or termini only)

Variable modifications:

N0 : ma_l002 (K), with neutral loss 43.0090

Ions Score: 24 Expect: 0.037

Matches: 19/32 fragment ions using 46 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0+</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y0+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>183.1128</td>
<td>92.0600</td>
<td>S</td>
<td>1047.5317</td>
<td>524.2695</td>
<td>1030.5051</td>
<td>515.7562</td>
<td>1029.5211</td>
<td>515.2642</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>120.2244</td>
<td>120.2244</td>
<td>120.2244</td>
<td>120.2244</td>
<td>960.9997</td>
<td>848.7535</td>
<td>943.4731</td>
<td>472.2402</td>
<td>942.4891</td>
<td>471.7482</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>330.1660</td>
<td>165.5868</td>
<td>312.1554</td>
<td>156.5813</td>
<td>E</td>
<td>960.9997</td>
<td>848.7535</td>
<td>943.4731</td>
<td>472.2402</td>
<td>942.4891</td>
<td>471.7482</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>455.3245</td>
<td>227.1319</td>
<td>211.1017</td>
<td>220.6106</td>
<td>120.2244</td>
<td>120.2244</td>
<td>Q</td>
<td>811.4571</td>
<td>116.2522</td>
<td>814.4365</td>
<td>407.7189</td>
<td>813.4465</td>
<td>407.2269</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>545.2566</td>
<td>273.1319</td>
<td>252.2300</td>
<td>264.6186</td>
<td>264.1266</td>
<td>120.2244</td>
<td>S</td>
<td>703.3865</td>
<td>352.2029</td>
<td>686.3719</td>
<td>434.6896</td>
<td>683.3879</td>
<td>343.1976</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>660.2833</td>
<td>330.6454</td>
<td>257.1267</td>
<td>257.1267</td>
<td>321.6404</td>
<td>D</td>
<td>616.3665</td>
<td>308.6869</td>
<td>599.3369</td>
<td>300.1736</td>
<td>598.3559</td>
<td>299.6816</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>731.3266</td>
<td>369.1640</td>
<td>714.2941</td>
<td>357.6507</td>
<td>713.3101</td>
<td>A</td>
<td>501.3395</td>
<td>251.1734</td>
<td>484.3130</td>
<td>242.6601</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>901.4262</td>
<td>451.2167</td>
<td>884.3996</td>
<td>442.7034</td>
<td>442.2114</td>
<td>K</td>
<td>430.3024</td>
<td>215.6548</td>
<td>413.2758</td>
<td>207.1416</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1014.5102</td>
<td>507.5787</td>
<td>907.4387</td>
<td>499.2455</td>
<td>496.4997</td>
<td>L</td>
<td>269.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KLLDAAGANLR**

Found in **DREG4**, Glyoxylate reductase/hydroxypruvinate reductase OS=Mus musculus GN=Gnhpr PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1100 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1226.6615
Fixed modifications: Met(5) (C) (apply to specified residues or termini only)
Variable modifications:
K1 : ma_G02 (K), with neutral loss 43.0090
Ions Score: 21 Expect: 0.046
Matches to Peptide:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0+</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>L</td>
<td>1013.5738</td>
<td>507.2805</td>
<td>996.5472</td>
<td>498.7773</td>
<td>995.5633</td>
</tr>
<tr>
<td>3</td>
<td>307.2809</td>
<td>199.1441</td>
<td>380.2544</td>
<td>190.6308</td>
<td>L</td>
<td>900.4898</td>
<td>450.7485</td>
<td>883.4632</td>
<td>442.2352</td>
<td>882.4792</td>
</tr>
<tr>
<td>4</td>
<td>512.3079</td>
<td>256.6576</td>
<td>495.2813</td>
<td>248.1443</td>
<td>494.2873</td>
<td>247.6523</td>
<td>D</td>
<td>787.4657</td>
<td>394.2065</td>
<td>770.3791</td>
</tr>
<tr>
<td>5</td>
<td>583.3450</td>
<td>292.1781</td>
<td>566.3184</td>
<td>283.6629</td>
<td>565.3344</td>
<td>283.1709</td>
<td>A</td>
<td>672.3787</td>
<td>336.6930</td>
<td>655.3522</td>
</tr>
<tr>
<td>6</td>
<td>654.3821</td>
<td>327.6947</td>
<td>637.3556</td>
<td>319.1814</td>
<td>636.3715</td>
<td>318.6894</td>
<td>A</td>
<td>601.3416</td>
<td>301.1745</td>
<td>584.3151</td>
</tr>
<tr>
<td>7</td>
<td>711.4036</td>
<td>356.2054</td>
<td>694.3770</td>
<td>347.6921</td>
<td>693.3930</td>
<td>347.2001</td>
<td>G</td>
<td>539.3046</td>
<td>265.6559</td>
<td>513.0270</td>
</tr>
<tr>
<td>8</td>
<td>782.4407</td>
<td>391.7240</td>
<td>765.4141</td>
<td>383.2107</td>
<td>764.4301</td>
<td>382.7187</td>
<td>A</td>
<td>473.2831</td>
<td>237.1452</td>
<td>456.2565</td>
</tr>
<tr>
<td>9</td>
<td>896.4836</td>
<td>448.7454</td>
<td>879.4571</td>
<td>440.2322</td>
<td>878.4730</td>
<td>439.7402</td>
<td>N</td>
<td>402.2459</td>
<td>201.6266</td>
<td>385.2199</td>
</tr>
<tr>
<td>10</td>
<td>1009.5677</td>
<td>505.2875</td>
<td>992.5411</td>
<td>496.7742</td>
<td>991.5571</td>
<td>496.2822</td>
<td>L</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
</tr>
<tr>
<td>11</td>
<td>1055.6099</td>
<td>505.2875</td>
<td>992.5411</td>
<td>496.7742</td>
<td>991.5571</td>
<td>496.2822</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
</tr>
</tbody>
</table>
GGHFAAFAEPKLLAQDIR
NTGTEAPDYLATVDVPKSPQYSQVIHR
MS/MS Fragmentation of RLKELIGEAAGK
Found in E0CX12, Argininosuccinate lyase OS=Mus musculus GN=Asl PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from ___ Da to ___ Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1365.7585
Fixed modifications: TRYP (C) (apply to specified residues or term only)
Variable modifications:
K : mas_C02 (K), with neutral loss 43.01068
Ions Score: 41 Expect: 0.0016
Matches : 14/118 fragment ions using 32 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b̃</th>
<th>b̃̃</th>
<th>b̃̃̃</th>
<th>b̄</th>
<th>b̄̃</th>
<th>Seq.</th>
<th>y</th>
<th>ỹ</th>
<th>ỹ̃</th>
<th>ȳ</th>
<th>ȳ̃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157.1084</td>
<td>79.0578</td>
<td>140.0818</td>
<td>70.5446</td>
<td>R</td>
<td></td>
<td></td>
<td>1170.6729</td>
<td>585.8401</td>
<td>1153.6463</td>
<td>577.3268</td>
<td>1152.6623</td>
</tr>
<tr>
<td>2</td>
<td>270.1925</td>
<td>135.5999</td>
<td>253.1659</td>
<td>127.0866</td>
<td>L</td>
<td>1057.5888</td>
<td>529.2980</td>
<td>1040.5623</td>
<td>520.7848</td>
<td>1039.5782</td>
<td>520.2928</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>440.2980</td>
<td>220.6526</td>
<td>423.2714</td>
<td>212.1394</td>
<td>K</td>
<td>569.3496</td>
<td>285.1739</td>
<td>552.3140</td>
<td>276.6606</td>
<td>551.3300</td>
<td>276.1686</td>
<td>887.4835</td>
</tr>
<tr>
<td>4</td>
<td>682.4266</td>
<td>341.7100</td>
<td>665.3981</td>
<td>333.2027</td>
<td>664.4141</td>
<td>L</td>
<td>569.3496</td>
<td>285.1739</td>
<td>552.3140</td>
<td>276.6606</td>
<td>551.3300</td>
<td>276.1686</td>
</tr>
<tr>
<td>7</td>
<td>981.5728</td>
<td>491.2900</td>
<td>964.5462</td>
<td>482.7767</td>
<td>963.5622</td>
<td>G</td>
<td>981.5728</td>
<td>491.2900</td>
<td>964.5462</td>
<td>482.7767</td>
<td>963.5622</td>
<td>482.2847</td>
</tr>
<tr>
<td>8</td>
<td>1052.6099</td>
<td>526.8086</td>
<td>1035.5833</td>
<td>518.2953</td>
<td>1034.5993</td>
<td>A</td>
<td>1052.6099</td>
<td>526.8086</td>
<td>1035.5833</td>
<td>518.2953</td>
<td>1034.5993</td>
<td>517.8053</td>
</tr>
<tr>
<td>9</td>
<td>1123.6470</td>
<td>562.3271</td>
<td>1106.6204</td>
<td>553.8139</td>
<td>1105.6364</td>
<td>A</td>
<td>1123.6470</td>
<td>562.3271</td>
<td>1106.6204</td>
<td>553.8139</td>
<td>1105.6364</td>
<td>553.3218</td>
</tr>
<tr>
<td>10</td>
<td>1180.6684</td>
<td>590.8379</td>
<td>1163.6419</td>
<td>582.3246</td>
<td>1162.6579</td>
<td>G</td>
<td>1180.6684</td>
<td>590.8379</td>
<td>1163.6419</td>
<td>582.3246</td>
<td>1162.6579</td>
<td>581.8326</td>
</tr>
<tr>
<td>11</td>
<td>1243.6968</td>
<td>618.3550</td>
<td>1226.6699</td>
<td>610.8417</td>
<td>1225.6858</td>
<td>G</td>
<td>1243.6968</td>
<td>618.3550</td>
<td>1226.6699</td>
<td>610.8417</td>
<td>1225.6858</td>
<td>609.8396</td>
</tr>
<tr>
<td>12</td>
<td>1306.7252</td>
<td>645.8721</td>
<td>1289.6982</td>
<td>638.3589</td>
<td>1288.7140</td>
<td>G</td>
<td>1306.7252</td>
<td>645.8721</td>
<td>1289.6982</td>
<td>638.3589</td>
<td>1288.7140</td>
<td>637.8568</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GLEKAGLLTK**

Found in **E6CX82**, Argininosuccinate lyase OS=Mus musculus GN=Asg PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1050 Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1114.6234

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K4 : Met1_COOH (K), with neutral loss 45.0500

Ions Score: 33 Expect: 0.0056

Matches: 9/96 fragment ions using 9 most intense peaks (∞ help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>b*</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>1014.6194</td>
<td>507.8133</td>
<td>997.5928</td>
<td>499.3001</td>
<td>996.6088</td>
<td>496.8080</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>451.2171</td>
<td>384.5088</td>
<td>442.7580</td>
<td>883.5247</td>
<td>442.2660</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>300.1554</td>
<td>150.5813</td>
<td>282.1448</td>
<td>141.5761</td>
<td>E</td>
<td>901.5533</td>
<td></td>
<td>386.7500</td>
<td>755.4662</td>
<td>378.2367</td>
<td>754.4822</td>
<td>377.7447</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>541.2980</td>
<td>271.1527</td>
<td>524.2713</td>
<td>262.6394</td>
<td>523.2875</td>
<td>262.1474</td>
<td>A</td>
<td>602.3872</td>
<td>301.6972</td>
<td>585.3606</td>
<td>293.1840</td>
<td>584.3766</td>
<td>292.6920</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>596.3195</td>
<td>299.6034</td>
<td>581.2930</td>
<td>291.1501</td>
<td>580.3089</td>
<td>290.6581</td>
<td>G</td>
<td>531.3601</td>
<td>266.1787</td>
<td>514.3235</td>
<td>257.6654</td>
<td>513.3395</td>
<td>257.1734</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>711.4036</td>
<td>356.2054</td>
<td>694.3770</td>
<td>347.6921</td>
<td>693.3930</td>
<td>347.2001</td>
<td>L</td>
<td>474.3286</td>
<td>237.6679</td>
<td>457.3021</td>
<td>229.1547</td>
<td>456.3180</td>
<td>228.6627</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>824.4876</td>
<td>412.7475</td>
<td>807.4611</td>
<td>404.2342</td>
<td>806.4771</td>
<td>403.7422</td>
<td>L</td>
<td>361.2445</td>
<td>181.1259</td>
<td>344.2180</td>
<td>172.6126</td>
<td>343.2340</td>
<td>172.1206</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KVAEAFAR

Found in *E. coli*, Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic OS=Mus musculus GN=Gpd1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, plot from [] Da to [] Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 976.4978
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K1 : mal_CO2 (K), with neutral loss 42.9898
Ions Score: 26 Expect: 0.002
Matches : 12/70 fragment ions using 36 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b−−</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>88.0500</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td>V</td>
<td>763.4007</td>
<td>382.2085</td>
<td>746.3832</td>
<td>373.6952</td>
<td>745.3991</td>
<td>373.2032</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>341.2313</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>A</td>
<td>664.3413</td>
<td>332.6743</td>
<td>647.3148</td>
<td>324.1610</td>
<td>646.3307</td>
<td>323.6960</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>541.2980</td>
<td>271.1527</td>
<td>524.2715</td>
<td>262.6394</td>
<td>A</td>
<td>464.2616</td>
<td>222.6344</td>
<td>447.2350</td>
<td>224.1212</td>
<td>222.6344</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>688.3665</td>
<td>344.8869</td>
<td>671.3399</td>
<td>336.1736</td>
<td>F</td>
<td>393.2245</td>
<td>197.1159</td>
<td>376.1979</td>
<td>188.6026</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>759.4036</td>
<td>380.2054</td>
<td>742.3770</td>
<td>371.6921</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LFGLDIKGR

Found in E0CZH6, MOSC domain-containing protein 2, mitochondrial (Fragment) OS=Mus musculus GN=Marc2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1103.5975
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7 ms_l_COO (K), with neutral loss 43.9898

Ions Score: 20 Expect: 0.014
Matches : 27/69 fragment ions using 53 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b̅</th>
<th>b̅̅</th>
<th>b̅̅̅</th>
<th>b̅̅̅̅</th>
<th>Seq.</th>
<th>y</th>
<th>y̅</th>
<th>y̅̅</th>
<th>y̅̅̅</th>
<th>y̅̅̅̅</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>947.5309</td>
<td>474.2691</td>
<td>930.5043</td>
<td>465.7558</td>
<td>929.5203</td>
<td>465.2638</td>
</tr>
<tr>
<td>2</td>
<td>261.1598</td>
<td>131.0835</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>800.4625</td>
<td>400.7349</td>
<td>783.4359</td>
<td>392.2216</td>
<td>782.4519</td>
<td>391.7266</td>
</tr>
<tr>
<td>3</td>
<td>318.1812</td>
<td>159.5042</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>743.4410</td>
<td>372.2241</td>
<td>726.4145</td>
<td>363.7109</td>
<td>725.4305</td>
<td>363.2189</td>
</tr>
<tr>
<td>4</td>
<td>431.2653</td>
<td>216.1363</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>630.3370</td>
<td>315.6821</td>
<td>613.3304</td>
<td>307.1688</td>
<td>612.3464</td>
<td>306.6768</td>
</tr>
<tr>
<td>5</td>
<td>546.2922</td>
<td>273.6498</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>528.2817</td>
<td>264.6445</td>
<td>357.1354</td>
<td>254.9312</td>
<td>253.8678</td>
<td>355.0220</td>
</tr>
<tr>
<td>6</td>
<td>659.3763</td>
<td>330.1918</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td>641.3657</td>
<td>321.1865</td>
<td>515.3300</td>
<td>258.1686</td>
<td>498.3035</td>
<td>249.6654</td>
</tr>
<tr>
<td>7</td>
<td>829.4818</td>
<td>415.2445</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>402.2459</td>
<td>201.6256</td>
<td>385.2194</td>
<td>193.1133</td>
<td>384.2194</td>
<td>193.1133</td>
</tr>
<tr>
<td>9</td>
<td>175.1190</td>
<td>88.6092</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VVKEDGHMVTAR

Found in **EBZ10**, MOSC domain-containing protein 2, mitochondrial (Fragment) OS=Mus musculus GN=Mar2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, [Full range] 200 to 1300 Da [Full range]

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1426.68875

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

Ions Score: 29 **Expect:** 0.027

Matches: 14/118 fragment ions using 31 most intense peaks ([help])

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b~</th>
<th>b*</th>
<th>b***</th>
<th>b0</th>
<th>b0~</th>
<th>Seq.</th>
<th>y</th>
<th>y~</th>
<th>y*</th>
<th>y***</th>
<th>y0</th>
<th>y0~</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>199.1441</td>
<td>100.0757</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>369.2406</td>
<td>185.1285</td>
<td>352.2231</td>
<td>176.6152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>498.2922</td>
<td>249.6498</td>
<td>481.2657</td>
<td>241.1365</td>
<td>480.2817</td>
<td>240.6445</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>613.3192</td>
<td>307.1632</td>
<td>596.2926</td>
<td>298.6490</td>
<td>595.3065</td>
<td>298.1579</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>670.3406</td>
<td>335.6740</td>
<td>653.3141</td>
<td>327.1607</td>
<td>652.3301</td>
<td>326.6687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>938.4400</td>
<td>469.7237</td>
<td>921.4135</td>
<td>461.2104</td>
<td>920.4295</td>
<td>460.7184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1037.5984</td>
<td>519.2579</td>
<td>1020.4819</td>
<td>510.7446</td>
<td>1019.4979</td>
<td>510.2526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1138.5561</td>
<td>569.7817</td>
<td>1121.5256</td>
<td>561.2814</td>
<td>1120.5456</td>
<td>560.7764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1209.5932</td>
<td>605.3003</td>
<td>1192.5667</td>
<td>596.7870</td>
<td>1191.5827</td>
<td>596.2950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NVKYVDLGGSYVGPTQNR

Found in E9PVT9, Aminopeptidase [Mammalian]; Bo=Mus musculus; GN=Mash PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1900 Da

Label all possible matches □ Label matches used for scoring □

Neuroepitope mass of central peptide Hb (calc): 2021.5122

Fixed modifications: M+2 (C) (apply to specified residues or terminal only)

Variable modifications:
- K: i-cis, 202 (R), with neutral loss 40.0000

Ions Score: 80 **Expect:** 1.5e-07

Matches: 90/100 fragment ions using 73 most intense peaks (Calc)

<table>
<thead>
<tr>
<th>k</th>
<th>b</th>
<th>b**−**</th>
<th>b0</th>
<th>b**+**</th>
<th>b**+**</th>
<th>Seq.</th>
<th>y</th>
<th>y**−**</th>
<th>y**+**</th>
<th>y**++**</th>
<th>y**++**</th>
<th>y**+++**</th>
<th>y**+++**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0502</td>
<td>58.0287</td>
<td>98.0237</td>
<td>49.5153</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>304.2241</td>
<td>192.6157</td>
<td>367.1976</td>
<td>184.1026</td>
<td>K</td>
<td>1785.8973</td>
<td>996.5473</td>
<td>1778.8709</td>
<td>889.9390</td>
<td>1777.8588</td>
<td>889.4470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>547.2877</td>
<td>374.1474</td>
<td>530.2609</td>
<td>265.6341</td>
<td>V</td>
<td>1625.7918</td>
<td>813.3995</td>
<td>1608.7653</td>
<td>804.8865</td>
<td>1607.7812</td>
<td>804.3943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>646.5699</td>
<td>323.6816</td>
<td>629.3293</td>
<td>313.1684</td>
<td>V</td>
<td>1462.7285</td>
<td>731.8579</td>
<td>1445.7019</td>
<td>723.3546</td>
<td>1444.7179</td>
<td>722.8626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>761.5828</td>
<td>381.1951</td>
<td>744.3561</td>
<td>372.6818</td>
<td>D</td>
<td>1366.6691</td>
<td>682.3337</td>
<td>1346.6335</td>
<td>673.8204</td>
<td>1345.6405</td>
<td>673.3284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>874.6609</td>
<td>457.7371</td>
<td>857.4043</td>
<td>439.2236</td>
<td>L</td>
<td>1248.6631</td>
<td>624.8202</td>
<td>1231.6066</td>
<td>616.3069</td>
<td>1230.6226</td>
<td>615.8149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>921.4884</td>
<td>496.2478</td>
<td>914.4618</td>
<td>457.7345</td>
<td>913.4778</td>
<td>457.2423</td>
<td>G</td>
<td>1135.3491</td>
<td>598.2782</td>
<td>1118.3225</td>
<td>599.7649</td>
<td>1117.3385</td>
<td>599.2729</td>
</tr>
<tr>
<td>9</td>
<td>968.5098</td>
<td>494.7395</td>
<td>971.4333</td>
<td>486.2435</td>
<td>970.4993</td>
<td>482.7333</td>
<td>G</td>
<td>1078.3276</td>
<td>539.7674</td>
<td>1061.3011</td>
<td>531.2512</td>
<td>1060.3170</td>
<td>530.7622</td>
</tr>
<tr>
<td>10</td>
<td>1075.5149</td>
<td>538.2746</td>
<td>1058.3113</td>
<td>529.7613</td>
<td>S</td>
<td>1021.5061</td>
<td>511.2567</td>
<td>1004.4796</td>
<td>502.7434</td>
<td>1003.5956</td>
<td>502.2534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1238.6852</td>
<td>619.8062</td>
<td>1221.5766</td>
<td>611.2930</td>
<td>Y</td>
<td>934.7827</td>
<td>467.7407</td>
<td>917.4476</td>
<td>459.2274</td>
<td>916.6635</td>
<td>458.7334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1337.6756</td>
<td>659.3041</td>
<td>1320.6470</td>
<td>660.8372</td>
<td>V</td>
<td>771.1108</td>
<td>386.2090</td>
<td>751.3847</td>
<td>377.6958</td>
<td>750.3062</td>
<td>377.2037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1394.6951</td>
<td>671.8512</td>
<td>1377.6685</td>
<td>689.3379</td>
<td>G</td>
<td>672.3424</td>
<td>366.4797</td>
<td>655.3158</td>
<td>358.1615</td>
<td>654.3318</td>
<td>357.6695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1491.7478</td>
<td>666.3775</td>
<td>1474.7213</td>
<td>737.8643</td>
<td>G</td>
<td>615.3309</td>
<td>308.1641</td>
<td>598.2844</td>
<td>299.6508</td>
<td>597.3103</td>
<td>299.1588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1592.7956</td>
<td>766.9014</td>
<td>1575.7960</td>
<td>788.3881</td>
<td>T</td>
<td>518.2681</td>
<td>259.6377</td>
<td>501.2416</td>
<td>251.1244</td>
<td>500.2576</td>
<td>250.6324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1720.8584</td>
<td>880.9307</td>
<td>1703.8275</td>
<td>852.4174</td>
<td>Q</td>
<td>471.2205</td>
<td>209.1139</td>
<td>400.1939</td>
<td>200.6066</td>
<td>400.1939</td>
<td>200.6066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1834.9790</td>
<td>917.9521</td>
<td>1817.8705</td>
<td>909.4359</td>
<td>N</td>
<td>285.1619</td>
<td>143.0846</td>
<td>272.1333</td>
<td>136.5713</td>
<td>272.1333</td>
<td>136.5713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>173.1510</td>
<td>88.0631</td>
<td>158.0624</td>
<td>79.5408</td>
<td>158.0624</td>
<td>79.5408</td>
<td>158.0624</td>
<td>79.5408</td>
<td>158.0624</td>
<td>79.5408</td>
<td>158.0624</td>
<td>79.5408</td>
</tr>
</tbody>
</table>
M8/MS Fragmentation of WVWNKSSQFLAPK

Found in E9PV99: PCTP-like protein Os-Mus musculus GN=Stnd10 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(mol): 1889.8246

Fixed modifications: MET(5-C) (apply to specified residues or termini only)
Variable modifications:
RS : ac (R), with neutral loss 48.0693

Ion Score: 28 Expect: 0.0022

Matches: 16/114 fragment ions using 25 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b</th>
<th>b**</th>
<th>Seq.</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>y</th>
<th>y**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.0866</td>
<td>94.0469</td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>286.1359</td>
<td>143.0681</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1259.7651</td>
<td>680.3852</td>
<td>671.8719</td>
<td>1241.7522</td>
<td>671.2790</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>285.2234</td>
<td>142.1113</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1260.6947</td>
<td>680.8310</td>
<td>1243.6681</td>
<td>623.3377</td>
<td>1242.6841</td>
<td>621.8457</td>
</tr>
<tr>
<td>4</td>
<td>499.2853</td>
<td>249.1386</td>
<td>482.2398</td>
<td>241.6235</td>
<td>N</td>
<td>1161.6262</td>
<td>581.3168</td>
<td>1144.5997</td>
<td>572.0303</td>
<td>1143.6187</td>
<td>572.3112</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>669.3719</td>
<td>335.1806</td>
<td>652.3453</td>
<td>326.6761</td>
<td>K</td>
<td>1047.5823</td>
<td>524.2953</td>
<td>1030.5568</td>
<td>515.7820</td>
<td>1029.5728</td>
<td>515.2900</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>756.4039</td>
<td>378.7056</td>
<td>739.3774</td>
<td>370.1923</td>
<td>738.3931</td>
<td>369.7092</td>
<td>S</td>
<td>877.4778</td>
<td>459.2425</td>
<td>860.4512</td>
<td>450.7293</td>
<td>859.4672</td>
</tr>
<tr>
<td>7</td>
<td>843.4259</td>
<td>422.2116</td>
<td>826.4094</td>
<td>413.7082</td>
<td>825.4254</td>
<td>412.2162</td>
<td>S</td>
<td>790.4428</td>
<td>395.7265</td>
<td>773.4192</td>
<td>387.2132</td>
<td>772.4352</td>
</tr>
<tr>
<td>8</td>
<td>971.4945</td>
<td>486.2599</td>
<td>954.4689</td>
<td>477.7376</td>
<td>953.4838</td>
<td>477.2436</td>
<td>Q</td>
<td>701.4137</td>
<td>352.2105</td>
<td>686.3872</td>
<td>341.6972</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1138.5629</td>
<td>569.7831</td>
<td>1110.5364</td>
<td>551.2718</td>
<td>1100.5524</td>
<td>530.7798</td>
<td>F</td>
<td>575.3552</td>
<td>288.1812</td>
<td>258.3286</td>
<td>279.6679</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1231.6470</td>
<td>616.3271</td>
<td>1214.6204</td>
<td>607.8139</td>
<td>1213.6364</td>
<td>607.3218</td>
<td>L</td>
<td>428.2867</td>
<td>214.6470</td>
<td>411.2602</td>
<td>206.1337</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1302.6841</td>
<td>651.8147</td>
<td>1285.6575</td>
<td>643.3324</td>
<td>1284.6732</td>
<td>642.8404</td>
<td>A</td>
<td>315.2027</td>
<td>158.1050</td>
<td>298.1761</td>
<td>149.5947</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1399.7369</td>
<td>700.3721</td>
<td>1382.7103</td>
<td>691.8588</td>
<td>1381.7263</td>
<td>691.3668</td>
<td>P</td>
<td>244.1656</td>
<td>122.5864</td>
<td>227.1390</td>
<td>114.0731</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SSQFLAPKAMK
Found in D9VP0, PCTP-like protein OS=Mus musculus GN=Stard10 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1300 Da Full range
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(Calc): 1252.6434
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications: Nε1C2 (K), with neutral loss 45.0500
Ions Score: 34 Expect: 0.018
Matches : 9/98 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^2</th>
<th>b^3++</th>
<th>y</th>
<th>y^+</th>
<th>y^2</th>
<th>y^3++</th>
<th>y^0</th>
<th>y^4++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>175.0713</td>
<td>88.0393</td>
<td>157.0608</td>
<td>79.0340</td>
<td>S</td>
<td>1162.6289</td>
<td>581.8181</td>
<td>1145.6023</td>
<td>573.3048</td>
<td>1144.6183</td>
<td>572.8128</td>
</tr>
<tr>
<td>3</td>
<td>363.1299</td>
<td>152.0684</td>
<td>286.1034</td>
<td>143.5533</td>
<td>Q</td>
<td>1075.5969</td>
<td>538.3021</td>
<td>1058.5703</td>
<td>529.7888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>565.2824</td>
<td>282.1448</td>
<td>546.2558</td>
<td>273.6316</td>
<td>L</td>
<td>800.4699</td>
<td>400.7386</td>
<td>783.4433</td>
<td>392.2253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>614.3195</td>
<td>317.6634</td>
<td>617.2930</td>
<td>309.1501</td>
<td>A</td>
<td>687.3858</td>
<td>344.1965</td>
<td>670.3593</td>
<td>335.6833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>731.3723</td>
<td>366.1898</td>
<td>714.3457</td>
<td>357.6765</td>
<td>P</td>
<td>616.3487</td>
<td>308.6780</td>
<td>599.3221</td>
<td>300.1647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>901.4778</td>
<td>451.2425</td>
<td>884.4512</td>
<td>442.7293</td>
<td>K</td>
<td>519.2959</td>
<td>260.1516</td>
<td>502.2694</td>
<td>251.6383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>972.5194</td>
<td>486.7611</td>
<td>955.4884</td>
<td>478.2478</td>
<td>M</td>
<td>547.7758</td>
<td>278.1533</td>
<td>139.5803</td>
<td>261.1267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1103.5554</td>
<td>552.2813</td>
<td>1086.5288</td>
<td>543.7681</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **LKDAVIQNTR**

Found in **FDPXVA** Rdh1c and Cda synthase OS=Mus musculus GN=St77a5 PF=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from **200** to **1080** Da Full range

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide \(\text{M}_r(\text{calc}) \): **1242.6888**

Fixed modifications: **MTS (C)** (apply to specified residues or termini only)

Variable modifications:

K2: **rm.CD2 (K)**, with neutral loss 43.9888

Ions Score: **23** Expect: **0.042**

Matches: **6/100** fragment ions using 9 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b°</th>
<th>b°''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y°</th>
<th>y''°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>267.1703</td>
<td>134.0888</td>
<td>L</td>
<td>1086.5902</td>
<td>543.7987</td>
<td>1069.5637</td>
<td>535.2855</td>
<td>1068.5796</td>
<td>534.7935</td>
<td>1086.5902</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>K</td>
<td>1086.5902</td>
<td>543.7987</td>
<td>1069.5637</td>
<td>535.2855</td>
<td>1068.5796</td>
<td>534.7935</td>
<td>1086.5902</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>399.2238</td>
<td>200.1155</td>
<td>382.1973</td>
<td>191.6023</td>
<td>D</td>
<td>916.4847</td>
<td>458.7460</td>
<td>890.4581</td>
<td>450.2327</td>
<td>898.4741</td>
<td>449.7407</td>
<td>1086.5902</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>470.2609</td>
<td>235.6341</td>
<td>453.2344</td>
<td>227.1268</td>
<td>A</td>
<td>801.4577</td>
<td>401.2325</td>
<td>784.4312</td>
<td>392.7192</td>
<td>783.4472</td>
<td>392.2272</td>
<td>784.4312</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>569.3293</td>
<td>285.1883</td>
<td>552.3028</td>
<td>276.6530</td>
<td>V</td>
<td>730.4206</td>
<td>365.7139</td>
<td>713.3941</td>
<td>357.2007</td>
<td>712.4100</td>
<td>356.7087</td>
<td>713.3941</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>810.4790</td>
<td>405.7396</td>
<td>793.4454</td>
<td>387.2264</td>
<td>Q</td>
<td>518.2681</td>
<td>259.6377</td>
<td>501.2416</td>
<td>251.1244</td>
<td>500.2576</td>
<td>250.6324</td>
<td>501.2416</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1025.5626</td>
<td>513.2849</td>
<td>1008.5360</td>
<td>504.7717</td>
<td>T</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>258.1561</td>
<td>129.5817</td>
<td>259.1401</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VMLGETNPADSKPGTIR
Found in E9PZFO, Nucleotide diphosphate kinase OS=Mouse GN=Gm20396 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 100 to 1700 Da Full range
Label all possible matches Label matches used for scoring

Peptide mass of neutral peptide (Da): 1868.0066
Fixed modifications: HET (apply to specified residues or termini only)
Variable modifications:
DA : Cadaverine (N), with neutral losses 0.9995 (shown in table), 0.9995
ES2 : mal-202 (B), with neutral loss 58.0000
Ions Score: 13 Expect: 0.006
Matches: 16/246 fragment ions using 14 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>p</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>y''''''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0737</td>
<td>50.5415</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1111</td>
<td>124.0592</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>360.1532</td>
<td>180.8012</td>
<td></td>
<td></td>
<td>L</td>
<td>1597.8189</td>
<td>795.4127</td>
<td>1580.7913</td>
<td>790.8994</td>
<td>1579.8075</td>
<td>790.4014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>417.2165</td>
<td>209.1119</td>
<td></td>
<td></td>
<td>G</td>
<td>1687.3549</td>
<td>842.8706</td>
<td>1647.7074</td>
<td>734.3573</td>
<td>1646.7224</td>
<td>733.8653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>546.2592</td>
<td>273.1332</td>
<td></td>
<td></td>
<td>E</td>
<td>1427.7125</td>
<td>714.3593</td>
<td>1410.6800</td>
<td>705.8466</td>
<td>1409.7019</td>
<td>705.3546</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>641.3066</td>
<td>324.1571</td>
<td></td>
<td></td>
<td>T</td>
<td>1298.6999</td>
<td>649.8386</td>
<td>1281.6344</td>
<td>641.3253</td>
<td>1280.6593</td>
<td>640.8333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>761.3498</td>
<td>381.1783</td>
<td>744.3223</td>
<td>372.6563</td>
<td>743.3593</td>
<td>372.1733</td>
<td>N</td>
<td>1197.8222</td>
<td>599.3148</td>
<td>1180.3957</td>
<td>590.8013</td>
<td>1179.6117</td>
<td>590.3095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836.4028</td>
<td>420.7043</td>
<td>841.3769</td>
<td>421.1917</td>
<td>840.3920</td>
<td>420.6996</td>
<td>P</td>
<td>1083.5373</td>
<td>542.2933</td>
<td>1066.5528</td>
<td>533.7800</td>
<td>1065.5687</td>
<td>533.2880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>929.4497</td>
<td>465.2235</td>
<td>912.4131</td>
<td>456.7102</td>
<td>911.4291</td>
<td>456.2182</td>
<td>A</td>
<td>986.5265</td>
<td>493.7669</td>
<td>969.5000</td>
<td>485.2536</td>
<td>968.5160</td>
<td>484.7616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1044.4665</td>
<td>522.7370</td>
<td>1027.4401</td>
<td>514.2237</td>
<td>1026.4561</td>
<td>513.7317</td>
<td>D</td>
<td>913.4594</td>
<td>458.2483</td>
<td>898.4692</td>
<td>449.7351</td>
<td>879.4789</td>
<td>449.2431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1131.4987</td>
<td>566.2530</td>
<td>1114.4721</td>
<td>557.7397</td>
<td>1113.4811</td>
<td>557.2477</td>
<td>S</td>
<td>809.4623</td>
<td>400.7349</td>
<td>783.4599</td>
<td>392.2216</td>
<td>782.4519</td>
<td>391.7296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1301.6041</td>
<td>651.3057</td>
<td>1284.7786</td>
<td>642.7923</td>
<td>1283.3936</td>
<td>642.3005</td>
<td>K</td>
<td>713.4303</td>
<td>357.2189</td>
<td>696.4098</td>
<td>348.7065</td>
<td>695.4190</td>
<td>348.2156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1398.6570</td>
<td>699.8233</td>
<td>1381.6304</td>
<td>691.3188</td>
<td>1380.6464</td>
<td>690.8268</td>
<td>P</td>
<td>583.3249</td>
<td>272.1661</td>
<td>526.2964</td>
<td>263.6528</td>
<td>525.3144</td>
<td>263.1680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1435.6784</td>
<td>728.3428</td>
<td>1438.6519</td>
<td>719.8266</td>
<td>1437.6679</td>
<td>719.3376</td>
<td>G</td>
<td>446.2722</td>
<td>223.6937</td>
<td>429.2456</td>
<td>215.2645</td>
<td>428.2616</td>
<td>214.6344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1556.7261</td>
<td>778.8667</td>
<td>1539.6966</td>
<td>770.3534</td>
<td>1538.7155</td>
<td>769.8614</td>
<td>T</td>
<td>389.2567</td>
<td>195.1290</td>
<td>372.2241</td>
<td>186.6157</td>
<td>371.2401</td>
<td>186.1271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1669.8102</td>
<td>835.4087</td>
<td>1652.7836</td>
<td>826.8954</td>
<td>1651.7996</td>
<td>826.4034</td>
<td>I</td>
<td>288.2030</td>
<td>144.6651</td>
<td>271.1765</td>
<td>136.0891</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1772.8812</td>
<td>905.4553</td>
<td>1755.8541</td>
<td>896.9289</td>
<td>1754.8323</td>
<td>895.4304</td>
<td>R</td>
<td>173.1190</td>
<td>88.0653</td>
<td>158.0924</td>
<td>79.5948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ELTGDMQLSKSEILR

Found in E9PJ78. Activating signal regulator 1 complex subunit 3 O8=Mus musculus QN=Asc23 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Ms (m/z): 1004.3976
Fixed modifications: M67S (C) (apply to specified residues or terminal only)
Variable modifications:
K6O : m+2 (K), with neutral loss 46.0053
Ions Score: 49 Expect: 0.00063
Matches : 52/145 fragment ions using 106 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq.</th>
</tr>
</thead>
</table>
| 1 | 130.0499 | 65.5286 | 112.0393 | 56.2533 | E | | | | | 15
| 2 | 242.1239 | 122.0706 | 225.1234 | 113.0653 | L | 1622.8625 | 816.9349 | 1615.8360 | 808.4216 | 1614.8520 | 807.9296 | 14
| 3 | 384.1816 | 172.3544 | 326.1710 | 163.3892 | T | 1518.7785 | 760.3929 | 1502.7319 | 751.8796 | 1501.7679 | 751.3876 | 13
| 4 | 401.2031 | 201.1012 | 383.1923 | 192.0699 | G | 1418.7308 | 709.8960 | 1401.7042 | 701.3538 | 1400.7302 | 700.8838 | 12
| 5 | 516.2300 | 258.6166 | 498.2195 | 249.6134 | D | 1361.7093 | 681.3583 | 1344.6838 | 672.8450 | 1343.6988 | 672.3530 | 11
| 6 | 647.2765 | 324.1389 | 629.2599 | 315.1336 | M | 1246.6824 | 623.8448 | 1229.6538 | 615.3316 | 1228.6718 | 614.3895 | 10
| 7 | 776.3291 | 388.1662 | 758.3025 | 379.6549 | Q | 1115.6119 | 559.3246 | 1098.6153 | 549.8113 | 1097.6313 | 549.3192 | 9
| 8 | 883.4121 | 444.7102 | 871.3896 | 458.1969 | L | 878.5833 | 494.2993 | 870.5586 | 485.7820 | 869.5723 | 485.2900 | 8
| 9 | 975.4452 | 488.2262 | 958.4186 | 479.7130 | S | 874.4993 | 437.7533 | 857.4727 | 428.2460 | 856.4887 | 428.7480 | 7
| 10 | 1145.5507 | 573.2790 | 1128.5324 | 564.7657 | R | 787.4672 | 394.2373 | 770.4407 | 385.7240 | 769.4567 | 385.2320 | 6
| 11 | 1222.5827 | 616.7920 | 1215.5552 | 608.2817 | K | 617.3617 | 309.1845 | 609.3352 | 300.6712 | 609.3511 | 300.1792 | 5
| 12 | 1361.6253 | 681.3163 | 1344.5988 | 672.8930 | E | 588.2897 | 265.6625 | 573.3931 | 257.1552 | 572.3911 | 256.6625 | 4
| 13 | 1474.7094 | 737.8383 | 1457.8628 | 729.3451 | I | 401.2871 | 201.1472 | 384.2605 | 192.6339 | 3
| 14 | 1587.7535 | 794.4004 | 1570.7606 | 785.8871 | L | 288.2639 | 144.6051 | 271.1765 | 136.6019 | 2
| 15 | 1715.8190 | 880.6031 | 1698.8292 | 873.8051 | R | 175.1190 | 88.0631 | 158.9294 | 79.5498 | 1
MS/MS Fragmentation of QASLKDYEETIGK
Found in E9Q1HS, Alpha-aminoacid semialdehyde dehydrogenase (Fragment) OS=Mus musculus GN=Aldh7a1 PE=4 SV=2
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot area 200 to 1500 De
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mz(calc.) = 1566.7413
Fixed modifications: DEEF (C) (apply to specified residues or termini only)
Variable modifications:
K5: m1 [202 (K), with neutral loss 43.9896]
Z Ind Score: 23 Expect: 0.027
Matches: 10/124 fragment ions using 85 most intense peaks (based)

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b''</th>
<th>y</th>
<th>y''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0393</td>
<td>56.5233</td>
<td>Q</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200.1030</td>
<td>100.5531</td>
<td>183.0761</td>
<td>92.0418</td>
<td>A</td>
<td>1393.7002</td>
<td>698.3537</td>
<td>1378.6737</td>
<td>689.8405</td>
<td>1377.8895</td>
<td>689.3483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>287.1350</td>
<td>144.0711</td>
<td>270.1084</td>
<td>135.5579</td>
<td>S</td>
<td>1324.6621</td>
<td>662.3552</td>
<td>1307.6365</td>
<td>654.3219</td>
<td>1306.6525</td>
<td>653.8299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>400.2191</td>
<td>200.6152</td>
<td>383.1925</td>
<td>192.0699</td>
<td>L</td>
<td>1237.6511</td>
<td>619.3192</td>
<td>1220.6045</td>
<td>610.8059</td>
<td>1219.6205</td>
<td>610.3139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>570.3246</td>
<td>285.6569</td>
<td>553.2800</td>
<td>277.1527</td>
<td>K</td>
<td>1124.5470</td>
<td>562.7771</td>
<td>1107.5204</td>
<td>554.2639</td>
<td>1106.5364</td>
<td>553.7719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>685.3515</td>
<td>343.1794</td>
<td>668.3230</td>
<td>334.6661</td>
<td>D</td>
<td>954.4415</td>
<td>477.7244</td>
<td>937.4149</td>
<td>469.2111</td>
<td>936.4090</td>
<td>468.7191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>748.4149</td>
<td>374.7111</td>
<td>731.3883</td>
<td>416.1978</td>
<td>453.4643</td>
<td>420.2109</td>
<td>822.3380</td>
<td>411.6976</td>
<td>821.4040</td>
<td>411.2056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>977.4575</td>
<td>489.2324</td>
<td>960.4209</td>
<td>480.7191</td>
<td>E</td>
<td>678.3512</td>
<td>338.6792</td>
<td>659.3246</td>
<td>330.1600</td>
<td>658.3406</td>
<td>329.6740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1108.5090</td>
<td>553.7537</td>
<td>1091.4735</td>
<td>545.2404</td>
<td>E</td>
<td>547.3086</td>
<td>274.1579</td>
<td>530.2821</td>
<td>265.6447</td>
<td>529.2980</td>
<td>265.1527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1207.5477</td>
<td>604.2775</td>
<td>1190.5212</td>
<td>595.7642</td>
<td>T</td>
<td>418.2660</td>
<td>209.6366</td>
<td>401.2395</td>
<td>201.1234</td>
<td>400.2254</td>
<td>200.6314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1220.6218</td>
<td>600.8195</td>
<td>1203.6052</td>
<td>592.3063</td>
<td>I</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1176.6533</td>
<td>689.3363</td>
<td>1160.6267</td>
<td>680.8170</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>147.1128</td>
<td>74.0800</td>
<td>132.0863</td>
<td>65.5488</td>
<td>K</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EMLQQSKILK

Monoisotopic mass of neutral peptide Mr(calc): 1902.6863
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7 : phi(OG2) (K), with neutral loss 49.9898

Matches: 92/94 fragment ions using 41 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b'''</th>
<th>b'0</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y'''</th>
<th>y'0</th>
<th>y0</th>
<th>y''0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0392</td>
<td>56.5223</td>
<td>E</td>
<td></td>
<td>1130.6602</td>
<td>565.8337</td>
<td>1113.6336</td>
<td>557.3205</td>
<td>1112.6496</td>
<td>556.8285</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>261.0004</td>
<td>131.0488</td>
<td>243.0798</td>
<td>122.0435</td>
<td>M</td>
<td></td>
<td>1130.6602</td>
<td>565.8337</td>
<td>1113.6336</td>
<td>557.3205</td>
<td>1112.6496</td>
<td>556.8285</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>374.1744</td>
<td>187.5908</td>
<td>356.1639</td>
<td>178.5856</td>
<td>L</td>
<td></td>
<td>988.6147</td>
<td>500.3135</td>
<td>982.5932</td>
<td>491.8002</td>
<td>981.6091</td>
<td>491.3082</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>630.2916</td>
<td>315.6494</td>
<td>613.2860</td>
<td>307.1562</td>
<td>Q</td>
<td></td>
<td>753.4771</td>
<td>379.7422</td>
<td>741.4505</td>
<td>371.2289</td>
<td>740.4685</td>
<td>370.7589</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>887.4291</td>
<td>444.2182</td>
<td>870.4026</td>
<td>435.7049</td>
<td>K</td>
<td></td>
<td>543.3865</td>
<td>272.1869</td>
<td>526.3590</td>
<td>263.6836</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1000.5133</td>
<td>500.7602</td>
<td>983.4866</td>
<td>492.2470</td>
<td>T</td>
<td></td>
<td>373.2809</td>
<td>187.1441</td>
<td>356.2544</td>
<td>178.6308</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1113.5973</td>
<td>557.3023</td>
<td>1096.5707</td>
<td>548.7890</td>
<td>L</td>
<td></td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GASKEILSEVER

Found in EQ133, T-complex protein 1 subunit gamma OS=Mus musculus GN=Cct3 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 2402.6340
Fixed modifications: MITES (C) (apply to specified residues or termini only)
Variable modifications:
RT : methionine oxidation (M), with neutral loss 10.0000
Monoisotopic mass of neutral peptide Mr(calc): 2402.6280
Matches to peptide GASKEILSEVER

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>Seq.</th>
<th>p</th>
<th>p+1</th>
<th>p+2</th>
<th>p+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0237</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129.0659</td>
<td>65.0366</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1302.6900</td>
<td>651.8486</td>
<td>1285.6634</td>
<td>643.3353</td>
</tr>
<tr>
<td>3</td>
<td>216.0979</td>
<td>108.5526</td>
<td>198.0873</td>
<td>99.5473</td>
<td>S</td>
<td>1231.6529</td>
<td>615.3301</td>
<td>1214.6263</td>
<td>607.8168</td>
<td>1213.6423</td>
</tr>
<tr>
<td>4</td>
<td>386.2034</td>
<td>193.6053</td>
<td>369.1709</td>
<td>185.0921</td>
<td>368.1928</td>
<td>184.6008</td>
<td>K</td>
<td>1144.6208</td>
<td>572.8141</td>
<td>1127.5943</td>
</tr>
<tr>
<td>5</td>
<td>515.2480</td>
<td>258.1266</td>
<td>498.2195</td>
<td>249.6134</td>
<td>497.2234</td>
<td>249.1214</td>
<td>E</td>
<td>974.5153</td>
<td>487.7413</td>
<td>957.4888</td>
</tr>
<tr>
<td>6</td>
<td>628.2301</td>
<td>314.6667</td>
<td>611.3035</td>
<td>306.1554</td>
<td>610.3195</td>
<td>305.6634</td>
<td>I</td>
<td>845.4727</td>
<td>423.2400</td>
<td>828.4462</td>
</tr>
<tr>
<td>7</td>
<td>741.4141</td>
<td>371.2107</td>
<td>724.3876</td>
<td>366.6974</td>
<td>723.4036</td>
<td>365.2054</td>
<td>L</td>
<td>732.3886</td>
<td>366.6980</td>
<td>715.3631</td>
</tr>
<tr>
<td>8</td>
<td>828.4462</td>
<td>414.7267</td>
<td>811.4195</td>
<td>406.2134</td>
<td>810.4358</td>
<td>405.7214</td>
<td>S</td>
<td>619.3046</td>
<td>310.1559</td>
<td>602.2780</td>
</tr>
<tr>
<td>9</td>
<td>957.4888</td>
<td>479.2480</td>
<td>940.4622</td>
<td>470.7347</td>
<td>939.4782</td>
<td>470.2427</td>
<td>E</td>
<td>532.2726</td>
<td>266.6399</td>
<td>515.2460</td>
</tr>
<tr>
<td>10</td>
<td>1056.5522</td>
<td>528.7822</td>
<td>1039.5306</td>
<td>520.2680</td>
<td>1038.5466</td>
<td>519.7769</td>
<td>V</td>
<td>403.2300</td>
<td>202.1186</td>
<td>386.2034</td>
</tr>
<tr>
<td>11</td>
<td>1185.5998</td>
<td>593.3033</td>
<td>1168.5732</td>
<td>584.7902</td>
<td>1167.5892</td>
<td>584.2982</td>
<td>R</td>
<td>304.1615</td>
<td>152.3844</td>
<td>287.1350</td>
</tr>
<tr>
<td>12</td>
<td>1255.6330</td>
<td>608.3033</td>
<td>1238.6069</td>
<td>600.2982</td>
<td>1237.6228</td>
<td>599.5267</td>
<td>R</td>
<td>175.1190</td>
<td>88.0821</td>
<td>128.0924</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GVMINKDVTTHPR

Found in EQ333, T-complex protein 1 subunit gamma OS=Mus musculus GN=Cct3 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 260 to 1260 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide \(M_n \) (calc): 1451.7191
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K6: oxidation (M), with neutral loss 41.0080
Input Search: 12 K Report: 0.064
Matches: 20/100 fragment ions using 54 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>b-</th>
<th>b**</th>
<th>b***</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y^+</th>
<th>y^++</th>
<th>y^0</th>
<th>y^+</th>
<th>y^++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.02817</td>
<td>29.5180</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>157.0972</td>
<td>79.0522</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>288.1376</td>
<td>144.5725</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>401.2217</td>
<td>201.1145</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>515.2646</td>
<td>258.1360</td>
<td>N</td>
<td>1608.5221</td>
<td>504.7641</td>
<td>991.4926</td>
<td>496.2514</td>
<td>590.5116</td>
<td>495.7594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>682.3702</td>
<td>343.1887</td>
<td>K</td>
<td>894.4792</td>
<td>447.7432</td>
<td>877.4526</td>
<td>439.2300</td>
<td>876.4666</td>
<td>438.7380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>800.3971</td>
<td>400.7022</td>
<td>D</td>
<td>724.3737</td>
<td>362.6905</td>
<td>707.3471</td>
<td>354.1772</td>
<td>706.2631</td>
<td>353.6852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>899.4655</td>
<td>450.2364</td>
<td>A</td>
<td>609.3467</td>
<td>305.1770</td>
<td>592.3302</td>
<td>296.6657</td>
<td>591.3362</td>
<td>296.1717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1000.5132</td>
<td>500.7602</td>
<td>T</td>
<td>516.2783</td>
<td>255.6428</td>
<td>493.5318</td>
<td>247.1285</td>
<td>492.2677</td>
<td>246.6575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1137.5721</td>
<td>569.2897</td>
<td>H</td>
<td>469.2306</td>
<td>203.1190</td>
<td>392.2041</td>
<td>196.8037</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1234.6249</td>
<td>617.8191</td>
<td>P</td>
<td>272.1717</td>
<td>156.5895</td>
<td>255.1452</td>
<td>128.0762</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>175.1190</td>
<td>88.9683</td>
<td>R</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
GSQVLVTVDPKFR

Monoisotopic mass of neutral peptide Mr(calc): 1590.0041
Fixed modifications: M(+23) (C) - apply to specified residues or termini only
Variable modifications:
K11 : ma022 (A), with neutral loss 42.0058

MSPS

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>c</th>
<th>d</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>58.0237</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>145.0068</td>
<td>73.0340</td>
<td></td>
<td></td>
<td>127.0502</td>
<td>64.0287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Q</td>
<td>278.1193</td>
<td>137.0633</td>
<td>256.0928</td>
<td>128.5500</td>
<td>255.1088</td>
<td>128.5500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>372.1878</td>
<td>185.9573</td>
<td>335.1612</td>
<td>178.0842</td>
<td>334.1772</td>
<td>177.2922</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>485.2718</td>
<td>243.1396</td>
<td>488.2433</td>
<td>234.6263</td>
<td>487.2613</td>
<td>234.1343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V</td>
<td>584.2402</td>
<td>292.6738</td>
<td>567.3137</td>
<td>284.1605</td>
<td>566.3297</td>
<td>283.6685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>685.3579</td>
<td>343.1976</td>
<td>688.3614</td>
<td>334.6843</td>
<td>687.3774</td>
<td>334.1923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>784.4563</td>
<td>392.7318</td>
<td>767.4298</td>
<td>384.2185</td>
<td>766.4458</td>
<td>383.7265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>899.5633</td>
<td>450.2453</td>
<td>882.4557</td>
<td>441.7220</td>
<td>881.4727</td>
<td>441.2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P</td>
<td>996.5505</td>
<td>498.7717</td>
<td>979.5095</td>
<td>490.2584</td>
<td>978.5255</td>
<td>490.7664</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>1106.6615</td>
<td>553.8224</td>
<td>1109.6130</td>
<td>545.3111</td>
<td>1108.6310</td>
<td>544.8191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>1213.7100</td>
<td>617.3586</td>
<td>1216.6834</td>
<td>608.8645</td>
<td>1209.6994</td>
<td>608.3533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>1313.7100</td>
<td>657.3586</td>
<td>1306.6834</td>
<td>648.8645</td>
<td>1305.6994</td>
<td>648.3533</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TVEGALKER**

Found in **E9O800**. Mitochondrial inner membrane protein OS=Musculus GN=Inmt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>V</td>
<td>943.5207</td>
<td>472.2640</td>
<td>926.4942</td>
<td>463.7507</td>
<td>925.5102</td>
<td>463.2587</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>330.1660</td>
<td>165.5866</td>
<td>312.1554</td>
<td>156.5813</td>
<td>E</td>
<td>844.4523</td>
<td>422.7298</td>
<td>827.4258</td>
<td>414.2185</td>
<td>826.4417</td>
<td>413.7245</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>387.1874</td>
<td>194.0974</td>
<td>369.1769</td>
<td>185.0921</td>
<td>G</td>
<td>715.4097</td>
<td>358.2085</td>
<td>698.3832</td>
<td>349.6952</td>
<td>697.3992</td>
<td>349.2032</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>458.2245</td>
<td>229.6159</td>
<td>440.2140</td>
<td>220.6106</td>
<td>A</td>
<td>658.3883</td>
<td>329.6978</td>
<td>641.3617</td>
<td>321.1845</td>
<td>640.3777</td>
<td>320.6925</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>571.3086</td>
<td>286.1579</td>
<td>553.2980</td>
<td>277.1527</td>
<td>L</td>
<td>387.3511</td>
<td>294.1792</td>
<td>570.3246</td>
<td>285.6659</td>
<td>569.3406</td>
<td>285.1739</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>741.4141</td>
<td>371.2107</td>
<td>724.3876</td>
<td>362.6974</td>
<td>K</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6319</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>870.4567</td>
<td>435.7320</td>
<td>853.4302</td>
<td>427.2187</td>
<td>E</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1510</td>
<td>143.5791</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Nonisotopic mass of neutral peptide Mr(calc): 1087.5509
Fixed modifications: M+H (C) (apply to specified residues or termini only)
Variable modifications:
K7 : mal CO2 (K), with neutral loss 43.9898
Ions Score: 27 Expect: 0.12
Matches: 10/62 Fragment ions using 18 most intense peaks (help)
MS/MS Fragmentation of TFDSAVA KALEHHR

Found in E9Q800, Mitochondrial inner membrane protein OS=Mus musculus GN=Imnt PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide M(mono) = 1666.8062

Fixed modifications: M+H (C) (apply to specified residues or termini only)
Variable modifications:
K = methyl 0.02 (K), with neutral loss 42.0698

Monoisotopic mass of neutral peptide m/z (calc) = 1666.8062

Matched: 12/326 fragment ions using 10 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b++'</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y'2</th>
<th>y''</th>
<th>y''2</th>
<th>y''2</th>
<th>y''2</th>
<th>y''2</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td></td>
<td></td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>249.1234</td>
<td>125.0653</td>
<td>231.1128</td>
<td>116.0600</td>
<td>F</td>
<td>152.7761</td>
<td>61.8917</td>
<td>761.7496</td>
<td>753.3784</td>
<td>1504.7655</td>
<td>52.8864</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>451.1823</td>
<td>236.0484</td>
<td>451.1823</td>
<td>217.0895</td>
<td>S</td>
<td>126.6807</td>
<td>630.6440</td>
<td>1243.6542</td>
<td>622.3307</td>
<td>1242.6702</td>
<td>631.8387</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>522.2195</td>
<td>261.6134</td>
<td>522.2195</td>
<td>252.6081</td>
<td>A</td>
<td>117.8487</td>
<td>587.2280</td>
<td>1158.6222</td>
<td>578.8147</td>
<td>1158.6222</td>
<td>578.8147</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>621.2879</td>
<td>311.1476</td>
<td>621.2879</td>
<td>302.1423</td>
<td>V</td>
<td>1102.6116</td>
<td>551.5094</td>
<td>1085.3851</td>
<td>543.2962</td>
<td>1084.6010</td>
<td>542.8042</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>693.3250</td>
<td>346.6661</td>
<td>693.3250</td>
<td>337.6608</td>
<td>A</td>
<td>1003.5422</td>
<td>590.2752</td>
<td>986.5166</td>
<td>493.7620</td>
<td>983.5326</td>
<td>493.2699</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>862.4503</td>
<td>431.7189</td>
<td>862.4503</td>
<td>422.7136</td>
<td>K</td>
<td>952.5061</td>
<td>496.7576</td>
<td>915.4792</td>
<td>426.2434</td>
<td>918.4923</td>
<td>457.7514</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>933.4676</td>
<td>467.2375</td>
<td>933.4676</td>
<td>458.2323</td>
<td>A</td>
<td>762.4005</td>
<td>381.7039</td>
<td>745.3740</td>
<td>373.1906</td>
<td>744.3900</td>
<td>372.6986</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1046.5517</td>
<td>523.7795</td>
<td>1046.5517</td>
<td>514.7742</td>
<td>L</td>
<td>691.3624</td>
<td>336.1834</td>
<td>674.3589</td>
<td>337.6721</td>
<td>673.3529</td>
<td>337.1801</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1175.5943</td>
<td>588.3008</td>
<td>1175.5943</td>
<td>579.2955</td>
<td>E</td>
<td>578.2764</td>
<td>289.6433</td>
<td>561.2268</td>
<td>281.1300</td>
<td>560.2083</td>
<td>280.6380</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1312.6532</td>
<td>656.8302</td>
<td>1312.6532</td>
<td>647.8230</td>
<td>H</td>
<td>449.2368</td>
<td>225.1220</td>
<td>432.2102</td>
<td>216.6088</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1449.7121</td>
<td>725.3597</td>
<td>1449.7121</td>
<td>716.3544</td>
<td>R</td>
<td>312.1779</td>
<td>156.9296</td>
<td>295.1213</td>
<td>148.0793</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1586.7702</td>
<td>796.4136</td>
<td>1586.7702</td>
<td>787.4083</td>
<td>R</td>
<td>175.1150</td>
<td>85.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VQAAQSEAKVVSQYHELVVQAR
MS/MS Fragmentation of FPAGGKMSQYLENMK
Found in F223V0, NADH-cytochrome b5 reductase 3 (Fragment) OS=Mus musculus GN=Cybbr3 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da
Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide M(odal): 1798.85066
Fixed modifications: MMTS (C) (apply to specified residues or terminal only)
Variable modifications:
K : m.e.C02 (H), with neutral loss 48.0300
Score: 14 Expect: 0.10
Matches: 14/150 fragment ions using 90 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y++</th>
<th>b+</th>
<th>y0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>237.8520</td>
<td>123.0679</td>
<td></td>
<td></td>
<td>P</td>
<td>1595.7556</td>
<td>798.3815</td>
<td>1578.7291</td>
<td>789.8662</td>
</tr>
<tr>
<td>3</td>
<td>215.1636</td>
<td>158.5664</td>
<td></td>
<td></td>
<td>A</td>
<td>1498.7029</td>
<td>749.0251</td>
<td>1481.0763</td>
<td>741.3418</td>
</tr>
<tr>
<td>4</td>
<td>373.1870</td>
<td>187.0372</td>
<td></td>
<td></td>
<td>G</td>
<td>1427.6667</td>
<td>714.3365</td>
<td>1410.6392</td>
<td>705.8252</td>
</tr>
<tr>
<td>5</td>
<td>430.2085</td>
<td>215.6079</td>
<td></td>
<td></td>
<td>G</td>
<td>1370.6443</td>
<td>685.3828</td>
<td>1355.6177</td>
<td>677.3125</td>
</tr>
<tr>
<td>6</td>
<td>690.3140</td>
<td>300.6607</td>
<td>583.2875</td>
<td>292.1474</td>
<td>K</td>
<td>1318.6228</td>
<td>657.3130</td>
<td>1296.6563</td>
<td>648.8018</td>
</tr>
<tr>
<td>7</td>
<td>731.3545</td>
<td>366.1809</td>
<td>714.3280</td>
<td>357.6676</td>
<td>M</td>
<td>1143.5173</td>
<td>572.2623</td>
<td>1126.4907</td>
<td>563.7490</td>
</tr>
<tr>
<td>8</td>
<td>818.3865</td>
<td>409.6969</td>
<td>801.3600</td>
<td>401.1836</td>
<td>S</td>
<td>1012.4768</td>
<td>506.7420</td>
<td>995.4503</td>
<td>498.2288</td>
</tr>
<tr>
<td>9</td>
<td>946.4443</td>
<td>471.7262</td>
<td>920.4186</td>
<td>465.2129</td>
<td>Q</td>
<td>925.4448</td>
<td>461.2280</td>
<td>908.4182</td>
<td>454.7128</td>
</tr>
<tr>
<td>11</td>
<td>1222.5923</td>
<td>611.7999</td>
<td>1205.5660</td>
<td>602.2866</td>
<td>1204.5319</td>
<td>602.7946</td>
<td>L</td>
<td>634.3259</td>
<td>317.6667</td>
</tr>
<tr>
<td>12</td>
<td>1331.6381</td>
<td>676.3212</td>
<td>1334.6086</td>
<td>667.8079</td>
<td>1333.6245</td>
<td>667.3130</td>
<td>F</td>
<td>521.2388</td>
<td>261.1250</td>
</tr>
<tr>
<td>13</td>
<td>1465.6780</td>
<td>733.3427</td>
<td>1448.6515</td>
<td>724.8294</td>
<td>1447.6675</td>
<td>724.3374</td>
<td>N</td>
<td>392.1962</td>
<td>196.6017</td>
</tr>
<tr>
<td>14</td>
<td>1596.7185</td>
<td>798.8629</td>
<td>1579.9290</td>
<td>790.3496</td>
<td>1578.7079</td>
<td>789.8576</td>
<td>M</td>
<td>278.1533</td>
<td>139.5803</td>
</tr>
<tr>
<td>15</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.0863</td>
<td>65.5468</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>120.0863</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of STPAITLENPDIKYPLR
Found in F223V0, NADH-cytochrome b5 reductase 3 (Fragment) OS=Mus musculus ON=Cyb5r3 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or Plot from: 200 to 2000 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 2013.0418
Fixed modifications: MNTS (C) apply to specified residues or termini only
Variable modifications: K13: m+2 (K), with neutral loss 44.0560

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>Seq</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>182.0370</td>
<td>95.0171</td>
<td>171.0764</td>
<td>86.0418</td>
<td>T</td>
<td>1833.0273</td>
<td>914.0173</td>
</tr>
<tr>
<td>3</td>
<td>286.1397</td>
<td>143.5753</td>
<td>268.1292</td>
<td>134.5682</td>
<td>P</td>
<td>1781.9756</td>
<td>881.4934</td>
</tr>
<tr>
<td>4</td>
<td>357.1769</td>
<td>179.0641</td>
<td>339.1665</td>
<td>170.0689</td>
<td>A</td>
<td>1684.9260</td>
<td>842.9671</td>
</tr>
<tr>
<td>5</td>
<td>470.2609</td>
<td>235.6241</td>
<td>452.2504</td>
<td>226.6288</td>
<td>I</td>
<td>1613.8897</td>
<td>807.4485</td>
</tr>
<tr>
<td>6</td>
<td>571.1506</td>
<td>286.1579</td>
<td>553.1300</td>
<td>277.1327</td>
<td>T</td>
<td>1580.8057</td>
<td>750.9065</td>
</tr>
<tr>
<td>7</td>
<td>684.3927</td>
<td>342.7000</td>
<td>666.3821</td>
<td>333.8947</td>
<td>L</td>
<td>1399.7380</td>
<td>700.3826</td>
</tr>
<tr>
<td>8</td>
<td>813.5333</td>
<td>407.2213</td>
<td>795.5237</td>
<td>398.2160</td>
<td>E</td>
<td>1286.6739</td>
<td>643.8406</td>
</tr>
<tr>
<td>9</td>
<td>927.4762</td>
<td>463.2427</td>
<td>910.4518</td>
<td>452.2374</td>
<td>N</td>
<td>1157.6313</td>
<td>579.3193</td>
</tr>
<tr>
<td>10</td>
<td>1024.5310</td>
<td>512.7691</td>
<td>1007.5044</td>
<td>504.2558</td>
<td>P</td>
<td>1065.3884</td>
<td>552.2978</td>
</tr>
<tr>
<td>11</td>
<td>1139.5537</td>
<td>570.2826</td>
<td>1122.5313</td>
<td>561.7693</td>
<td>L</td>
<td>946.5356</td>
<td>473.7713</td>
</tr>
<tr>
<td>12</td>
<td>1252.6420</td>
<td>626.8426</td>
<td>1235.6164</td>
<td>618.3113</td>
<td>I</td>
<td>831.1087</td>
<td>416.2580</td>
</tr>
<tr>
<td>13</td>
<td>1482.7473</td>
<td>711.8774</td>
<td>1465.7209</td>
<td>703.3641</td>
<td>K</td>
<td>718.4246</td>
<td>359.7160</td>
</tr>
<tr>
<td>14</td>
<td>1585.8188</td>
<td>799.4090</td>
<td>1568.7843</td>
<td>781.8585</td>
<td>Y</td>
<td>548.3191</td>
<td>274.6032</td>
</tr>
<tr>
<td>15</td>
<td>1682.8656</td>
<td>841.9154</td>
<td>1665.8370</td>
<td>833.4222</td>
<td>F</td>
<td>385.2538</td>
<td>192.1315</td>
</tr>
<tr>
<td>16</td>
<td>1795.9476</td>
<td>908.4775</td>
<td>1778.9211</td>
<td>890.6462</td>
<td>L</td>
<td>288.2050</td>
<td>144.6031</td>
</tr>
<tr>
<td>17</td>
<td>1769.9894</td>
<td>918.4775</td>
<td>1778.9211</td>
<td>890.6462</td>
<td>L</td>
<td>288.2050</td>
<td>144.6031</td>
</tr>
</tbody>
</table>

STPAITLENPDIKYPLR
MS/MS Fragmentation of EAQDKVAVLSQNR

Found in F27459, Protein Acet3 OS=Mus musculus GN=Acet3 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>Seq.</th>
<th>y</th>
<th>y+2</th>
<th>y+4</th>
<th>y+6</th>
<th>y+8</th>
<th>y+10</th>
<th>y+12</th>
<th>y+14</th>
<th>y+16</th>
<th>y+18</th>
<th>y+20</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>137.7347</td>
<td>83.7350</td>
<td>133.7121</td>
<td>67.3397</td>
<td>135.7281</td>
<td>676.8677</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>129.7015</td>
<td>65.3544</td>
<td>132.6760</td>
<td>64.1841</td>
<td>128.6910</td>
<td>641.3491</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>117.6490</td>
<td>59.3231</td>
<td>114.6164</td>
<td>57.7118</td>
<td>113.6324</td>
<td>577.3198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>105.6106</td>
<td>52.8016</td>
<td>103.5893</td>
<td>52.1084</td>
<td>103.5853</td>
<td>519.8064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>886.5015</td>
<td>443.7289</td>
<td>869.4939</td>
<td>435.2156</td>
<td>868.3999</td>
<td>434.7536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>787.4421</td>
<td>394.2247</td>
<td>770.4153</td>
<td>383.7114</td>
<td>769.4315</td>
<td>383.2194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>716.4059</td>
<td>358.7061</td>
<td>699.3784</td>
<td>350.1928</td>
<td>698.3944</td>
<td>349.7008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>617.3665</td>
<td>309.1719</td>
<td>600.3100</td>
<td>300.6583</td>
<td>599.3269</td>
<td>300.1669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>564.3525</td>
<td>252.0299</td>
<td>487.2259</td>
<td>244.1166</td>
<td>486.2419</td>
<td>243.6246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>417.2205</td>
<td>209.1139</td>
<td>400.1939</td>
<td>200.6006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1353</td>
<td>134.5713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0923</td>
<td>78.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide (Otttalic): 1562.7638

Fixed modifications: MET5 (C) apply to specified residues or termini only

Variable modifications:

NS: nle_COO (R), with neutral loss 40.0080

Inva Score: 52 Expect: 0.00047

Matches: 17/126 Fragment ions using 27 most intense peaks (del)}
<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>b++</th>
<th>b++</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0446</td>
<td>36.5293</td>
<td>101.0451</td>
<td>183.0764</td>
<td>92.0418</td>
<td>2598.2623</td>
<td>1394.1348</td>
<td>2375.2337</td>
<td>1186.6231</td>
<td>2371.2517</td>
<td>1116.1521</td>
</tr>
<tr>
<td>2</td>
<td>201.0870</td>
<td>101.0451</td>
<td>320.1353</td>
<td>160.5715</td>
<td>2260.2197</td>
<td>1130.6135</td>
<td>2243.1931</td>
<td>1122.1002</td>
<td>2242.2091</td>
<td>1121.6082</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>338.1459</td>
<td>167.5676</td>
<td>517.6985</td>
<td>278.3493</td>
<td>320.1353</td>
<td>160.5715</td>
<td>2260.2197</td>
<td>1130.6135</td>
<td>2243.1931</td>
<td>1122.1002</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>409.1850</td>
<td>205.0951</td>
<td>391.1724</td>
<td>196.0899</td>
<td>2123.1808</td>
<td>1062.0840</td>
<td>2106.1342</td>
<td>1053.5707</td>
<td>2105.3002</td>
<td>1053.0787</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>537.2416</td>
<td>269.1244</td>
<td>520.2150</td>
<td>260.6112</td>
<td>519.2310</td>
<td>260.6112</td>
<td>519.2310</td>
<td>260.6112</td>
<td>519.2310</td>
<td>260.6112</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>707.2571</td>
<td>254.1772</td>
<td>590.3206</td>
<td>345.6591</td>
<td>689.5366</td>
<td>345.1719</td>
<td>590.3206</td>
<td>345.6591</td>
<td>689.5366</td>
<td>345.1719</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>773.2842</td>
<td>339.6923</td>
<td>761.3577</td>
<td>381.1225</td>
<td>760.3777</td>
<td>380.6062</td>
<td>761.3577</td>
<td>381.1225</td>
<td>760.3777</td>
<td>380.6062</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>825.4037</td>
<td>418.2065</td>
<td>813.3791</td>
<td>409.6932</td>
<td>813.3951</td>
<td>409.2012</td>
<td>825.4037</td>
<td>418.2065</td>
<td>813.3791</td>
<td>409.6932</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>917.6466</td>
<td>456.7835</td>
<td>955.4381</td>
<td>472.2227</td>
<td>954.4540</td>
<td>477.7307</td>
<td>917.6466</td>
<td>456.7835</td>
<td>955.4381</td>
<td>472.2227</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1019.5330</td>
<td>560.2701</td>
<td>1101.5255</td>
<td>551.2649</td>
<td>551.2649</td>
<td>551.2649</td>
<td>1019.5330</td>
<td>560.2701</td>
<td>1101.5255</td>
<td>551.2649</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1125.5690</td>
<td>617.7856</td>
<td>1217.5354</td>
<td>609.2705</td>
<td>1216.5496</td>
<td>608.7783</td>
<td>1125.5690</td>
<td>617.7856</td>
<td>1217.5354</td>
<td>609.2705</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1362.8549</td>
<td>881.8817</td>
<td>1454.6282</td>
<td>673.3170</td>
<td>1344.5444</td>
<td>672.8232</td>
<td>1362.8549</td>
<td>881.8817</td>
<td>1454.6282</td>
<td>673.3170</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1491.6797</td>
<td>766.5325</td>
<td>1547.6140</td>
<td>737.8391</td>
<td>1473.8780</td>
<td>737.3471</td>
<td>1491.6797</td>
<td>766.5325</td>
<td>1547.6140</td>
<td>737.8391</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1904.7816</td>
<td>802.5964</td>
<td>2177.7500</td>
<td>961.3011</td>
<td>2186.7710</td>
<td>953.8851</td>
<td>1904.7816</td>
<td>802.5964</td>
<td>2177.7500</td>
<td>961.3011</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1800.9028</td>
<td>908.9559</td>
<td>2078.8162</td>
<td>892.4417</td>
<td>2072.8092</td>
<td>891.9497</td>
<td>1800.9028</td>
<td>908.9559</td>
<td>2078.8162</td>
<td>892.4417</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1899.9715</td>
<td>956.8690</td>
<td>2182.9446</td>
<td>941.9780</td>
<td>1881.9567</td>
<td>941.4839</td>
<td>1899.9715</td>
<td>956.8690</td>
<td>2182.9446</td>
<td>941.9780</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2013.0843</td>
<td>1007.0313</td>
<td>2199.0828</td>
<td>999.5810</td>
<td>1995.0447</td>
<td>998.0026</td>
<td>2013.0843</td>
<td>1007.0313</td>
<td>2199.0828</td>
<td>999.5810</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2112.1227</td>
<td>1056.5955</td>
<td>2309.2779</td>
<td>1048.0322</td>
<td>2204.1133</td>
<td>1047.3602</td>
<td>2112.1227</td>
<td>1056.5955</td>
<td>2309.2779</td>
<td>1048.0322</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2215.8811</td>
<td>1106.0841</td>
<td>2423.1291</td>
<td>1091.5822</td>
<td>2318.1407</td>
<td>1090.7612</td>
<td>2215.8811</td>
<td>1106.0841</td>
<td>2423.1291</td>
<td>1091.5822</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2386.1877</td>
<td>1143.5975</td>
<td>2569.1612</td>
<td>1135.0546</td>
<td>2468.1773</td>
<td>1134.5952</td>
<td>2386.1877</td>
<td>1143.5975</td>
<td>2569.1612</td>
<td>1135.0546</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2568.1350</td>
<td>1217.3714</td>
<td>2732.3225</td>
<td>1204.8592</td>
<td>2634.3704</td>
<td>1203.2972</td>
<td>2568.1350</td>
<td>1217.3714</td>
<td>2732.3225</td>
<td>1204.8592</td>
<td></td>
</tr>
</tbody>
</table>

MM/MS Fragmentation of AEHAQKAGHFDFKEIVPVLVSSR

Found in P22469, Protein Ace3 Oryzias latipes moribund G5=Ace3 PE=2 SV=1

Fixed modifications: Met (C) (apply to specified residues or terminal only)

Variable modifications:

<table>
<thead>
<tr>
<th>Residue</th>
<th>AEHAQKAGHFDFKEIVPVLVSSR</th>
<th>A</th>
<th>AEHAQKAGHFDFKEIVPVLVSSR</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>100%</td>
<td>A</td>
<td>100%</td>
<td>A</td>
</tr>
</tbody>
</table>

Ions Searched: 77.69-77.699 with neutral loss 43.2946

Matches: 45/240 fragment ions using 86 most intense peaks

Table:

- **Seq.** column lists the sequence of the fragment.
- **y** and **y++** columns represent the fragment's charge states.
- The table includes a selection of fragment ions with their respective charges and sequence.

Legend:

- **AEHAQKAGHFDFKEIVPVLVSSR** is the sequence of the protein.
- **Ions Searched** specifies the range of ions searched.
- **Matches** indicates the number of matches found.

Additional notes:

- The search parameters include fixed modifications Met (C) and variable modifications.
- The table provides a detailed view of the fragment ions, including their charges and sequence.
MS/MS Fragmentation of DVFTKGYGFGLIK
Found in F2Z71, Voltage-dependent anion selective channel protein 1 OS=Mus musculus GN=Vdac1 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide (m/z): 1289.7766
Fixed modifications: LYS (K) (apply to specified residues or termini only)
Variable modifications:
K5 (Cys) oxidized (K), with neutral loss 41.9948
Ions Score: 50 Expect: 0.592
Matches: 31/195 fragment ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b4</th>
<th>b6</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5153</td>
<td>D</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>362.1710</td>
<td>181.5892</td>
<td>344.1605</td>
<td>172.5839</td>
<td>F</td>
<td>1172.6987</td>
<td>636.8520</td>
<td>1255.8721</td>
<td>628.3397</td>
<td>1254.6881</td>
<td>627.8477</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>465.2187</td>
<td>232.1130</td>
<td>443.2082</td>
<td>223.1077</td>
<td>T</td>
<td>1113.6283</td>
<td>563.3188</td>
<td>1108.6037</td>
<td>554.3055</td>
<td>1107.6197</td>
<td>534.3135</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>633.3243</td>
<td>317.1658</td>
<td>616.2977</td>
<td>308.6525</td>
<td>K</td>
<td>1024.5826</td>
<td>512.7949</td>
<td>1007.5560</td>
<td>504.2817</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>690.3457</td>
<td>345.6785</td>
<td>673.3195</td>
<td>337.1612</td>
<td>G</td>
<td>858.4471</td>
<td>427.7422</td>
<td>837.4505</td>
<td>419.2289</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>853.4090</td>
<td>427.2082</td>
<td>836.3821</td>
<td>418.6949</td>
<td>Y</td>
<td>787.4556</td>
<td>399.2514</td>
<td>780.4291</td>
<td>390.7182</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>910.4305</td>
<td>455.7189</td>
<td>893.4040</td>
<td>447.2056</td>
<td>V</td>
<td>634.3933</td>
<td>317.6998</td>
<td>617.3657</td>
<td>309.1865</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1057.4938</td>
<td>528.2531</td>
<td>1040.4724</td>
<td>512.7986</td>
<td>G</td>
<td>577.3708</td>
<td>289.1890</td>
<td>560.2443</td>
<td>280.6758</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1114.5204</td>
<td>557.7638</td>
<td>1097.4938</td>
<td>549.2066</td>
<td>F</td>
<td>548.7586</td>
<td>298.1924</td>
<td>531.2758</td>
<td>270.1416</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1227.6045</td>
<td>614.3059</td>
<td>1210.5779</td>
<td>605.7962</td>
<td>L</td>
<td>430.3024</td>
<td>215.6548</td>
<td>413.2758</td>
<td>207.1416</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1340.6885</td>
<td>670.8479</td>
<td>1323.9620</td>
<td>662.3346</td>
<td>I</td>
<td>260.1869</td>
<td>120.6021</td>
<td>243.1703</td>
<td>122.0988</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(K)</td>
<td>147.1126</td>
<td>74.0600</td>
<td>130.0863</td>
<td>53.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LTFDSSFSPNTGKK
Found in F2Z471, Voltage-dependent anion-selective channel protein 1 OS=Mus musculus GN=Vdac1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 1610.7870
Fixed modifications: Lys8 (C) (apply to specified residues or terminal only)
Variable modifications:
K3 : m/z 0.02 (E), with neutral loss 42.0186
Ion Score: 45 Expect: 0.00361
Matches: 21/100 fragment ions using 26 most intense peaks (hla)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>y0</th>
<th>y+</th>
<th>y++</th>
<th>y++</th>
<th>y+++</th>
<th>y0</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>215.1590</td>
<td>108.0731</td>
<td>197.1252</td>
<td>99.0679</td>
<td>T</td>
<td>1457.6070</td>
<td>729.3490</td>
<td>1440.6642</td>
<td>720.3337</td>
<td>1439.6801</td>
<td>720.3437</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>362.2074</td>
<td>181.6074</td>
<td>344.1969</td>
<td>172.6021</td>
<td>F</td>
<td>1358.6430</td>
<td>678.8231</td>
<td>1339.6165</td>
<td>670.3119</td>
<td>1338.6323</td>
<td>669.8199</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>417.2344</td>
<td>208.1190</td>
<td>459.2228</td>
<td>230.1153</td>
<td>D</td>
<td>1369.5746</td>
<td>603.2909</td>
<td>1192.3481</td>
<td>596.7777</td>
<td>1191.3640</td>
<td>596.8257</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>564.2664</td>
<td>282.6268</td>
<td>546.2558</td>
<td>272.6216</td>
<td>S</td>
<td>1694.5477</td>
<td>847.7775</td>
<td>1077.5201</td>
<td>539.2642</td>
<td>1076.5371</td>
<td>538.7722</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>651.2984</td>
<td>326.1529</td>
<td>633.2879</td>
<td>317.1476</td>
<td>S</td>
<td>1907.5316</td>
<td>904.2615</td>
<td>990.4891</td>
<td>495.7482</td>
<td>989.5021</td>
<td>495.2562</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>793.3568</td>
<td>396.6871</td>
<td>760.3563</td>
<td>390.6818</td>
<td>F</td>
<td>2208.4436</td>
<td>1061.4745</td>
<td>901.4571</td>
<td>452.2222</td>
<td>902.4730</td>
<td>451.7402</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>982.4516</td>
<td>491.7295</td>
<td>964.4411</td>
<td>482.7242</td>
<td>P</td>
<td>4686.3387</td>
<td>345.6952</td>
<td>669.3566</td>
<td>355.1819</td>
<td>668.3726</td>
<td>334.6899</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1096.4946</td>
<td>548.7509</td>
<td>1079.4804</td>
<td>530.2576</td>
<td>T</td>
<td>6788.4840</td>
<td>359.7456</td>
<td>359.3064</td>
<td>259.1688</td>
<td>357.3039</td>
<td>258.6556</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1197.5422</td>
<td>590.2748</td>
<td>1180.5157</td>
<td>590.7615</td>
<td>N</td>
<td>589.3504</td>
<td>259.1688</td>
<td>259.1688</td>
<td>159.1128</td>
<td>257.2312</td>
<td>159.1128</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1234.5387</td>
<td>627.7835</td>
<td>1217.5372</td>
<td>619.2722</td>
<td>G</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>356.2132</td>
<td>179.1103</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1424.6692</td>
<td>712.8383</td>
<td>1407.6427</td>
<td>704.3230</td>
<td>K</td>
<td>317.2163</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>301.1918</td>
<td>150.5995</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>147.1128</td>
<td>74.0660</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELQAAGKSPEDLEK

MS/MS Fragmentation of ELQAAGKSPEDLEK
Found in F68AC3, Glucose-6-phosphate isomerase O8=Mus musculus GN=Gm1846 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1592.7628
Fixed modifications: MG73 (C) apply to specified residues or terminal only
Variable modifications:
K7 : N-terminal (K), with neutral loss 43.0088
Ions Saved: 45 Exponent: 0.0000
Matches : 26/150 fragment ions using 87 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>h</th>
<th>h++</th>
<th>i</th>
<th>y</th>
<th>y++</th>
<th>y2</th>
<th>y++</th>
<th>y3</th>
<th>y++</th>
<th>y4</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5266</td>
<td>112.0399</td>
<td>56.5233</td>
<td>E</td>
<td>1427.7377</td>
<td>714.3725</td>
<td>1410.7111</td>
<td>705.8992</td>
<td>1409.7271</td>
<td>705.8672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1239</td>
<td>121.0606</td>
<td>225.1234</td>
<td>113.0653</td>
<td>L</td>
<td>3131.6536</td>
<td>657.8304</td>
<td>1297.6370</td>
<td>649.3172</td>
<td>1295.6430</td>
<td>648.8251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>371.1925</td>
<td>186.0969</td>
<td>354.1660</td>
<td>177.5866</td>
<td>Q</td>
<td>1186.3956</td>
<td>593.3011</td>
<td>1169.5685</td>
<td>585.2879</td>
<td>1168.5844</td>
<td>584.7959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>442.2296</td>
<td>221.6185</td>
<td>425.2181</td>
<td>213.1052</td>
<td>A</td>
<td>1196.3956</td>
<td>593.3011</td>
<td>1169.5685</td>
<td>585.2879</td>
<td>1168.5844</td>
<td>584.7959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>513.2667</td>
<td>257.1370</td>
<td>496.2402</td>
<td>248.6237</td>
<td>A</td>
<td>1115.5379</td>
<td>558.2826</td>
<td>1098.5313</td>
<td>549.7693</td>
<td>1097.5473</td>
<td>549.2772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>570.2882</td>
<td>285.6477</td>
<td>553.2681</td>
<td>277.1345</td>
<td>G</td>
<td>1944.3208</td>
<td>952.7840</td>
<td>1927.4942</td>
<td>944.2508</td>
<td>1926.5012</td>
<td>943.7587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>740.3937</td>
<td>370.7005</td>
<td>723.3762</td>
<td>362.1872</td>
<td>K</td>
<td>987.4993</td>
<td>494.2523</td>
<td>970.4728</td>
<td>485.7400</td>
<td>969.4888</td>
<td>485.2480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>927.4259</td>
<td>461.2165</td>
<td>910.3992</td>
<td>457.0732</td>
<td>S</td>
<td>817.3938</td>
<td>409.2005</td>
<td>800.6767</td>
<td>390.6731</td>
<td>790.3523</td>
<td>400.1951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>924.4785</td>
<td>462.7429</td>
<td>907.4520</td>
<td>454.2296</td>
<td>P</td>
<td>738.3618</td>
<td>365.6842</td>
<td>713.3532</td>
<td>357.1712</td>
<td>712.3512</td>
<td>356.6792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1035.5211</td>
<td>517.2626</td>
<td>1018.4946</td>
<td>508.7509</td>
<td>E</td>
<td>833.3090</td>
<td>317.1581</td>
<td>816.2824</td>
<td>308.6449</td>
<td>815.2944</td>
<td>308.1529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1188.5481</td>
<td>594.7777</td>
<td>1171.5213</td>
<td>576.2644</td>
<td>D</td>
<td>984.2669</td>
<td>522.6368</td>
<td>967.2399</td>
<td>514.1236</td>
<td>965.2558</td>
<td>513.6318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1281.6321</td>
<td>641.3197</td>
<td>1264.6056</td>
<td>632.6064</td>
<td>L</td>
<td>1089.2393</td>
<td>555.1224</td>
<td>1072.2129</td>
<td>546.6101</td>
<td>1071.2229</td>
<td>546.1181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1410.6747</td>
<td>705.8410</td>
<td>1393.6482</td>
<td>697.3277</td>
<td>F</td>
<td>776.1554</td>
<td>338.5813</td>
<td>759.1386</td>
<td>329.0631</td>
<td>758.1386</td>
<td>329.0631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KFLQPGSQR

Monoisotopic mass of neutral peptide Mr(calc): 1145.5829
Fixed modifications: MMIS (C) (apply to specified residues or termini only)
Variable modifications:
K : miss_COO (K), with neutral loss 43.0088
Ions Score: 28 Expect: 0.16
Matches : 15/60 fragment ions using 25 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b⁺</th>
<th>b⁻</th>
<th>b⁺⁺</th>
<th>y</th>
<th>y⁺⁺</th>
<th>y⁻</th>
<th>y⁺⁺</th>
<th>y⁻⁻</th>
<th>y⁻⁺</th>
<th>y⁻⁺⁺</th>
<th>y⁻⁻⁻</th>
<th>y⁻⁻⁺</th>
<th>y⁻⁻⁺⁺</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>301.1547</td>
<td>151.0810</td>
<td>F</td>
<td>932.4948</td>
<td>466.7513</td>
<td>915.4683</td>
<td>458.2378</td>
<td>914.4843</td>
<td>457.7458</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>431.2653</td>
<td>216.1363</td>
<td>414.2387</td>
<td>207.6230</td>
<td>L</td>
<td>785.4264</td>
<td>393.2169</td>
<td>768.3999</td>
<td>384.7036</td>
<td>767.4159</td>
<td>384.2116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>559.3239</td>
<td>280.1656</td>
<td>542.2973</td>
<td>271.6523</td>
<td>Q</td>
<td>672.3424</td>
<td>336.6748</td>
<td>655.3158</td>
<td>328.1615</td>
<td>654.3318</td>
<td>327.6695</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>656.3766</td>
<td>328.6920</td>
<td>639.3501</td>
<td>320.1787</td>
<td>P</td>
<td>544.3838</td>
<td>272.6455</td>
<td>527.2572</td>
<td>264.1323</td>
<td>526.2732</td>
<td>263.6402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>928.4887</td>
<td>464.7480</td>
<td>911.4621</td>
<td>456.2347</td>
<td>Q</td>
<td>910.4781</td>
<td>455.7427</td>
<td>303.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R 175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LYKASPDLVPMGEWTAR

Found in: FvSP9, AP-2 complex subunit alpha-1 (Fragment) OS=Mus musculus GN=Ap2a1 PE=4 SV=1

Close mouse within plot area to zoom in by factor of two about that point.

Or, Plot from 200 to 1900 Da Full range.

Label all possible matches Label matches used for scoring

Noncovalent mass of neutral peptide Mr(mDa): 2018.971

Fixed modifications: M(8) S(5) (apply to specified residues or terminals only)

Variable modifications:
- K(6) CO2 (with mutual loss 44.013)

Image Score: 17 **Expect:** 0.0012 **Rank:** 47

Table: 40-176 fragment (core using 105 most intense peaks)[link]

#	b1	b**	b***	b#	b##	Seq.	y	y**	y***	y##	y#		
1	114.091	57.5493	L	Y	1862.9105	0391.8589	1885.8840	923.4155	1844.9000	229.9536			
2	277.1547	139.0810	K	1999.8472	850.4272	1682.8207	841.9149	1681.8367	844.4260				
3	147.2402	72.1337	430.2336	215.6205	A	1529.7417	765.3741	1512.7153	756.6612	1511.7311	756.3892		
4	518.2973	259.6523	501.2708	251.1300	S	1418.7646	729.8559	1441.6780	721.3427	1440.6940	720.8506		
6	702.3821	351.6947	685.3556	343.1814	684.3713	342.6994	D	1274.6198	657.8135	1257.5952	629.3003	1256.6092	628.8002
7	817.4098	409.2082	808.3285	490.6949	799.3989	409.2029	L	1359.5928	760.3001	1412.5665	757.7868	1414.5823	757.2948
8	936.4931	465.7022	913.4666	457.2359	912.4823	456.7449	V	1466.5688	823.7580	1509.4802	815.2448	1508.4982	814.7257
9	1025.5961	515.2844	1012.5350	506.7111	1011.5310	506.2791	Y	1584.6088	853.7580	1629.4802	815.2448	1628.4982	814.7257
10	1126.6143	563.8108	1109.5877	555.2973	1108.6079	554.8035	F	1647.6494	747.2425	1690.4138	645.7105	1692.4298	645.2185
11	1257.6548	629.3119	1240.6282	620.8178	1239.6442	620.3257	M	1798.6876	825.6974	1833.6361	417.1842	1832.7707	416.0922
12	1314.7022	657.8418	1297.6947	640.2832	1296.6657	648.8385	G	1819.7041	860.1770	1872.6320	851.6659	1871.6659	851.1719
14	1629.7981	815.4027	1612.7716	806.8984	1611.7876	806.3974	W	2058.8283	967.1452	2115.6256	958.6319	2116.6256	958.1452
15	1730.8458	865.9265	1713.8193	857.4133	1712.8353	856.9213	T	2147.8267	174.1055	2100.7772	165.9222	2101.7772	165.9222
16	1801.8829	901.4451	1784.8564	892.9318	1783.8724	892.4398	A	248.1561	123.9817	229.1295	115.0984	2	
17	175.1190	88.0683	155.0924	79.5468	1								
MS/MS Fragmentation of **LYKASPDLVPMPGEWTAR**

Found in FUSP9, AP-2 complex subunit alpha-1 (Fragment) OS=Mus musculus GN=Ap2a1 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point:

Or, Plot from 450 to 1900 Da Full range

Label all possible matches □ Label matches used for scoring □

Proteolytic enzyme of selected peptide Nt(cleak): Trypsin

Fixed modifications: MOWSEO □ (apply to specified residues or termini only)

Variable modifications:

K: □, □ □, □ □ with neutral loss 91.93225
Q1: □ Glutamine (Q) with neutral losses 0.0000 (shown in table), 0.0000

Int Score: 22 □ Expect: 0.70

Matches: 22/272 Fragment ions using 45 most intense peaks [help]

<table>
<thead>
<tr>
<th>d</th>
<th>b0</th>
<th>b00</th>
<th>b000</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y''''</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>53.2747</td>
<td>L</td>
<td>V</td>
<td>1876.9055</td>
<td>939.9564</td>
<td>1681.8789</td>
<td>931.4431</td>
</tr>
<tr>
<td>2</td>
<td>277.1547</td>
<td>139.0810</td>
<td>73.2747</td>
<td>224.1337</td>
<td>430.2336</td>
<td>215.6205</td>
<td>K</td>
<td>1715.8421</td>
<td>838.4247</td>
</tr>
<tr>
<td>3</td>
<td>447.2662</td>
<td>224.1337</td>
<td>430.2336</td>
<td>215.6205</td>
<td>151.2708</td>
<td>73.2747</td>
<td>A</td>
<td>1585.7366</td>
<td>773.3719</td>
</tr>
<tr>
<td>6</td>
<td>692.3821</td>
<td>351.6947</td>
<td>585.3566</td>
<td>343.1814</td>
<td>684.3715</td>
<td>342.6894</td>
<td>P</td>
<td>1387.6672</td>
<td>694.3374</td>
</tr>
<tr>
<td>7</td>
<td>781.4090</td>
<td>409.2083</td>
<td>800.3825</td>
<td>400.6949</td>
<td>799.3985</td>
<td>400.2029</td>
<td>D</td>
<td>1290.6147</td>
<td>645.8110</td>
</tr>
<tr>
<td>8</td>
<td>892.4001</td>
<td>457.7502</td>
<td>913.4666</td>
<td>457.2369</td>
<td>912.4823</td>
<td>456.7449</td>
<td>L</td>
<td>1175.3878</td>
<td>598.2975</td>
</tr>
<tr>
<td>9</td>
<td>1029.5051</td>
<td>515.2844</td>
<td>1012.5350</td>
<td>506.7711</td>
<td>1011.5210</td>
<td>506.2791</td>
<td>V</td>
<td>1062.5837</td>
<td>531.7555</td>
</tr>
<tr>
<td>10</td>
<td>1126.6143</td>
<td>563.8108</td>
<td>1109.5871</td>
<td>555.2975</td>
<td>1108.6037</td>
<td>554.8055</td>
<td>P</td>
<td>963.4633</td>
<td>482.2213</td>
</tr>
<tr>
<td>11</td>
<td>1237.6497</td>
<td>637.3285</td>
<td>1256.6311</td>
<td>628.1512</td>
<td>1255.6391</td>
<td>628.3232</td>
<td>M</td>
<td>866.3825</td>
<td>433.6949</td>
</tr>
<tr>
<td>12</td>
<td>1330.6721</td>
<td>665.3892</td>
<td>1313.6144</td>
<td>657.3259</td>
<td>1312.6606</td>
<td>656.8399</td>
<td>G</td>
<td>719.2471</td>
<td>360.1772</td>
</tr>
<tr>
<td>13</td>
<td>1459.7197</td>
<td>730.3603</td>
<td>1442.6872</td>
<td>721.8472</td>
<td>1441.7032</td>
<td>721.3552</td>
<td>E</td>
<td>662.3257</td>
<td>331.6665</td>
</tr>
<tr>
<td>14</td>
<td>1645.7981</td>
<td>823.4002</td>
<td>1628.7665</td>
<td>814.8689</td>
<td>1627.7825</td>
<td>814.3049</td>
<td>W</td>
<td>533.8383</td>
<td>267.1452</td>
</tr>
<tr>
<td>15</td>
<td>1746.8407</td>
<td>873.9240</td>
<td>1729.8142</td>
<td>865.4107</td>
<td>1728.8302</td>
<td>864.9187</td>
<td>T</td>
<td>347.2037</td>
<td>174.1035</td>
</tr>
<tr>
<td>16</td>
<td>1817.8779</td>
<td>909.4426</td>
<td>1800.8313</td>
<td>900.0203</td>
<td>1799.8673</td>
<td>900.4373</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
</tr>
<tr>
<td>17</td>
<td>178.1100</td>
<td>118.0631</td>
<td>158.0982</td>
<td>76.5498</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ISAYMKSSR

Found in F6WHQ7, Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstmu PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1100 Da Full range

Label all possible matches ⭕ Label matches used for scoring ⭕

Monoisotopic mass of neutral peptide Mr(calc): 1127.5281

Fixed modifications: MMTC (C) (apply to specified residues or termini only)

Variable modifications:

- K6 : m/z CO2 (H) with neutral loss 43.0090

Ions Score: 35 Expected: 0.0043

Matches to 10/82 fragment ions using 19 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>183.1128</td>
<td>92.0600</td>
<td>I</td>
<td>971.4615</td>
<td>486.2344</td>
<td>954.4349</td>
<td>477.7211</td>
<td>953.4509</td>
<td>477.2971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0853</td>
<td>254.1490</td>
<td>127.5786</td>
<td>A</td>
<td>884.4295</td>
<td>442.7184</td>
<td>867.4029</td>
<td>434.2051</td>
<td>866.4189</td>
<td>433.7131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>335.2238</td>
<td>167.6115</td>
<td>548.2537</td>
<td>274.6305</td>
<td>M</td>
<td>650.3290</td>
<td>325.6681</td>
<td>633.3025</td>
<td>317.1549</td>
<td>632.3185</td>
<td>316.6629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>566.2643</td>
<td>283.6358</td>
<td>719.3433</td>
<td>360.1753</td>
<td>K</td>
<td>319.2885</td>
<td>260.1479</td>
<td>502.2620</td>
<td>251.6346</td>
<td>501.2780</td>
<td>251.1426</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>736.3698</td>
<td>368.6886</td>
<td>718.3593</td>
<td>359.6833</td>
<td>K</td>
<td>349.1830</td>
<td>175.0951</td>
<td>332.1565</td>
<td>166.5819</td>
<td>331.1724</td>
<td>166.0899</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>823.4019</td>
<td>412.2064</td>
<td>806.3753</td>
<td>403.6913</td>
<td>S</td>
<td>349.1830</td>
<td>175.0951</td>
<td>332.1565</td>
<td>166.5819</td>
<td>331.1724</td>
<td>166.0899</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>910.4339</td>
<td>455.7206</td>
<td>893.4073</td>
<td>447.2073</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>175.1190</td>
<td>88.0631</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above represents the fragmentation pattern of ISAYMKSSR, showing the fragment ions produced from the peptide. Each row indicates a different fragment ion with its corresponding mass and sequence. The ions are identified based on their masses and are compared to the expected masses. The sequence I, S, A, Y, M, K, S, and R are highlighted to show the matches with the fragment ions.
MS/MS Fragmentation of ISAYMKSSR

Found in FoWHDQ7. Glutathione S-transferase Mu 1 (Fragment) OS=Mus musculus GN=Gstml PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1000 Da
Label all possible matches ○ Label matches used for scoring ○

![Graph showing MS/MS fragmentation of ISAYMKSSR](image)

Monoisotopic mass of neutral peptide Mr(calc): 1143.5220
Fixed modifications: NMT5 (C) (apply to specified residues or termini only)
Variable modifications:
- N5 : Oxidation (M), with neutral losses 0.00000 (shown in table), 61.9883
- K6 : m/s-CO2 (K), with neutral loss 45.0896
Ions Score: 50 **Expect:** 0.00022
Matches: 17/128 fragment ions using 27 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+++</th>
<th>b++</th>
<th>b*</th>
<th>b0</th>
<th>b++</th>
<th>Seq</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>S</td>
<td>987.4564</td>
<td>494.2318</td>
<td>970.4299</td>
<td>485.7186</td>
<td>969.4458</td>
<td>485.2266</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>272.1605</td>
<td>136.5839</td>
<td>254.1499</td>
<td>127.5786</td>
<td>A</td>
<td>900.4244</td>
<td>450.7158</td>
<td>883.3978</td>
<td>442.2026</td>
<td>882.4138</td>
<td>441.7105</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>582.2502</td>
<td>291.6232</td>
<td>564.2486</td>
<td>282.0280</td>
<td>M</td>
<td>666.3239</td>
<td>333.6656</td>
<td>649.2974</td>
<td>325.1523</td>
<td>648.3134</td>
<td>324.6603</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>752.3647</td>
<td>376.6800</td>
<td>735.3382</td>
<td>368.1727</td>
<td>K</td>
<td>519.2885</td>
<td>260.1479</td>
<td>502.2620</td>
<td>251.6346</td>
<td>501.2780</td>
<td>251.1426</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>839.3968</td>
<td>420.2020</td>
<td>822.3702</td>
<td>411.6887</td>
<td>S</td>
<td>349.1830</td>
<td>175.0951</td>
<td>332.1565</td>
<td>166.5810</td>
<td>331.1724</td>
<td>166.0893</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>926.4288</td>
<td>463.7180</td>
<td>909.4022</td>
<td>455.2048</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>245.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
STDEPSEKDALQPGR

MS/MS Fragmentation of **STDEPSEKDALQPGR**

Found in E6Y565, Fructose-1,6-bisphosphatase 1 (Fragment) OS=Mus musculus GN=Fbp1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or: [Full range]

Label all possible matches [Label matches used for scoring]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b''</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y''</th>
<th>y0</th>
<th>y0''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0267</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>189.0870</td>
<td>93.0471</td>
<td>171.0764</td>
<td>85.0418</td>
<td>I</td>
<td>1194.7500</td>
<td>792.8796</td>
<td>1167.7235</td>
<td>784.3624</td>
<td>1566.7394</td>
</tr>
<tr>
<td>3</td>
<td>304.1139</td>
<td>152.5606</td>
<td>286.1034</td>
<td>143.5533</td>
<td>D</td>
<td>1483.7023</td>
<td>742.3538</td>
<td>1466.6738</td>
<td>733.3415</td>
<td>1465.6918</td>
</tr>
<tr>
<td>4</td>
<td>432.1565</td>
<td>216.0781</td>
<td>415.1460</td>
<td>208.0976</td>
<td>F</td>
<td>1368.6754</td>
<td>684.8413</td>
<td>1351.6488</td>
<td>676.3281</td>
<td>1350.6648</td>
</tr>
<tr>
<td>5</td>
<td>530.2093</td>
<td>265.6083</td>
<td>512.1987</td>
<td>256.6030</td>
<td>P</td>
<td>1238.6250</td>
<td>620.3200</td>
<td>1222.6062</td>
<td>611.8068</td>
<td>1221.6222</td>
</tr>
<tr>
<td>6</td>
<td>617.2412</td>
<td>309.1243</td>
<td>599.2207</td>
<td>300.1190</td>
<td>S</td>
<td>1142.5000</td>
<td>571.7937</td>
<td>1125.5355</td>
<td>562.2604</td>
<td>1124.5695</td>
</tr>
<tr>
<td>7</td>
<td>746.2839</td>
<td>373.6456</td>
<td>728.2723</td>
<td>364.8402</td>
<td>E</td>
<td>1095.5480</td>
<td>528.2776</td>
<td>1081.5215</td>
<td>519.7644</td>
<td>1087.5224</td>
</tr>
<tr>
<td>8</td>
<td>916.3894</td>
<td>458.6998</td>
<td>899.3629</td>
<td>420.1851</td>
<td>K</td>
<td>926.5050</td>
<td>462.7563</td>
<td>909.4798</td>
<td>452.2431</td>
<td>908.4948</td>
</tr>
<tr>
<td>9</td>
<td>1051.4184</td>
<td>525.7118</td>
<td>1034.3898</td>
<td>507.6986</td>
<td>D</td>
<td>756.3999</td>
<td>378.7036</td>
<td>739.3753</td>
<td>370.1903</td>
<td>758.3893</td>
</tr>
<tr>
<td>10</td>
<td>1183.4575</td>
<td>591.7304</td>
<td>1165.4296</td>
<td>545.2171</td>
<td>A</td>
<td>641.3772</td>
<td>321.1901</td>
<td>624.3464</td>
<td>312.6768</td>
<td>624.3664</td>
</tr>
<tr>
<td>11</td>
<td>1233.5337</td>
<td>608.2724</td>
<td>1216.5110</td>
<td>599.3591</td>
<td>L</td>
<td>570.3358</td>
<td>285.6715</td>
<td>553.3093</td>
<td>277.1583</td>
<td>553.3093</td>
</tr>
<tr>
<td>12</td>
<td>1342.5961</td>
<td>673.3017</td>
<td>1324.5693</td>
<td>663.7884</td>
<td>Q</td>
<td>457.2518</td>
<td>229.1295</td>
<td>440.2252</td>
<td>220.6162</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1444.6489</td>
<td>729.8281</td>
<td>1423.6223</td>
<td>712.3148</td>
<td>P</td>
<td>326.1932</td>
<td>165.1002</td>
<td>312.1650</td>
<td>156.3870</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1497.6701</td>
<td>749.3388</td>
<td>1469.6434</td>
<td>740.8523</td>
<td>G</td>
<td>232.1404</td>
<td>115.5738</td>
<td>213.1139</td>
<td>108.6066</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>175.1180</td>
<td>88.0651</td>
<td>158.9224</td>
<td>76.5486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mn(calc): 1714.7666

Fixed modifications: **M** : C (apply to specified residues or termini only)

Variable modifications:

MS : **K** : **O** : [all] with neutral loss 43.0107

Intra Source: 80 Expect: 0.0010

Matches: 26/142 Fragment ion using 51 most intense peaks (calc: 158.0010)
AGGLATTGDKDILDIVPTEIHQK
MS/MS Fragmentation of IYESHVGISSHEGKIASYK

Found in F62HD8, 1,4-alpha-3-fucan-debranching enzyme O5-Mas musculus O6-Ob1 PE-4 SV-2

Click mouse within plot area to zoom in by factor of two about that point

Oc. (Plot from 200 to 1500 Da Full range)

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide Mz(calc): 2106.9893
Fixed modifications: M(=O) (apply to specified residues or termini only)
Variable modifications:
K14: m/z 162 (+1), with neutral loss 48.0658

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>m/z</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>1</td>
<td>V</td>
<td>2033.9927</td>
<td>1017.5000</td>
<td>2016.9661</td>
<td>1008.9667</td>
<td>2015.9021</td>
<td>1008.4647</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>277.1547</td>
<td>139.0810</td>
<td>Y</td>
<td>1870.9294</td>
<td>935.9683</td>
<td>1853.9208</td>
<td>927.4159</td>
<td>1852.9118</td>
<td>926.3660</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>406.1973</td>
<td>203.6023</td>
<td>E</td>
<td>1741.8088</td>
<td>871.4470</td>
<td>1724.8062</td>
<td>862.9388</td>
<td>1723.8762</td>
<td>862.4417</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>493.2295</td>
<td>247.1183</td>
<td>S</td>
<td>1654.8547</td>
<td>827.8310</td>
<td>1637.8328</td>
<td>819.3187</td>
<td>1636.8442</td>
<td>818.9275</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>630.2852</td>
<td>315.6477</td>
<td>H</td>
<td>1571.7109</td>
<td>789.4016</td>
<td>1554.7043</td>
<td>781.8883</td>
<td>1553.7843</td>
<td>781.3963</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>729.3566</td>
<td>365.1819</td>
<td>V</td>
<td>1488.7274</td>
<td>709.8673</td>
<td>1471.7309</td>
<td>701.3541</td>
<td>1469.7699</td>
<td>701.0021</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>786.3781</td>
<td>393.6927</td>
<td>G</td>
<td>1361.7060</td>
<td>681.3566</td>
<td>1344.6794</td>
<td>672.8433</td>
<td>1343.6954</td>
<td>672.3513</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>899.4621</td>
<td>450.2347</td>
<td>I</td>
<td>1231.6711</td>
<td>601.3566</td>
<td>1214.6474</td>
<td>593.8343</td>
<td>1213.6634</td>
<td>593.3403</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>986.4942</td>
<td>493.7507</td>
<td></td>
<td>1105.5195</td>
<td>581.2956</td>
<td>1088.5050</td>
<td>572.7828</td>
<td>1087.5349</td>
<td>572.3840</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1073.5262</td>
<td>537.2667</td>
<td></td>
<td>1053.5156</td>
<td>513.2615</td>
<td>1036.5010</td>
<td>505.7883</td>
<td>1035.5309</td>
<td>505.3903</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1210.5812</td>
<td>605.7962</td>
<td></td>
<td>1192.5745</td>
<td>596.7909</td>
<td>1175.5603</td>
<td>589.3082</td>
<td>1174.5893</td>
<td>588.9140</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1339.6277</td>
<td>670.3175</td>
<td></td>
<td>1321.6171</td>
<td>661.3122</td>
<td>1304.6035</td>
<td>657.1305</td>
<td>1303.6214</td>
<td>656.7362</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1396.6492</td>
<td>698.8282</td>
<td></td>
<td>1378.6386</td>
<td>689.8239</td>
<td>1361.6253</td>
<td>678.4413</td>
<td>1360.6432</td>
<td>678.0470</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1566.7547</td>
<td>783.8819</td>
<td></td>
<td>1548.7441</td>
<td>774.8757</td>
<td>1531.7303</td>
<td>763.3932</td>
<td>1530.7493</td>
<td>763.0050</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1679.8398</td>
<td>846.4239</td>
<td></td>
<td>1661.8292</td>
<td>831.4177</td>
<td>1644.8153</td>
<td>820.3357</td>
<td>1643.8343</td>
<td>819.9494</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1750.8735</td>
<td>875.9416</td>
<td></td>
<td>1732.8633</td>
<td>866.9363</td>
<td>1715.8494</td>
<td>855.4616</td>
<td>1714.8684</td>
<td>855.0753</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1837.9079</td>
<td>919.4575</td>
<td></td>
<td>1819.8973</td>
<td>909.4523</td>
<td>1792.8834</td>
<td>897.9777</td>
<td>1791.8923</td>
<td>897.5914</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the fragment ions and their corresponding m/z values. The intensity values indicate the relative abundance of each fragment.
MS/MS Fragmentation of AMVASGSELGKK

Found in F7BP55, Adenylate kinase 2, mitochondrial (Fragment) OS=Mus musculus GN=Ak2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1300 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1282.6176
Fixed modifications: MHTS (C) (apply to specified residues or termini only)
Variable modifications:
N/C : met_COO2 (K), with neutral loss 43.0058
Ions Score: 43 Xcorr: 0.0048
Matches: 17/96 fragment ions using 30 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^0</th>
<th>b^0^+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^+^+</th>
<th>y^0</th>
<th>y^0^+</th>
<th>y^0^0^+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>203.0849</td>
<td>102.0461</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>1148.5980</td>
<td>574.8026</td>
<td>1131.5714</td>
<td>566.2894</td>
<td>1130.5874</td>
<td>565.7973</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>362.1833</td>
<td>151.5803</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1617.5575</td>
<td>509.2824</td>
<td>1000.5310</td>
<td>500.7691</td>
<td>999.5469</td>
<td>500.2771</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>373.1904</td>
<td>187.0988</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>918.3891</td>
<td>459.7482</td>
<td>901.4625</td>
<td>451.2349</td>
<td>900.4785</td>
<td>450.7429</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>460.2224</td>
<td>230.6149</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>847.4520</td>
<td>424.2298</td>
<td>830.4254</td>
<td>415.7164</td>
<td>829.4414</td>
<td>415.2243</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>517.2439</td>
<td>259.1256</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>760.4199</td>
<td>380.7136</td>
<td>743.3034</td>
<td>372.2003</td>
<td>742.4094</td>
<td>371.7083</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>604.2759</td>
<td>302.6416</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>703.3985</td>
<td>352.2029</td>
<td>686.3719</td>
<td>343.6896</td>
<td>685.3879</td>
<td>343.1976</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>733.3185</td>
<td>367.1629</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>616.3665</td>
<td>308.6869</td>
<td>599.3399</td>
<td>300.1736</td>
<td>598.3559</td>
<td>299.6816</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>846.4026</td>
<td>423.7049</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>487.3239</td>
<td>244.1656</td>
<td>470.2973</td>
<td>235.6523</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>903.4240</td>
<td>452.2157</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1073.5290</td>
<td>537.2684</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>317.2183</td>
<td>159.1123</td>
<td>300.1018</td>
<td>150.5095</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVLLGPPGAGKGTQAPK

Found in **F7BP55**, Adenylate kinase 2, mitochondrial (Fragment) OS=Mus musculus GN=Ak2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or **Plot from** 200 to 1600 Da **Full range**
Label all possible matches § Label matches used for scoring ¶

<table>
<thead>
<tr>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b''''''</th>
<th>b''''''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5225</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>V</td>
<td>1332.8795</td>
<td>766.9433</td>
<td>1515.8530</td>
<td>258.4301</td>
<td>1514.8689</td>
<td>57.9381</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>284.1060</td>
<td>142.0031</td>
<td>L</td>
<td>1433.8111</td>
<td>717.4092</td>
<td>1416.7845</td>
<td>708.8059</td>
<td>1415.8065</td>
<td>708.4039</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>397.2809</td>
<td>199.1441</td>
<td>L</td>
<td>1281.7219</td>
<td>560.8572</td>
<td>1303.7005</td>
<td>652.3529</td>
<td>1320.7165</td>
<td>631.6619</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>454.3024</td>
<td>227.6548</td>
<td>G</td>
<td>1307.6620</td>
<td>504.3251</td>
<td>1190.6164</td>
<td>595.8118</td>
<td>1189.6224</td>
<td>595.3196</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>551.3552</td>
<td>276.1812</td>
<td>P</td>
<td>1150.6235</td>
<td>575.8144</td>
<td>1133.5905</td>
<td>567.3011</td>
<td>1132.6010</td>
<td>566.8091</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>648.4079</td>
<td>324.7076</td>
<td>P</td>
<td>1003.5687</td>
<td>527.2808</td>
<td>1036.5427</td>
<td>518.7747</td>
<td>1035.5582</td>
<td>518.2827</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>705.4924</td>
<td>353.2183</td>
<td>G</td>
<td>956.5169</td>
<td>478.7616</td>
<td>939.4894</td>
<td>470.3483</td>
<td>938.5054</td>
<td>469.7583</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>776.6665</td>
<td>588.7399</td>
<td>G</td>
<td>889.4945</td>
<td>450.2509</td>
<td>882.4080</td>
<td>441.7375</td>
<td>881.4389</td>
<td>441.2456</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>833.8480</td>
<td>417.2476</td>
<td>G</td>
<td>828.4574</td>
<td>414.7323</td>
<td>811.4308</td>
<td>406.2191</td>
<td>810.4469</td>
<td>405.7271</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1003.5935</td>
<td>502.3004</td>
<td>K</td>
<td>771.4359</td>
<td>386.2216</td>
<td>754.4084</td>
<td>377.7083</td>
<td>753.4254</td>
<td>377.2163</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1060.8104</td>
<td>530.8111</td>
<td>K</td>
<td>710.3884</td>
<td>360.1883</td>
<td>691.3594</td>
<td>352.6556</td>
<td>690.3392</td>
<td>352.1639</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1161.6624</td>
<td>581.3530</td>
<td>I</td>
<td>544.3089</td>
<td>272.6581</td>
<td>527.2824</td>
<td>264.1448</td>
<td>526.2984</td>
<td>263.6528</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1289.7212</td>
<td>645.3642</td>
<td>G</td>
<td>462.2613</td>
<td>222.1343</td>
<td>456.2437</td>
<td>213.7210</td>
<td>455.2550</td>
<td>213.2474</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1360.7585</td>
<td>680.8828</td>
<td>A</td>
<td>315.2927</td>
<td>158.1050</td>
<td>298.1761</td>
<td>149.5917</td>
<td>297.1761</td>
<td>149.1050</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1457.8111</td>
<td>729.4092</td>
<td>A</td>
<td>147.1128</td>
<td>74.0600</td>
<td>139.0863</td>
<td>65.5468</td>
<td>138.0920</td>
<td>65.0468</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1554.8636</td>
<td>778.4318</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **ALSTGEKGFGYK**

Found in **FBVNP3**, Peptidyl-prolyl cis-trans isomerase OS=Mus musculus GN=Gm5160 PE=3 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1400 Da Scale Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1242.6406

Fixed modifications: **NMTS (C)** (*apply to specified residues or termini only*)

Variable modifications:

- **K7:** **m7-CO2** (K), with neutral loss 43.9898

Tone Score: 21 Expect: 0.045

Matches: 9/204 fragment ions using 21 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y'''</th>
<th>y0</th>
<th>y0''</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1228.6208</td>
<td>614.8141</td>
<td>1211.5043</td>
<td>606.3008</td>
<td>1210.6103</td>
<td>605.8088</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>277.1605</td>
<td>136.5839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>1115.5368</td>
<td>558.2720</td>
<td>1098.5102</td>
<td>549.7587</td>
<td>1097.5282</td>
<td>549.2667</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>373.2082</td>
<td>187.1077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1028.5047</td>
<td>514.7560</td>
<td>1011.4782</td>
<td>506.2427</td>
<td>1010.4942</td>
<td>505.7507</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>430.2290</td>
<td>215.6185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>927.4572</td>
<td>464.2322</td>
<td>910.4305</td>
<td>455.7189</td>
<td>909.4465</td>
<td>455.2269</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>559.2722</td>
<td>280.1397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>870.4356</td>
<td>435.7214</td>
<td>853.4090</td>
<td>427.2082</td>
<td>852.4250</td>
<td>426.7162</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>729.3777</td>
<td>365.1925</td>
<td>712.3512</td>
<td>356.6792</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>786.3992</td>
<td>393.7032</td>
<td>769.3727</td>
<td>385.1900</td>
<td>768.3886</td>
<td>384.6980</td>
<td>G</td>
<td>571.2875</td>
<td>286.1474</td>
<td>554.2690</td>
<td>277.6341</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>933.4676</td>
<td>467.2357</td>
<td>916.4411</td>
<td>458.7262</td>
<td>915.4571</td>
<td>458.2322</td>
<td>G</td>
<td>514.2669</td>
<td>257.6366</td>
<td>497.2395</td>
<td>249.1234</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>990.4891</td>
<td>495.7482</td>
<td>973.4625</td>
<td>487.2349</td>
<td>972.4785</td>
<td>486.7429</td>
<td>G</td>
<td>367.1976</td>
<td>184.1024</td>
<td>350.1710</td>
<td>175.5892</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1153.5524</td>
<td>577.2798</td>
<td>1136.5259</td>
<td>568.7666</td>
<td>1135.5419</td>
<td>568.2746</td>
<td>Y</td>
<td>310.1761</td>
<td>155.5917</td>
<td>293.1496</td>
<td>147.0784</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TEWLDGKHVVFGK

Found in F8VPN3, Peptidyl-prolyl cis-trans isomerase OS=Mus musculus GN=0m5160 PE=3 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Platform from 200 to 1500 Da Full range

Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide M(calc): 1466.7666

**Fixed modifications: **NMT (C) (apply to specified residues or termini only)

Variable modifications:

- NW: mal-COOH (K), with neutral loss 41.01098

Ions Score: 96 Expect: 0.0016

Matches: 18/116 fragment ions using 34 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>m/z</th>
<th>b</th>
<th>b^+</th>
<th>b''</th>
<th>b''''</th>
<th>y</th>
<th>y^+</th>
<th>y''</th>
<th>y''''</th>
<th>y''''''</th>
<th>Seq</th>
<th>iD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0530</td>
<td>51.5521</td>
<td>40.0444</td>
<td>42.3253</td>
<td>T</td>
<td>I</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>417.1769</td>
<td>208.9021</td>
<td>399.1656</td>
<td>200.9368</td>
<td>W</td>
<td>1327.7157</td>
<td>664.3617</td>
<td>1310.6589</td>
<td>655.8482</td>
<td>1309.7052</td>
<td>655.3562</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>530.2609</td>
<td>265.6341</td>
<td>512.2504</td>
<td>256.6288</td>
<td>L</td>
<td>1141.6364</td>
<td>571.3218</td>
<td>1124.8099</td>
<td>562.8086</td>
<td>1123.6259</td>
<td>562.3168</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>653.2879</td>
<td>323.1478</td>
<td>627.1773</td>
<td>314.1423</td>
<td>D</td>
<td>1028.5524</td>
<td>514.7799</td>
<td>1011.5258</td>
<td>506.2685</td>
<td>1010.3418</td>
<td>505.7473</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>792.3593</td>
<td>351.6583</td>
<td>684.3988</td>
<td>342.6530</td>
<td>G</td>
<td>913.5254</td>
<td>457.5661</td>
<td>896.4990</td>
<td>448.7531</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>872.4149</td>
<td>436.7111</td>
<td>552.3833</td>
<td>428.1978</td>
<td>K</td>
<td>834.4043</td>
<td>427.7028</td>
<td>816.3049</td>
<td>400.2423</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1009.4738</td>
<td>505.2405</td>
<td>902.4472</td>
<td>496.7272</td>
<td>H</td>
<td>686.3984</td>
<td>343.7028</td>
<td>669.3719</td>
<td>335.1896</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1108.5422</td>
<td>554.7747</td>
<td>1001.5416</td>
<td>496.2816</td>
<td>V</td>
<td>549.2395</td>
<td>273.1734</td>
<td>532.3310</td>
<td>286.6601</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1207.6106</td>
<td>604.3089</td>
<td>1109.5514</td>
<td>596.7975</td>
<td>V</td>
<td>549.2395</td>
<td>273.1734</td>
<td>552.2395</td>
<td>286.6601</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1354.6790</td>
<td>677.8411</td>
<td>1337.6525</td>
<td>659.3309</td>
<td>F</td>
<td>351.2027</td>
<td>176.1050</td>
<td>341.1781</td>
<td>167.5917</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1411.7003</td>
<td>706.3539</td>
<td>1394.6730</td>
<td>697.8406</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1471.7128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KYTEITATHFQGVR
Found in F8VPN4, Protein Agl OS=Mus musculus GN=Agl PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or Plot from 200 to 1000 Da
Label all possible matches □ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(cals) = 1798.8820
Fixed modifications: NMT (C) (apply to specified residues or termini only)
Variable modifications:
R1 = Me, CO2 (K), with neutral loss 44.0109
Ions Search: 30 Expect: 0.0006
Matches: 8/140 fragment ions using 12 most intense peaks (heka)
MS/MS Fragmentation of EHLKIIQDPEYR

Found in F8VP4. Protein Agl OS=Mus musculus GN=Ag1 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1625.8049

Fixed modifications: NMTS (C) [apply to specified residues or termini only]

Variable modifications:

K4: m+1, S102 [161], with neutral loss 43.9699

Tons Score: 1.8 Expect: 0.045

Matches: 11/122 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>267.1088</td>
<td>134.0580</td>
<td>249.0984</td>
<td>125.0527</td>
<td>H</td>
<td>1453.7798</td>
<td>727.3935</td>
<td>1436.7532</td>
<td>718.8803</td>
</tr>
<tr>
<td>3</td>
<td>380.1928</td>
<td>190.0601</td>
<td>362.1823</td>
<td>181.5948</td>
<td>L</td>
<td>1316.7209</td>
<td>658.8641</td>
<td>1299.6943</td>
<td>650.3508</td>
</tr>
<tr>
<td>4</td>
<td>550.2984</td>
<td>275.6528</td>
<td>533.2718</td>
<td>267.1396</td>
<td>K</td>
<td>1293.6568</td>
<td>602.3220</td>
<td>1186.6103</td>
<td>593.8088</td>
</tr>
<tr>
<td>5</td>
<td>663.3824</td>
<td>332.1934</td>
<td>646.3559</td>
<td>323.6816</td>
<td>I</td>
<td>1083.5313</td>
<td>517.2693</td>
<td>1016.5047</td>
<td>508.7350</td>
</tr>
<tr>
<td>6</td>
<td>776.4665</td>
<td>388.7369</td>
<td>759.4400</td>
<td>370.2236</td>
<td>I</td>
<td>920.4472</td>
<td>460.7272</td>
<td>903.4207</td>
<td>452.2140</td>
</tr>
<tr>
<td>7</td>
<td>904.5251</td>
<td>452.7662</td>
<td>887.4985</td>
<td>444.2929</td>
<td>Q</td>
<td>807.3632</td>
<td>404.1852</td>
<td>790.3356</td>
<td>395.6719</td>
</tr>
<tr>
<td>8</td>
<td>1019.5520</td>
<td>510.2796</td>
<td>1002.5255</td>
<td>501.7684</td>
<td>D</td>
<td>679.3646</td>
<td>340.1559</td>
<td>662.2780</td>
<td>331.6427</td>
</tr>
<tr>
<td>9</td>
<td>1116.6048</td>
<td>558.8060</td>
<td>1099.5782</td>
<td>550.2928</td>
<td>P</td>
<td>304.2776</td>
<td>282.6425</td>
<td>547.2511</td>
<td>274.1292</td>
</tr>
<tr>
<td>11</td>
<td>1408.7107</td>
<td>704.8590</td>
<td>1391.6842</td>
<td>696.3457</td>
<td>Y</td>
<td>338.1823</td>
<td>169.5948</td>
<td>321.1557</td>
<td>150.0815</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0531</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of HGKVVAVSYDEWNR
Found in F6XX6. Protein Agl (Fragment) OS=Mus musculus GN=Agl PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1300 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(calc): 1872.5118
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K : m + 2 (H), with neutral loss 44.0120
(score: 18 Expect: 0.14)
Matches : 26/145 fragment ions using 48 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b++</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0662</td>
<td>69.5367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>195.0877</td>
<td>98.0475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>365.1952</td>
<td>183.1002</td>
<td>341.1666</td>
<td>174.5870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>354.2616</td>
<td>232.6344</td>
<td>447.2330</td>
<td>224.1212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>563.3300</td>
<td>282.1686</td>
<td>546.3035</td>
<td>273.6554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>634.3671</td>
<td>317.6872</td>
<td>617.3406</td>
<td>309.1739</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>733.4283</td>
<td>367.2214</td>
<td>714.4090</td>
<td>358.7081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>820.4756</td>
<td>410.7374</td>
<td>803.4410</td>
<td>402.2241</td>
<td>802.4770</td>
<td>401.7121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>983.5309</td>
<td>492.2691</td>
<td>966.5043</td>
<td>485.7556</td>
<td>955.5203</td>
<td>483.2638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>1098.5578</td>
<td>549.8726</td>
<td>1081.5313</td>
<td>541.2695</td>
<td>1080.3473</td>
<td>540.7775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1227.6004</td>
<td>614.3039</td>
<td>1210.5739</td>
<td>605.7506</td>
<td>1209.3859</td>
<td>605.2996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1413.6797</td>
<td>707.3425</td>
<td>1396.6532</td>
<td>698.8202</td>
<td>1395.6692</td>
<td>698.3382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>1527.7227</td>
<td>764.5650</td>
<td>1510.6961</td>
<td>755.8517</td>
<td>1509.7121</td>
<td>753.5397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1683.8238</td>
<td>842.4155</td>
<td>1666.7972</td>
<td>833.9023</td>
<td>1665.8132</td>
<td>833.4102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1477.1138</td>
<td>74.0600</td>
<td>1380.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
GTVCAANDFNPDAKALR
WGEAGAEYVVVESTGVFTTMEKAGAHLK
MS/MS Fragmentation of AVQNACQILMKR
Found in G3X982, Aldehyde oxidase 3, isoform CRA_a OS=Mus musculus GN=Aox3 PE=4 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1505.7152
Fixed modifications: NH2 (C) (apply to specified residues or termini only)
Variable modifications:
K75 : ma_C82 (K), with neutral loss 68.01098
Ions Score: 28 Expect: 0.004
Matches : 21/84 fragment ions using 66 most intense peaks

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>1391.6056</td>
<td>696.3514</td>
<td>1374.6991</td>
<td>687.8382</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>V</td>
<td>1292.6272</td>
<td>646.8172</td>
<td>1275.6006</td>
<td>638.3040</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>299.1714</td>
<td>150.0893</td>
<td>282.1448</td>
<td>141.5761</td>
<td>Q</td>
<td>1292.6272</td>
<td>646.8172</td>
<td>1275.6006</td>
</tr>
<tr>
<td>4</td>
<td>413.2143</td>
<td>207.1108</td>
<td>396.1878</td>
<td>198.5975</td>
<td>N</td>
<td>1164.5686</td>
<td>582.7879</td>
<td>1147.5421</td>
</tr>
<tr>
<td>5</td>
<td>484.2514</td>
<td>242.6293</td>
<td>467.2249</td>
<td>234.1161</td>
<td>A</td>
<td>1050.5257</td>
<td>525.7665</td>
<td>1033.4991</td>
</tr>
<tr>
<td>6</td>
<td>633.2483</td>
<td>317.1278</td>
<td>516.2218</td>
<td>308.6145</td>
<td>C</td>
<td>979.4886</td>
<td>490.2479</td>
<td>962.4620</td>
</tr>
<tr>
<td>7</td>
<td>761.3069</td>
<td>381.1571</td>
<td>744.2804</td>
<td>372.6438</td>
<td>Q</td>
<td>830.4917</td>
<td>415.7495</td>
<td>813.4651</td>
</tr>
<tr>
<td>8</td>
<td>874.3910</td>
<td>437.6991</td>
<td>857.3644</td>
<td>429.1858</td>
<td>I</td>
<td>702.4331</td>
<td>351.7202</td>
<td>685.4065</td>
</tr>
<tr>
<td>9</td>
<td>987.4750</td>
<td>494.2412</td>
<td>970.4485</td>
<td>483.7279</td>
<td>L</td>
<td>589.3490</td>
<td>295.1782</td>
<td>572.3225</td>
</tr>
<tr>
<td>10</td>
<td>1118.5155</td>
<td>559.7614</td>
<td>1101.4890</td>
<td>551.2481</td>
<td>M</td>
<td>476.2650</td>
<td>238.6361</td>
<td>459.2384</td>
</tr>
<tr>
<td>11</td>
<td>1288.6210</td>
<td>644.8142</td>
<td>1271.5945</td>
<td>636.3009</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AQFLVEKAK

Found in F6QPR1. Prohibitin-2 (Fragment) OS=Mus musculus GN=Phb2 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 100 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1118.5972
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7 : mll_002 (K), with neutral loss 43.9890
Ions Score: 29 Expect: 0.0068
Matches : 12/78 fragment ions using 18 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b++</th>
<th>b0</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y++</th>
<th>y</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>300.1030</td>
<td>100.5551</td>
<td>183.0764</td>
<td>92.0418</td>
<td></td>
<td></td>
<td>Q</td>
<td>1004.5775</td>
<td>502.7924</td>
<td>987.5510</td>
<td>494.2791</td>
<td>986.5669</td>
<td>493.7871</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>347.1714</td>
<td>174.0893</td>
<td>330.1448</td>
<td>165.5761</td>
<td></td>
<td></td>
<td>F</td>
<td>876.5189</td>
<td>438.7631</td>
<td>859.4924</td>
<td>430.2498</td>
<td>858.5084</td>
<td>429.7578</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>460.2554</td>
<td>230.6314</td>
<td>443.2289</td>
<td>222.1181</td>
<td></td>
<td></td>
<td>L</td>
<td>729.4505</td>
<td>365.2289</td>
<td>712.4240</td>
<td>356.7156</td>
<td>711.4400</td>
<td>356.2236</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>559.3239</td>
<td>280.1656</td>
<td>542.2973</td>
<td>271.6523</td>
<td></td>
<td></td>
<td>V</td>
<td>616.3665</td>
<td>308.6869</td>
<td>599.3399</td>
<td>300.1736</td>
<td>598.3585</td>
<td>299.6816</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>688.3665</td>
<td>344.6869</td>
<td>671.3399</td>
<td>336.1736</td>
<td>670.3559</td>
<td>335.6816</td>
<td>E</td>
<td>517.2980</td>
<td>259.1527</td>
<td>500.2715</td>
<td>250.6394</td>
<td>499.2875</td>
<td>250.1474</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>838.4720</td>
<td>429.7396</td>
<td>841.4454</td>
<td>421.2264</td>
<td>840.4614</td>
<td>420.7343</td>
<td>K</td>
<td>388.2554</td>
<td>194.6314</td>
<td>371.2289</td>
<td>186.1181</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>929.5091</td>
<td>465.2582</td>
<td>912.4825</td>
<td>456.7449</td>
<td>911.4985</td>
<td>456.2529</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SYLKEFR
Found in G3UWF1, MCG11048, isoform CRA_c OS=Mus musculus GN=Teer PE=4 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or [Plot from] [150] to [950] Da [Full range]
Label all possible matches [] Label matches used for scoring []

Monoisotopic mass of neutral peptide Mr(calc): 1027.4974
Fixed modifications: MMTS (+) (apply to specified residues or termini only)
Variable modifications:
K4 : i.e. CO2 (K), with neutral loss 43.9898
Ions Score: 20 Expect: 0.49
Matches: 4/62 Fragment ions using 8 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>y0</th>
<th>y0+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td></td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td>897.4829</td>
<td>449.2451</td>
<td>880.4563</td>
<td>440.7318</td>
<td>879.4723</td>
<td>440.2398</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>364.1867</td>
<td>182.5970</td>
<td>346.1761</td>
<td>173.5917</td>
<td>L</td>
<td></td>
<td>621.3385</td>
<td>311.1714</td>
<td>604.3089</td>
<td>302.6581</td>
<td>603.3249</td>
<td>302.1661</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>663.3348</td>
<td>332.1710</td>
<td>646.3083</td>
<td>323.6578</td>
<td>E</td>
<td></td>
<td>322.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td>158.0924</td>
<td>79.5498</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>810.4032</td>
<td>405.7053</td>
<td>793.3767</td>
<td>397.1920</td>
<td>F</td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MIFAGIKK

Found in G3UWG1, MCG115977 OS=Mus musculus GN=Gm10108 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1000 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 892.5365

Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:

F7 : mal-CO2 (O), with neutral loss 41.9888

Ions Score: 18 Expect: 0.74

Matches : 19/44 fragment ions using 69 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b*++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y*++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td>M</td>
<td></td>
<td></td>
<td>818.5133</td>
<td>409.7604</td>
<td>801.4869</td>
<td>401.2471</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>245.1318</td>
<td>123.0696</td>
<td>I</td>
<td>818.5133</td>
<td></td>
<td>705.4294</td>
<td>353.2183</td>
<td>688.4028</td>
<td>344.7051</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>392.2002</td>
<td>196.6038</td>
<td>F</td>
<td>705.4294</td>
<td></td>
<td>558.3610</td>
<td>279.6841</td>
<td>541.3344</td>
<td>271.1709</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>463.2374</td>
<td>232.1223</td>
<td>A</td>
<td>558.3610</td>
<td></td>
<td>487.3239</td>
<td>244.1656</td>
<td>470.2973</td>
<td>235.6523</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>520.2588</td>
<td>260.6330</td>
<td>G</td>
<td>487.3239</td>
<td></td>
<td>430.3024</td>
<td>215.6548</td>
<td>413.2758</td>
<td>207.1416</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>633.3429</td>
<td>317.1751</td>
<td>I</td>
<td>430.3024</td>
<td></td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>803.4484</td>
<td>402.2278</td>
<td>K</td>
<td>317.2183</td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KIFVQK**

Found in **G3UWG1**. MCG115977 OS=Mus musculus GN=Gm10108 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Orient from [100] to [750] Da [Full range]

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 847.4803

Fixed modifications: **M(57) (C)** (apply to specified residues or termini only)

Variable modifications:

K : **Glu -> Q**, with neutral loss 43.9598

Ions Score: 26 Expect: 0.13

Matches : 11/40 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'^'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y'^'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>I</td>
<td>634.3923</td>
<td></td>
<td>317.6998</td>
<td>617.3657</td>
<td>309.1865</td>
</tr>
<tr>
<td>3</td>
<td>431.2653</td>
<td>216.1363</td>
<td>414.2387</td>
<td>207.6230</td>
<td>F</td>
<td>521.3082</td>
<td></td>
<td>261.1577</td>
<td>504.2817</td>
<td>252.6445</td>
</tr>
<tr>
<td>4</td>
<td>530.3337</td>
<td>265.6705</td>
<td>513.3071</td>
<td>257.1572</td>
<td>V</td>
<td>374.2398</td>
<td></td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
</tr>
<tr>
<td>5</td>
<td>658.3923</td>
<td>329.6998</td>
<td>641.3657</td>
<td>321.1865</td>
<td>Q</td>
<td>275.1714</td>
<td></td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of HKTGPNLHGLFGR

Found in G3UWG1, MCG11.977 OS=Mus musculus GN=Gm10108 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches
Label matches used for scoring

Monoisotopic mass of neutral peptide (Mr(calc)): 1333.7692
Fixed modifications: MMTS (C)
Variable modifications:
K: macl 02G (K), with neutral loss 42.0698
Ion Score: 20
Peptidematcher Score: 0.0000
Matches: 34/118 fragment ions using 82 most intense peaks
Help

<table>
<thead>
<tr>
<th>#</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y'''</th>
<th>y'''</th>
<th>y'''</th>
<th>y'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0662</td>
<td>69.5367</td>
<td>H</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>308.3717</td>
<td>154.1895</td>
<td>K</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>408.2194</td>
<td>205.1133</td>
<td>292.1928</td>
<td>60.6001</td>
<td>309.2088</td>
<td>196.1015</td>
<td>T</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>456.2409</td>
<td>234.1221</td>
<td>419.2143</td>
<td>225.1108</td>
<td>448.2303</td>
<td>224.6128</td>
<td>G</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>561.2936</td>
<td>282.1264</td>
<td>546.2671</td>
<td>273.6372</td>
<td>545.2811</td>
<td>273.1452</td>
<td>P</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677.3365</td>
<td>333.1719</td>
<td>600.3100</td>
<td>320.6236</td>
<td>659.3260</td>
<td>330.1666</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>790.4206</td>
<td>395.7339</td>
<td>773.3941</td>
<td>387.3007</td>
<td>772.4100</td>
<td>386.7087</td>
<td>L</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>927.4792</td>
<td>464.2434</td>
<td>910.4530</td>
<td>455.7301</td>
<td>909.4690</td>
<td>455.2381</td>
<td>H</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>984.5010</td>
<td>492.7541</td>
<td>967.4744</td>
<td>484.2409</td>
<td>966.4904</td>
<td>483.7489</td>
<td>G</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1097.5851</td>
<td>549.2862</td>
<td>1080.5585</td>
<td>540.7829</td>
<td>1079.5745</td>
<td>540.3609</td>
<td>L</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1244.6538</td>
<td>622.8304</td>
<td>1227.6269</td>
<td>614.3171</td>
<td>1226.6429</td>
<td>613.8231</td>
<td>F</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1301.6749</td>
<td>651.3411</td>
<td>1284.6484</td>
<td>642.8278</td>
<td>1283.6644</td>
<td>642.3358</td>
<td>G</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>175.1190</td>
<td>88.0611</td>
<td>158.0924</td>
<td>79.3480</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KTGQAAGFSYTDANK

Found in: G3WUG1. MCG115977 O9=Mus musculus GN=Gm10108 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

- [Full range](#)
- [Center](#)

Label all possible matches * Label matches used for scoring *

Monoisotopic mass of neutral peptide Mr(mole): 1462.7427

Fixed modifications: ME(D) (apply to specified residues or termini only)

Variable modifications:

- K

Ion Source: ESI; **Expect:** 1e-005

Matched: 21/1680 fragment ions using 50 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>m/z</th>
<th>b**+**</th>
<th>b**++**</th>
<th>b**+++**</th>
<th>b0</th>
<th>b0</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y**++**</th>
<th>y**+++**</th>
<th>y0</th>
<th>y0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.112</td>
<td>66.0600</td>
<td>154.0866</td>
<td>77.5468</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>329.181</td>
<td>163.0916</td>
<td>312.1254</td>
<td>156.5813</td>
<td>311.1714</td>
<td>156.0893</td>
<td>G</td>
<td>1529.6079</td>
<td>865.3071</td>
<td>1512.5804</td>
<td>856.7833</td>
<td>1511.5964</td>
<td>856.3018</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>457.245</td>
<td>229.1239</td>
<td>440.2140</td>
<td>220.6106</td>
<td>439.2500</td>
<td>220.1186</td>
<td>Q</td>
<td>1722.5855</td>
<td>836.7964</td>
<td>1555.5390</td>
<td>638.2831</td>
<td>1524.5749</td>
<td>627.7911</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>528.277</td>
<td>264.6425</td>
<td>511.2511</td>
<td>256.1292</td>
<td>510.2671</td>
<td>255.6372</td>
<td>A</td>
<td>1144.5269</td>
<td>572.7671</td>
<td>1127.5004</td>
<td>564.2538</td>
<td>1126.5164</td>
<td>563.7618</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>596.314</td>
<td>300.1610</td>
<td>582.2682</td>
<td>291.6477</td>
<td>591.3042</td>
<td>291.1557</td>
<td>A</td>
<td>1072.4898</td>
<td>537.2485</td>
<td>1056.4633</td>
<td>528.7253</td>
<td>1055.4795</td>
<td>528.2423</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>656.362</td>
<td>328.6717</td>
<td>639.3097</td>
<td>320.1383</td>
<td>638.3257</td>
<td>310.6665</td>
<td>G</td>
<td>1002.4537</td>
<td>501.7300</td>
<td>985.4262</td>
<td>493.2167</td>
<td>984.4421</td>
<td>492.7247</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>808.404</td>
<td>402.2060</td>
<td>786.3781</td>
<td>393.9625</td>
<td>785.3941</td>
<td>393.2007</td>
<td>F</td>
<td>946.6213</td>
<td>473.2193</td>
<td>928.4047</td>
<td>464.7060</td>
<td>927.4207</td>
<td>464.2140</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1053.500</td>
<td>527.2536</td>
<td>1036.4734</td>
<td>518.7404</td>
<td>1035.4894</td>
<td>518.3483</td>
<td>Y</td>
<td>711.3308</td>
<td>356.1690</td>
<td>694.3042</td>
<td>347.6538</td>
<td>693.3202</td>
<td>347.1638</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1154.547</td>
<td>577.7775</td>
<td>1137.5211</td>
<td>569.2642</td>
<td>1136.5371</td>
<td>568.7722</td>
<td>T</td>
<td>548.2675</td>
<td>274.6374</td>
<td>531.2409</td>
<td>266.1241</td>
<td>520.2569</td>
<td>264.5221</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1364.611</td>
<td>670.8095</td>
<td>1353.5382</td>
<td>663.2962</td>
<td>1352.5802</td>
<td>661.8042</td>
<td>A</td>
<td>832.1928</td>
<td>406.6001</td>
<td>815.1683</td>
<td>398.0868</td>
<td>814.1843</td>
<td>397.5941</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1454.654</td>
<td>727.8310</td>
<td>1437.6281</td>
<td>719.3177</td>
<td>1436.6441</td>
<td>718.8257</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td>243.1449</td>
<td>122.0662</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS MS Fragmentation of QLKEELGAAQPDLK
Found in G3UX3X. Scrosotinae reductae GS-MA Mus musculus GN=6 Ser PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot from to Da] [Full range]
Label all possible matches 🌈 Label matches used for scoring 🌈

Monoisotopic mass of neutral peptide M(z)e(m) : 1681.8822
Fixed modifications: HMTS (C) (apply to specified residues or terminal only)
Variable modifications:
K - m/z 40.0262 (R), with neutral loss 68.0690
Ions Score: 28 Expect: 0.031
Matches : 21/146 fragment ions using 46 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0393</td>
<td>36.5233</td>
<td>Q</td>
<td>1510.8112</td>
<td>755.9902</td>
<td>1493.7846</td>
<td>747.3959</td>
<td>1492.8006</td>
<td>746.9039</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5736</td>
<td>235.1234</td>
<td>113.0653</td>
<td>L</td>
<td>1095.7950</td>
<td>549.7931</td>
<td>1081.5524</td>
<td>541.2798</td>
<td>1080.5684</td>
<td>540.7878</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>541.2980</td>
<td>271.1527</td>
<td>524.2175</td>
<td>262.6394</td>
<td>523.2875</td>
<td>262.1474</td>
<td>E</td>
<td>1227.6216</td>
<td>614.3144</td>
<td>1210.5950</td>
<td>605.8011</td>
<td>1209.6110</td>
</tr>
<tr>
<td>5</td>
<td>670.3406</td>
<td>335.6740</td>
<td>653.3141</td>
<td>327.1607</td>
<td>652.3301</td>
<td>326.6687</td>
<td>E</td>
<td>1098.7500</td>
<td>549.7931</td>
<td>1081.5524</td>
<td>541.2798</td>
<td>1080.5684</td>
</tr>
<tr>
<td>6</td>
<td>783.4247</td>
<td>392.2109</td>
<td>766.3981</td>
<td>383.7027</td>
<td>765.4147</td>
<td>383.2107</td>
<td>L</td>
<td>969.5264</td>
<td>495.2718</td>
<td>952.5098</td>
<td>476.7586</td>
<td>951.5289</td>
</tr>
<tr>
<td>7</td>
<td>840.4467</td>
<td>420.7267</td>
<td>823.4106</td>
<td>412.2134</td>
<td>822.4351</td>
<td>411.7214</td>
<td>G</td>
<td>836.4523</td>
<td>428.7208</td>
<td>839.4258</td>
<td>420.2165</td>
<td>838.4417</td>
</tr>
<tr>
<td>8</td>
<td>911.4833</td>
<td>456.2153</td>
<td>894.4567</td>
<td>447.7320</td>
<td>903.4727</td>
<td>447.2400</td>
<td>A</td>
<td>790.4308</td>
<td>400.2191</td>
<td>782.4043</td>
<td>391.7059</td>
<td>781.4203</td>
</tr>
<tr>
<td>9</td>
<td>1039.5249</td>
<td>520.2746</td>
<td>1022.5153</td>
<td>513.7161</td>
<td>1021.5313</td>
<td>512.6699</td>
<td>Q</td>
<td>728.3937</td>
<td>364.7005</td>
<td>711.3672</td>
<td>356.1872</td>
<td>710.3832</td>
</tr>
<tr>
<td>10</td>
<td>1167.6004</td>
<td>584.3059</td>
<td>1150.5759</td>
<td>575.7906</td>
<td>1149.5999</td>
<td>575.2980</td>
<td>Q</td>
<td>660.3552</td>
<td>300.6712</td>
<td>383.3080</td>
<td>292.1579</td>
<td>382.3246</td>
</tr>
<tr>
<td>11</td>
<td>1264.6532</td>
<td>632.8302</td>
<td>1247.6266</td>
<td>624.3170</td>
<td>1246.6426</td>
<td>623.8230</td>
<td>P</td>
<td>472.7266</td>
<td>236.6149</td>
<td>455.2500</td>
<td>228.1287</td>
<td>454.6620</td>
</tr>
<tr>
<td>12</td>
<td>1379.6801</td>
<td>690.8347</td>
<td>1362.6536</td>
<td>681.8304</td>
<td>1361.6596</td>
<td>681.3384</td>
<td>D</td>
<td>375.2258</td>
<td>188.1155</td>
<td>358.1973</td>
<td>179.6023</td>
<td>357.2132</td>
</tr>
<tr>
<td>14</td>
<td>1567.8284</td>
<td>794.8857</td>
<td>1551.7807</td>
<td>786.3725</td>
<td>1549.7986</td>
<td>785.8805</td>
<td>Q</td>
<td>247.1128</td>
<td>174.6005</td>
<td>228.1287</td>
<td>122.9888</td>
<td>227.6566</td>
</tr>
</tbody>
</table>

QLKEELGAAQPDLK
MS/MS Fragmentation of **DYEEIGKAK**

Found in **E991G1**, Alpha-aminoacidic semialdehyde dehydrogenase (Fragment) OS=Mus musculus GN=Aldh7a1 PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from: 150 to 1150 Da

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide Mr(calc): 1238.8686

Fixed modifications: HETs (C) (apply to specified residues or termini only)

Variable modifications:

K : ala_COOH (K), with neutral loss 43.0107

Ions Score: 15 Expect: 0.27

Matches: 16/34 fragment ions using 47 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'++</th>
<th>b''</th>
<th>b+x''</th>
<th>b+y++</th>
<th>Seq.</th>
<th>y</th>
<th>y'++</th>
<th>y''</th>
<th>y+x++</th>
<th>y+y++</th>
<th>y+z++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td></td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>279.0975</td>
<td>140.0524</td>
<td></td>
<td>261.0870</td>
<td>131.0471</td>
<td>Y</td>
<td>1080.5572</td>
<td>540.7822</td>
<td>1063.5306</td>
<td>532.2689</td>
<td>1062.5466</td>
<td>531.7769</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>408.1401</td>
<td>204.5737</td>
<td></td>
<td>390.1296</td>
<td>195.5684</td>
<td>F</td>
<td>917.4938</td>
<td>459.2506</td>
<td>900.4673</td>
<td>450.7373</td>
<td>899.4833</td>
<td>450.2453</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>537.1827</td>
<td>269.0950</td>
<td></td>
<td>519.1722</td>
<td>260.0897</td>
<td>E</td>
<td>788.4512</td>
<td>394.7293</td>
<td>771.4247</td>
<td>386.2160</td>
<td>770.4407</td>
<td>385.7240</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>638.2304</td>
<td>319.6188</td>
<td></td>
<td>620.2198</td>
<td>310.6136</td>
<td>T</td>
<td>659.4087</td>
<td>330.2080</td>
<td>642.3821</td>
<td>321.6947</td>
<td>641.3981</td>
<td>321.2027</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>751.3145</td>
<td>376.1609</td>
<td></td>
<td>733.3039</td>
<td>367.1550</td>
<td>I</td>
<td>558.8610</td>
<td>279.6841</td>
<td>541.3344</td>
<td>271.1709</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>808.3359</td>
<td>404.6716</td>
<td></td>
<td>790.3254</td>
<td>395.6663</td>
<td>G</td>
<td>445.2769</td>
<td>223.1421</td>
<td>428.2504</td>
<td>214.6288</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>978.4415</td>
<td>489.7244</td>
<td>961.4149</td>
<td>481.2111</td>
<td>960.4309</td>
<td>480.7191</td>
<td>K</td>
<td>388.2554</td>
<td>194.6314</td>
<td>371.2289</td>
<td>186.1181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1049.4786</td>
<td>525.2429</td>
<td>1032.4520</td>
<td>516.7297</td>
<td>1031.4680</td>
<td>516.2376</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.2134</td>
<td>101.0653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LAGDEKIQSAVATLR
Found in GMYVL, Serine hydroxymethyltransferase (Fragment) O=S-Musculus ON-Shunt1 PE=3 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1700 Da Full range
Label all possible matches □ Label matches used for scoring □

Non-isotopic mass of neutral peptide (M+H): 1666.6662
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
R6 = mal_002 (X), with neutral loss 90.0096
Total Score: 65 Expect: 4.6e-05
Matched: 24/148 fragment ions using 31 most intense peaks (Help)

<table>
<thead>
<tr>
<th>M</th>
<th>b</th>
<th>b7'</th>
<th>b9</th>
<th>b9'</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Intens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14.0913</td>
<td>57.5493</td>
<td>L</td>
<td>1590.8106</td>
<td>750.9045</td>
<td>1453.7751</td>
<td>742.3912</td>
<td>1483.7911</td>
<td>741.8992</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td>A</td>
<td>1590.8106</td>
<td>750.9045</td>
<td>1453.7751</td>
<td>742.3912</td>
<td>1483.7911</td>
<td>741.8992</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>242.1499</td>
<td>121.5786</td>
<td>G</td>
<td>1429.7645</td>
<td>713.3859</td>
<td>1412.7380</td>
<td>706.8726</td>
<td>1411.7540</td>
<td>706.3806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>357.1769</td>
<td>179.0921</td>
<td>D</td>
<td>1372.7431</td>
<td>686.8752</td>
<td>1355.7165</td>
<td>678.3619</td>
<td>1354.7325</td>
<td>677.8699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>486.2195</td>
<td>243.6134</td>
<td></td>
<td>1257.7161</td>
<td>639.3617</td>
<td>1210.6856</td>
<td>620.8404</td>
<td>1229.7066</td>
<td>620.3564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>676.3219</td>
<td>328.6661</td>
<td></td>
<td>1128.6735</td>
<td>564.8404</td>
<td>1111.6470</td>
<td>556.3271</td>
<td>1110.6630</td>
<td>555.8325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>769.4090</td>
<td>385.2082</td>
<td></td>
<td>958.5680</td>
<td>479.7876</td>
<td>941.5454</td>
<td>471.2744</td>
<td>940.5534</td>
<td>470.7824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>897.4576</td>
<td>449.2375</td>
<td></td>
<td>545.4359</td>
<td>242.4565</td>
<td>528.4254</td>
<td>414.7323</td>
<td>527.4243</td>
<td>414.2403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>984.4997</td>
<td>492.7535</td>
<td></td>
<td>717.4254</td>
<td>359.2163</td>
<td>700.3988</td>
<td>350.7030</td>
<td>699.4148</td>
<td>350.2119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1058.5368</td>
<td>528.2720</td>
<td></td>
<td>1128.6735</td>
<td>564.8404</td>
<td>1111.6470</td>
<td>556.3271</td>
<td>1110.6630</td>
<td>555.8325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1164.0652</td>
<td>577.0802</td>
<td></td>
<td>958.5680</td>
<td>479.7876</td>
<td>941.5454</td>
<td>471.2744</td>
<td>940.5534</td>
<td>470.7824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1225.6423</td>
<td>613.3248</td>
<td></td>
<td>545.4359</td>
<td>242.4565</td>
<td>528.4254</td>
<td>414.7323</td>
<td>527.4243</td>
<td>414.2403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1356.6900</td>
<td>653.4586</td>
<td></td>
<td>717.4254</td>
<td>359.2163</td>
<td>700.3988</td>
<td>350.7030</td>
<td>699.4148</td>
<td>350.2119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1439.7740</td>
<td>693.5872</td>
<td></td>
<td>1128.6735</td>
<td>564.8404</td>
<td>1111.6470</td>
<td>556.3271</td>
<td>1110.6630</td>
<td>555.8325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GIVVLAQSYKENEIK**
Found in G5X9Y6, Aldo-keto reductase family 1, member C19 OS=Mus musculus GN=Akr1c19 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or: Plot from 200 to 1700Da Full range

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(mol): 1796.9065
Fixed modifications: MT3 (C) (apply to specified residues or terminal only)
Variable modifications:
K5O : m/z 154.0986 (K), with neutral loss 48.0986

Ions Score: 26 Expect: 0.0019

Matches: 26/128 fragment ions using 52 most intense peaks [help]

<table>
<thead>
<tr>
<th>b</th>
<th>y</th>
<th>Seq.</th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>y<sup>-</sup></th>
<th>al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.0287</td>
<td>G</td>
<td>1675.9285</td>
<td>1678.9000</td>
<td>838.4669</td>
<td>839.9536</td>
<td>1657.9159</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>I</td>
<td>1562.8425</td>
<td>1345.8159</td>
<td>733.4116</td>
<td>772.9196</td>
<td>1541.8319</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>279.1812</td>
<td>Y</td>
<td>1463.7740</td>
<td>1446.7473</td>
<td>723.8774</td>
<td>723.8774</td>
<td>1445.7653</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>359.2696</td>
<td>Y</td>
<td>1364.7556</td>
<td>1347.7641</td>
<td>674.3432</td>
<td>673.8512</td>
<td>1346.6911</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>482.3337</td>
<td>L</td>
<td>1231.6216</td>
<td>1214.5990</td>
<td>617.3011</td>
<td>617.3011</td>
<td>1213.6190</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>553.3708</td>
<td>A</td>
<td>1188.5844</td>
<td>1183.5479</td>
<td>550.2919</td>
<td>550.2919</td>
<td>1183.5479</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>681.4294</td>
<td>Q</td>
<td>1052.5259</td>
<td>1035.4993</td>
<td>518.2533</td>
<td>513.7515</td>
<td>1034.5153</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>768.4614</td>
<td>S</td>
<td>965.4938</td>
<td>948.4673</td>
<td>474.7573</td>
<td>474.7573</td>
<td>947.4353</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>931.5247</td>
<td>Y</td>
<td>862.2506</td>
<td>845.2240</td>
<td>400.1759</td>
<td>401.1759</td>
<td>840.1720</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1101.6043</td>
<td>T</td>
<td>784.1999</td>
<td>784.1999</td>
<td>393.2056</td>
<td>393.2056</td>
<td>784.1999</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1239.6729</td>
<td>E</td>
<td>632.3230</td>
<td>615.2984</td>
<td>300.1529</td>
<td>300.1529</td>
<td>614.3144</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1344.7158</td>
<td>E</td>
<td>563.2824</td>
<td>546.2558</td>
<td>243.6316</td>
<td>243.6316</td>
<td>543.2718</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1473.7548</td>
<td>E</td>
<td>489.2395</td>
<td>472.2149</td>
<td>219.6010</td>
<td>219.6010</td>
<td>470.2174</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1586.8425</td>
<td>I</td>
<td>320.1900</td>
<td>303.1643</td>
<td>122.0838</td>
<td>122.0838</td>
<td>303.1643</td>
<td>1</td>
</tr>
</tbody>
</table>

GIVVLAQSYKENEIK
MS/MS Fragmentation of QVVTLLNELKR

Found in H3BJ29, 3-ketoacyl-CoA thiolase A, peroxisomal OS=Mus musculus GN=Acsa1a PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from ___ to ___ Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1597.7878
Fixed modifications: Met(S) (C) (apply to specified residues or termini only)
Variable modifications:
K1.0 : melan_2O (K), with neutral loss 43.0050
Ions Score: 82 Expect: 0.0092
Matches: 26/108 fragment ions using 46 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b'++</th>
<th>b8</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y'++</th>
<th>y8</th>
<th>y2</th>
<th>y8</th>
<th>y8++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0666</td>
<td>112.0393</td>
<td>56.5233</td>
<td>Q</td>
<td>1226.7467</td>
<td>613.8770</td>
<td>1209.7202</td>
<td>605.3637</td>
<td>1208.7361</td>
<td>604.8711</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0575</td>
<td>V</td>
<td>1127.6373</td>
<td>564.3428</td>
<td>1110.6517</td>
<td>555.8295</td>
<td>1109.6677</td>
<td>555.3375</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>327.2027</td>
<td>164.1050</td>
<td>310.1761</td>
<td>155.5917</td>
<td>V</td>
<td>1028.6099</td>
<td>514.8086</td>
<td>1011.5833</td>
<td>506.2953</td>
<td>1010.5993</td>
<td>505.8033</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>428.2504</td>
<td>214.6238</td>
<td>411.2235</td>
<td>206.1155</td>
<td>T</td>
<td>427.3622</td>
<td>246.2847</td>
<td>410.3536</td>
<td>235.7715</td>
<td>409.5516</td>
<td>235.2795</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>541.3344</td>
<td>271.1709</td>
<td>524.3079</td>
<td>262.8576</td>
<td>L</td>
<td>912.6558</td>
<td>407.7427</td>
<td>897.6326</td>
<td>400.2294</td>
<td>896.6476</td>
<td>398.7374</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>768.4714</td>
<td>384.7343</td>
<td>751.4349</td>
<td>376.2211</td>
<td>N</td>
<td>701.3941</td>
<td>351.2007</td>
<td>684.3675</td>
<td>342.6874</td>
<td>683.3835</td>
<td>342.1954</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>897.5649</td>
<td>449.2556</td>
<td>880.4775</td>
<td>440.7424</td>
<td>E</td>
<td>587.3511</td>
<td>429.1792</td>
<td>570.3246</td>
<td>421.6996</td>
<td>569.3406</td>
<td>425.1730</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1010.5891</td>
<td>505.7977</td>
<td>993.5615</td>
<td>497.2844</td>
<td>L</td>
<td>458.3985</td>
<td>229.6579</td>
<td>441.2820</td>
<td>221.1446</td>
<td>440.2820</td>
<td>214.1446</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1130.6936</td>
<td>590.8504</td>
<td>1113.6671</td>
<td>582.3372</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td>329.1979</td>
<td>167.6026</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LKPAFKDGGSTTAGNSSSQVSDGAAAVLLAR
GWLKSNVNDGVAQSTR
MS/MS Fragmentation of **VIADNVKDWSK**

Found in H7BXC3, Triosephosphate isomerase OS=Mus musculus GN=Tpi1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

![Fragmentation spectrum](image)

Monoisotopic mass of neutral peptide Mr(calc): 1359.6675

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications: K7 : m+2 (K), with neutral loss 49.9890

Tons Score: 35 Expected: 0.0017

Matches : 29/134 fragment ions using 86 most intense peaks

| # | b | b'' | b* | b''' | b0 | b0'' | Seq. | y | y'' | y' | y''' | y0 | y0'' | # |
|---|---|-----|----|------|----|------|------|---|-----|----|------|----|------|--|---|
| 1 | 100.0757 | 20.5415 | V | | | | | | | | | | | 11 |
| 2 | 213.1598 | 107.0835 | I | **1217.6161** | 609.3117 | 1200.5895 | 600.7984 | 1199.6055 | 600.3064 | 10 |
| 3 | 284.1959 | 42.6021 | A | **1104.5320** | 552.7656 | 1087.5055 | 544.2564 | 1086.5214 | 543.7644 | 9 |
| 4 | **399.2238** | 200.1155 | 381.2132 | 191.1103 | D | **1632.4940** | 517.2511 | 1016.4684 | 508.7378 | 1015.4843 | 508.2458 | 8 |
| 5 | 513.2607 | 257.1530 | 496.2402 | 248.6237 | 495.2502 | 248.1317 | N | **918.4660** | 459.7376 | 901.4414 | 451.2243 | 900.4574 | 450.7323 | 7 |
| 6 | **612.3352** | 306.6712 | 595.3086 | 298.1579 | 594.3246 | 297.6659 | V | **804.4250** | 402.7162 | 787.3985 | 394.0209 | 786.4143 | 393.7109 | 6 |
| 7 | **782.4407** | 391.7240 | 765.4141 | 383.2107 | 764.4301 | 382.7187 | K | **705.5366** | 353.1819 | 688.3301 | 344.6687 | 687.3461 | 344.1767 | 5 |
| 8 | 897.4676 | 449.2374 | 880.4411 | 440.7242 | 879.4571 | 440.2322 | D | **535.2511** | 268.1292 | 518.2245 | 259.6159 | 517.2465 | 259.1239 | 4 |
| 9 | **1083.5469** | 542.2771 | 1066.5204 | 533.7638 | 1065.5364 | 533.2718 | W | **420.2241** | 210.6157 | 403.1976 | 202.1024 | 402.2136 | 201.6104 | 3 |
| 10 | 1170.5790 | 585.7931 | **1153.5524** | 577.2798 | **1152.5684** | 576.7878 | S | 234.1448 | 117.5761 | 217.1183 | 109.0628 | 216.1343 | 108.5708 | 2 |
| 11 | **147.1128** | 74.0600 | 130.0863 | 65.5468 | 1 |
VVLAYEPVWAIGTGKTATPQQAQEVHEK
TGKAVSYLGPK

MS/MS Fragmentation of TGKAVSYLGPK

Found in **O08997**, Copper transport protein ATOX1 OS=Mus musculus GN=Atox1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1200 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1205.6252
Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>Residue</th>
<th>Modification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>mal-CO2H</td>
<td>1</td>
</tr>
</tbody>
</table>

With neutral loss 43.01068

Ions Score: 48 **Expect:** 0.00012

Matches: 25/106 fragment ions using 57 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^−</th>
<th>b^++</th>
<th>b^+++</th>
<th>Seq.</th>
<th>y</th>
<th>y^−</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^0</th>
<th>y^0^++</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td>1061.5900</td>
<td>531.3031</td>
<td>1044.5724</td>
<td>522.7899</td>
<td>1043.5884</td>
<td>522.2978</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td>141.0659</td>
<td>71.0366</td>
<td>G</td>
<td>1061.5900</td>
<td>531.3031</td>
<td>1044.5724</td>
<td>522.7899</td>
<td>1043.5884</td>
<td>522.2978</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>329.1819</td>
<td>165.0946</td>
<td>312.1554</td>
<td>156.3813</td>
<td>K</td>
<td>1064.5775</td>
<td>502.7924</td>
<td>987.5510</td>
<td>494.2791</td>
<td>986.5669</td>
<td>493.7871</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>400.2191</td>
<td>200.6132</td>
<td>383.1925</td>
<td>192.0999</td>
<td>A</td>
<td>834.4720</td>
<td>417.7396</td>
<td>817.4454</td>
<td>409.2264</td>
<td>816.4614</td>
<td>408.7343</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>499.2875</td>
<td>250.1474</td>
<td>482.2609</td>
<td>241.6341</td>
<td>V</td>
<td>763.4349</td>
<td>382.2211</td>
<td>746.4083</td>
<td>373.7078</td>
<td>745.4243</td>
<td>373.2158</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>586.3195</td>
<td>293.6634</td>
<td>569.2930</td>
<td>282.1501</td>
<td>S</td>
<td>664.3665</td>
<td>332.6859</td>
<td>647.3399</td>
<td>324.1736</td>
<td>646.3559</td>
<td>323.6816</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>862.4699</td>
<td>431.7371</td>
<td>845.4403</td>
<td>423.2238</td>
<td>L</td>
<td>414.2711</td>
<td>207.6392</td>
<td>397.2445</td>
<td>199.1259</td>
<td>207.6392</td>
<td>397.2445</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>919.4884</td>
<td>460.2478</td>
<td>902.4618</td>
<td>451.7345</td>
<td>G</td>
<td>301.1870</td>
<td>151.0972</td>
<td>284.1605</td>
<td>142.5839</td>
<td>284.1605</td>
<td>142.5839</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1016.5411</td>
<td>508.7742</td>
<td>999.5146</td>
<td>500.2609</td>
<td>P</td>
<td>244.1656</td>
<td>122.3864</td>
<td>227.1390</td>
<td>114.0731</td>
<td>227.1390</td>
<td>114.0731</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td></td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TGKAVSYLGPK
MS/MS Fragmentation of WKPFEIPK

Found in O09173, Homogentisate 1,2-dioxygenase OS=Mus musculus GN=Hgd PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Oxidation (M+H) (+15) to (+150) Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1129.5808
Fixed modifications: HTIS (C) (apply to specified residues or termini only)
Variable modifications:
K2 : mal-CO2 (K), with neutral loss 43.9898
Tons Score: 28 Expect: 0.15
Matches: 23/68 fragment ions using 46 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq. y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.0866</td>
<td>94.0469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W 900.5189</td>
<td>450.7631</td>
<td>882.4924</td>
<td>442.2498</td>
<td>882.5084</td>
<td>441.7578</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>357.1921</td>
<td>179.0997</td>
<td>340.1656</td>
<td>170.5864</td>
<td></td>
<td></td>
<td>K 730.4134</td>
<td>365.7103</td>
<td>713.3869</td>
<td>357.1971</td>
<td>712.4028</td>
<td>356.7051</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>454.2449</td>
<td>227.6261</td>
<td>437.2183</td>
<td>219.1128</td>
<td></td>
<td></td>
<td>P 633.3806</td>
<td>317.1840</td>
<td>616.3341</td>
<td>308.6707</td>
<td>615.3591</td>
<td>308.1787</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>601.3133</td>
<td>301.1603</td>
<td>584.2867</td>
<td>292.6470</td>
<td></td>
<td></td>
<td>F 730.3559</td>
<td>365.6816</td>
<td>713.3293</td>
<td>357.1853</td>
<td>356.7673</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>843.4400</td>
<td>422.2236</td>
<td>826.4134</td>
<td>413.7103</td>
<td>825.4294</td>
<td>413.2183</td>
<td>I 357.2496</td>
<td>179.1285</td>
<td>340.2231</td>
<td>170.6152</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>940.4927</td>
<td>470.7500</td>
<td>923.4662</td>
<td>462.2367</td>
<td>922.4822</td>
<td>461.7447</td>
<td>P 244.1656</td>
<td>122.5864</td>
<td>227.1390</td>
<td>114.0731</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K 147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AAQNISKTIATSQNR

MS/MS Fragmentation of AAQNISKTIATSQNR
Found in F6QPRI, Prohibitin-2 (Fragment) OS=Mus musculus GN=Phb2 PE=4 SV=1

Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
KM: m1,Lys (K), with neutral loss 43.0548

Monoisotopic mass of neutral peptide Mz(calc): 1487.8480

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b</th>
<th>y</th>
<th>Seq.</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>1573.8293</td>
<td>787.4183</td>
<td>1556.8027</td>
<td>778.9050</td>
<td>1555.8187</td>
<td>778.4130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.0815</td>
<td>72.0444</td>
<td>A</td>
<td>213.0815</td>
<td>72.0444</td>
<td>1573.8293</td>
<td>787.4183</td>
<td>1556.8027</td>
<td>778.9050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>217.1401</td>
<td>136.0737</td>
<td>Q</td>
<td>1502.7921</td>
<td>751.8997</td>
<td>1485.7656</td>
<td>743.3864</td>
<td>1484.7816</td>
<td>742.9844</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>385.1830</td>
<td>193.0951</td>
<td>N</td>
<td>1374.7336</td>
<td>687.8704</td>
<td>1337.7070</td>
<td>679.3571</td>
<td>1356.7239</td>
<td>678.8561</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>498.2671</td>
<td>249.6372</td>
<td>I</td>
<td>1260.6906</td>
<td>630.8490</td>
<td>1243.8641</td>
<td>622.3357</td>
<td>1242.8801</td>
<td>621.8471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>585.2991</td>
<td>231.1532</td>
<td>S</td>
<td>1147.6066</td>
<td>574.3069</td>
<td>1130.5900</td>
<td>565.7937</td>
<td>1129.5960</td>
<td>565.3916</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>755.4046</td>
<td>378.2060</td>
<td>K</td>
<td>1060.5745</td>
<td>550.7909</td>
<td>1043.5480</td>
<td>545.2776</td>
<td>1042.5640</td>
<td>541.7856</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836.4223</td>
<td>428.7298</td>
<td>T</td>
<td>890.4690</td>
<td>441.7381</td>
<td>872.4425</td>
<td>457.2249</td>
<td>872.4385</td>
<td>456.7329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>969.5364</td>
<td>485.2718</td>
<td>I</td>
<td>789.4213</td>
<td>395.2143</td>
<td>772.3948</td>
<td>386.7010</td>
<td>771.4108</td>
<td>385.2090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1040.5735</td>
<td>520.7904</td>
<td>A</td>
<td>676.3373</td>
<td>338.6723</td>
<td>659.3107</td>
<td>330.1590</td>
<td>658.3267</td>
<td>329.6670</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1111.6212</td>
<td>571.3142</td>
<td>T</td>
<td>605.3602</td>
<td>303.1537</td>
<td>588.2736</td>
<td>294.6404</td>
<td>587.2896</td>
<td>294.1484</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1228.6352</td>
<td>614.8302</td>
<td>S</td>
<td>504.2525</td>
<td>252.6269</td>
<td>487.2259</td>
<td>244.1166</td>
<td>486.2419</td>
<td>243.6246</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1356.7118</td>
<td>678.8595</td>
<td>Q</td>
<td>417.2205</td>
<td>209.1139</td>
<td>400.9393</td>
<td>200.6006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1470.7547</td>
<td>735.8810</td>
<td>R</td>
<td>209.1139</td>
<td>145.0946</td>
<td>209.1139</td>
<td>145.0946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1573.8293</td>
<td>787.4183</td>
<td></td>
<td>175.1190</td>
<td>81.0651</td>
<td>158.0024</td>
<td>79.5408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VLSQMEKIVR

Found in P05201. Aspartate aminotransferase, cytoplasmic OS=Mus musculus GN=Get1 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1287.6887
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7 : male CO2 (K), with neutral loss 43.0088
Ions Score: 28 Expect: 0.0084
Matches : 6/90 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b+1</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y+1</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y+1</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1145.6347</td>
<td>573.3210</td>
<td>1128.6082</td>
<td>564.8077</td>
<td>1127.6241</td>
<td>564.3157</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>1632.5506</td>
<td>516.7790</td>
<td>1015.5241</td>
<td>598.2657</td>
<td>1014.5401</td>
<td>507.7737</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>428.2504</td>
<td>214.6283</td>
<td>411.2238</td>
<td>206.1155</td>
<td>410.2398</td>
<td>205.6235</td>
<td>Q</td>
<td>945.5186</td>
<td>473.2629</td>
<td>928.4921</td>
<td>464.7497</td>
<td>927.5080</td>
<td>464.2577</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>559.2908</td>
<td>280.1491</td>
<td>542.2643</td>
<td>271.6358</td>
<td>541.2803</td>
<td>271.1438</td>
<td>M</td>
<td>817.1600</td>
<td>409.2337</td>
<td>800.4335</td>
<td>400.7204</td>
<td>799.4495</td>
<td>400.2284</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>858.4390</td>
<td>429.7231</td>
<td>841.4124</td>
<td>421.2098</td>
<td>840.4284</td>
<td>420.7178</td>
<td>K</td>
<td>557.3770</td>
<td>279.1921</td>
<td>540.3504</td>
<td>270.6788</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>971.5230</td>
<td>486.2652</td>
<td>954.4965</td>
<td>477.7519</td>
<td>953.5125</td>
<td>476.2599</td>
<td>I</td>
<td>387.2714</td>
<td>194.1394</td>
<td>370.2449</td>
<td>185.6261</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1070.5914</td>
<td>535.7994</td>
<td>1033.5649</td>
<td>527.2861</td>
<td>1052.5809</td>
<td>526.7941</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VLSQMEKIVR
Found in P05201, Aspartate aminotransferase, cytoplasmic OS=Mus musculus GN=Got1 PE=1 SV=3

Monoisotopic mass of neutral peptide M(r)=1303.6006
Fixed modifications: HET5 (C) (apply to specified residues or termini only)
Variable modifications:
MS : Oxidation (M), with neutral loss 0.0000 (shown in table), 61.9945
X7 : N-trial (K), with neutral loss 40.0000
Ions Score: 20 Expected: 0.066
Matches: 20/144 fragment ions using 94 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b+++</th>
<th>Seq</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
<th>y0</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0737</td>
<td>50.5413</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1161.6296</td>
<td>581.3184</td>
<td></td>
<td>1144.6031</td>
<td>572.2052</td>
<td>1143.6191</td>
<td>572.3132</td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1161.6296</td>
<td>581.3184</td>
<td></td>
<td>1144.6031</td>
<td>572.2052</td>
<td>1143.6191</td>
<td>572.3132</td>
</tr>
<tr>
<td>3</td>
<td>300.1918</td>
<td>150.5999</td>
<td>S</td>
<td>1648.5456</td>
<td>524.7764</td>
<td></td>
<td></td>
<td>1031.5190</td>
<td>516.2631</td>
<td>1030.5550</td>
<td>515.7711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>428.2594</td>
<td>214.6298</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>961.5135</td>
<td>481.2604</td>
<td></td>
<td>944.4670</td>
<td>472.7471</td>
<td>943.5030</td>
<td>472.2551</td>
</tr>
<tr>
<td>5</td>
<td>575.2858</td>
<td>288.1465</td>
<td>M</td>
<td>833.4550</td>
<td></td>
<td></td>
<td></td>
<td>417.2311</td>
<td>816.4384</td>
<td>408.7178</td>
<td>815.4444</td>
<td>408.2258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>704.3284</td>
<td>352.6678</td>
<td>E</td>
<td>686.4196</td>
<td></td>
<td></td>
<td></td>
<td>343.7134</td>
<td>669.3930</td>
<td>335.2001</td>
<td>668.4000</td>
<td>334.7081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>874.4359</td>
<td>437.7206</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>557.3770</td>
<td>279.1921</td>
<td>540.3564</td>
<td>270.6738</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>987.5179</td>
<td>494.2826</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>587.2714</td>
<td>194.1394</td>
<td>570.2449</td>
<td>185.6261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1086.5864</td>
<td>543.7963</td>
<td>V</td>
<td>274.1874</td>
<td></td>
<td></td>
<td></td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0340</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0851</td>
<td></td>
<td></td>
<td>138.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EFSYMKTGDR
Found in P05202, Aspartate aminotransferase, mitochondrial OS=Mus musculus GN=Got2 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 Da
Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1417.6124
Fixed modifications: M+N(C) (apply to specified residues or termini only)
Variable modifications:
K6 : ma_1CO2 (K), with neutral loss 48.02959
Tone Score: 21 Expect: 0.016
Matches : 7/102 Fragment ions using 11 most intense peaks (use3p)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0303</td>
<td>56.5233</td>
<td>E</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>277.1183</td>
<td>130.0628</td>
<td>259.1077</td>
<td>130.0573</td>
<td>F</td>
<td>1245.5932</td>
<td>623.3903</td>
<td>1228.5667</td>
<td>614.7870</td>
<td>1227.5927</td>
<td>614.2950</td>
</tr>
<tr>
<td>3</td>
<td>364.1303</td>
<td>182.5788</td>
<td>346.1397</td>
<td>173.5712</td>
<td>S</td>
<td>1068.5248</td>
<td>549.7600</td>
<td>1081.4983</td>
<td>541.3288</td>
<td>1080.5143</td>
<td>540.7608</td>
</tr>
<tr>
<td>4</td>
<td>453.2187</td>
<td>232.1130</td>
<td>445.2082</td>
<td>223.1077</td>
<td>V</td>
<td>1011.4928</td>
<td>505.2500</td>
<td>994.4662</td>
<td>497.7368</td>
<td>993.4822</td>
<td>497.2484</td>
</tr>
<tr>
<td>5</td>
<td>525.2821</td>
<td>313.6447</td>
<td>608.2713</td>
<td>304.6394</td>
<td>Y</td>
<td>912.4244</td>
<td>455.7138</td>
<td>895.3978</td>
<td>448.2026</td>
<td>894.4138</td>
<td>447.7105</td>
</tr>
<tr>
<td>6</td>
<td>571.3225</td>
<td>379.1649</td>
<td>739.3120</td>
<td>370.1596</td>
<td>M</td>
<td>749.3611</td>
<td>375.1842</td>
<td>732.3345</td>
<td>366.6709</td>
<td>721.3505</td>
<td>366.1789</td>
</tr>
<tr>
<td>7</td>
<td>839.8702</td>
<td>420.6887</td>
<td>840.3597</td>
<td>420.8832</td>
<td>I</td>
<td>618.3206</td>
<td>309.6639</td>
<td>601.2940</td>
<td>301.1506</td>
<td>600.3100</td>
<td>300.6586</td>
</tr>
<tr>
<td>8</td>
<td>1028.4757</td>
<td>514.7415</td>
<td>1011.4492</td>
<td>506.2287</td>
<td>K</td>
<td>1010.4652</td>
<td>505.7362</td>
<td>1002.4662</td>
<td>500.2462</td>
<td>990.6268</td>
<td>499.2623</td>
</tr>
<tr>
<td>9</td>
<td>1143.5927</td>
<td>572.2550</td>
<td>1126.4761</td>
<td>563.7417</td>
<td>D</td>
<td>1125.4921</td>
<td>563.2497</td>
<td>347.1674</td>
<td>174.0873</td>
<td>330.1408</td>
<td>165.5740</td>
</tr>
<tr>
<td>11</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.3498</td>
<td>R</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AADKDTCFSTEGBPNLVTR

Mass spectrometric mass of neutral peptide \(\text{M} \) (calc) : 2005.0073
Fixed modifications: MMT (C) (apply to specified residues or terminal only)
Variable modifications:
Hb : a/a, s/a (R) (with neutral loss 18.0000)
Ions Score : 61 Expect : 0.00146
Matches : 52/102 fragment ions using 42 more intense peaks

<table>
<thead>
<tr>
<th>(\tilde{a})</th>
<th>(b)</th>
<th>(b^+)</th>
<th>(b^-)</th>
<th>(b^{++})</th>
<th>(b^{--})</th>
<th>Seq.</th>
<th>(y)</th>
<th>(y^+)</th>
<th>(y^-)</th>
<th>(y^{++})</th>
<th>(y^{--})</th>
<th>(\tilde{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>A</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **ELISKFLLNR**

Found in **P07758**, Alpha-1-antitrypsin 1-1. OS=Mus musculus GN=Serpina1a PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Flat from 100 to 1300 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1417.7592

Fixed modifications: M(S) (C) (apply to specified residues or termini only)

Variable modifications:

K5 = mal,CO2 (K), with neutral loss 42.01568

Ions Score: 31, Expect: 0.00000

Matches: 22/88 fragment ions using 62 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>b^4</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^0</th>
<th>y^+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0459</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>F</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td>225.1234</td>
<td>113.0652</td>
<td>L</td>
<td>1145.7041</td>
<td>573.3557</td>
<td>1128.6778</td>
<td>264.8424</td>
<td>1127.6937</td>
<td>564.3504</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>356.2180</td>
<td>178.6126</td>
<td>338.2074</td>
<td>169.6074</td>
<td>I</td>
<td>1032.6200</td>
<td>516.8137</td>
<td>1015.5935</td>
<td>508.3004</td>
<td>1014.6095</td>
<td>507.8084</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>443.2500</td>
<td>222.1287</td>
<td>425.2395</td>
<td>213.1234</td>
<td>S</td>
<td>919.5260</td>
<td>460.2716</td>
<td>902.5094</td>
<td>451.1738</td>
<td>901.5254</td>
<td>451.2663</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>613.3550</td>
<td>307.1814</td>
<td>596.3390</td>
<td>298.6881</td>
<td>595.3430</td>
<td>298.1761</td>
<td>K</td>
<td>832.5029</td>
<td>416.7556</td>
<td>815.4771</td>
<td>408.2423</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>760.4240</td>
<td>380.7156</td>
<td>743.3974</td>
<td>372.2023</td>
<td>742.4134</td>
<td>371.7103</td>
<td>F</td>
<td>662.3984</td>
<td>331.7028</td>
<td>645.3719</td>
<td>223.1896</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>873.5080</td>
<td>437.2577</td>
<td>856.4815</td>
<td>428.7444</td>
<td>855.4975</td>
<td>428.2524</td>
<td>L</td>
<td>515.3200</td>
<td>258.1686</td>
<td>498.3035</td>
<td>249.6554</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>986.5921</td>
<td>493.7997</td>
<td>969.5055</td>
<td>485.2864</td>
<td>968.5815</td>
<td>484.7944</td>
<td>L</td>
<td>402.2439</td>
<td>201.0266</td>
<td>385.2194</td>
<td>193.1133</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1100.6150</td>
<td>550.8211</td>
<td>1083.6083</td>
<td>542.3079</td>
<td>1082.6242</td>
<td>541.8159</td>
<td>N</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1353</td>
<td>136.5713</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>138.0924</td>
<td>76.5488</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LCAATATILDKPEDR

Found in O35215, Dopamine decarboxylase OS=Mus musculus GN=Ddc PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point.
Or, [Plot zoom] 200 to -600 Dn [Full range]
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(mol) : 1747.8129
Fixed modifications: M + H (C) Supply to specified residue or termini only
Variable modifications:
K15 = mzzarella C, with neutral loss 48.05993
Ions Score: 27 Da Expect: 0.016
Matches : 20/100 fragment ions using 40 most intense peaks (halo)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>b***</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y****</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>263.0382</td>
<td>132.0478</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>1591.7453</td>
<td>706.3764</td>
<td>1574.7189</td>
<td>787.8951</td>
</tr>
<tr>
<td>3</td>
<td>334.1224</td>
<td>167.5663</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1442.7486</td>
<td>721.8779</td>
<td>1425.7220</td>
<td>713.3646</td>
</tr>
<tr>
<td>4</td>
<td>405.1525</td>
<td>202.0849</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1371.7114</td>
<td>696.3594</td>
<td>1354.8584</td>
<td>677.8461</td>
</tr>
<tr>
<td>5</td>
<td>506.2102</td>
<td>253.6087</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>488.1996</td>
<td>244.6034</td>
<td>1308.6743</td>
<td>658.9408</td>
</tr>
<tr>
<td>6</td>
<td>577.2473</td>
<td>289.1273</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>592.2397</td>
<td>280.1220</td>
<td>1199.6266</td>
<td>600.3170</td>
</tr>
<tr>
<td>7</td>
<td>678.2949</td>
<td>339.6511</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>556.3083</td>
<td>280.1220</td>
<td>1128.5803</td>
<td>586.7984</td>
</tr>
<tr>
<td>8</td>
<td>791.3790</td>
<td>396.1931</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>773.3684</td>
<td>387.1879</td>
<td>1027.5419</td>
<td>514.2746</td>
</tr>
<tr>
<td>9</td>
<td>904.4512</td>
<td>452.7352</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>914.4578</td>
<td>457.7323</td>
<td>907.4312</td>
<td>449.2195</td>
</tr>
<tr>
<td>11</td>
<td>1189.5955</td>
<td>595.3014</td>
<td>1172.5609</td>
<td>586.7813</td>
<td></td>
<td>K</td>
<td>868.3468</td>
<td>434.6770</td>
<td>669.3202</td>
<td>335.1658</td>
</tr>
<tr>
<td>12</td>
<td>1286.8463</td>
<td>643.8278</td>
<td>1269.8218</td>
<td>635.3145</td>
<td></td>
<td>E</td>
<td>768.6377</td>
<td>364.8225</td>
<td>765.6377</td>
<td>364.8225</td>
</tr>
<tr>
<td>13</td>
<td>1415.6090</td>
<td>708.3491</td>
<td>1398.6644</td>
<td>699.8358</td>
<td></td>
<td>E</td>
<td>419.1885</td>
<td>210.0979</td>
<td>402.1619</td>
<td>201.5463</td>
</tr>
<tr>
<td>14</td>
<td>1530.7178</td>
<td>765.8826</td>
<td>1513.8913</td>
<td>757.3493</td>
<td></td>
<td>D</td>
<td>290.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0653</td>
</tr>
<tr>
<td>15</td>
<td>1751.9207</td>
<td>880.9631</td>
<td>1738.9924</td>
<td>879.4598</td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.9224</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
HYGGLTGLNKAETAAK
MS/MS Fragmentation of LSHSIEKLWDQTSSEVK
Found in O88451, Retinal dehydrogenase 7 O8=Mus musculus ON=RaR? PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot form: 100 to 1500 Dn Full range
Label all possible matches © Label matches used for scoring ♦

Nonisotopic mass of neutral peptide Mz(calc): 2072.0062
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K = m1 CO2 (+), with neutral loss 42.0148

TIC Score: 16. Expect: 0.691
Matches: 47/174 fragment ions using 101 most intense peaks. (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b</th>
<th>b**</th>
<th>Seq Y</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y</th>
<th>y**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>S</td>
<td>1828.9076</td>
<td>914.9274</td>
<td>1811.8810</td>
<td>906.4441</td>
<td>1810.8970</td>
<td>905.9521</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>333.1223</td>
<td>166.5941</td>
<td>220.1717</td>
<td>160.5895</td>
<td>H</td>
<td>1601.8487</td>
<td>816.4259</td>
<td>1674.8221</td>
<td>837.9147</td>
<td>1073.8331</td>
<td>837.4227</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>425.2143</td>
<td>212.1071</td>
<td>220.1717</td>
<td>160.5895</td>
<td>H</td>
<td>1604.8166</td>
<td>822.9120</td>
<td>1387.7901</td>
<td>794.3987</td>
<td>1386.8061</td>
<td>793.9067</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>533.2841</td>
<td>266.6528</td>
<td>220.1717</td>
<td>160.5895</td>
<td>H</td>
<td>1607.8432</td>
<td>829.9175</td>
<td>1387.7951</td>
<td>794.3987</td>
<td>1386.8061</td>
<td>793.9067</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>667.2410</td>
<td>334.1741</td>
<td>220.1717</td>
<td>160.5895</td>
<td>H</td>
<td>1610.8487</td>
<td>836.9220</td>
<td>1387.7951</td>
<td>794.3987</td>
<td>1386.8061</td>
<td>793.9067</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>837.4468</td>
<td>419.2269</td>
<td>820.4199</td>
<td>410.7136</td>
<td>819.4393</td>
<td>410.2216</td>
<td>K</td>
<td>1362.6900</td>
<td>681.8486</td>
<td>1343.6634</td>
<td>673.3353</td>
<td>1344.6794</td>
<td>672.8433</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>950.8386</td>
<td>475.7689</td>
<td>933.5504</td>
<td>467.2556</td>
<td>932.5200</td>
<td>466.7636</td>
<td>L</td>
<td>1192.5844</td>
<td>596.7959</td>
<td>1173.5579</td>
<td>588.2826</td>
<td>1174.5739</td>
<td>587.7906</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1136.6099</td>
<td>568.8086</td>
<td>1119.5333</td>
<td>560.2953</td>
<td>518.9933</td>
<td>559.8033</td>
<td>W</td>
<td>1579.5004</td>
<td>749.2538</td>
<td>1562.4738</td>
<td>731.7406</td>
<td>1561.4896</td>
<td>731.2485</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1251.6668</td>
<td>626.3232</td>
<td>1234.6103</td>
<td>617.8088</td>
<td>1216.5242</td>
<td>617.3168</td>
<td>D</td>
<td>1893.3711</td>
<td>1475.2412</td>
<td>1874.3945</td>
<td>1468.7009</td>
<td>1875.4010</td>
<td>1468.2089</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1379.6954</td>
<td>690.3513</td>
<td>1362.6688</td>
<td>681.3831</td>
<td>1351.6848</td>
<td>681.3461</td>
<td>Q</td>
<td>1778.9394</td>
<td>1398.7007</td>
<td>1761.8368</td>
<td>1381.1874</td>
<td>1760.8386</td>
<td>1380.6954</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1480.7411</td>
<td>740.8752</td>
<td>1463.7165</td>
<td>732.3619</td>
<td>1446.7325</td>
<td>731.8969</td>
<td>T</td>
<td>1659.3583</td>
<td>1255.6714</td>
<td>1633.3000</td>
<td>1241.5781</td>
<td>1632.3250</td>
<td>1236.6661</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1587.7521</td>
<td>784.3912</td>
<td>1550.7485</td>
<td>775.8779</td>
<td>1529.7645</td>
<td>775.3859</td>
<td>S</td>
<td>1649.3479</td>
<td>1327.1476</td>
<td>1622.2613</td>
<td>1316.6343</td>
<td>1621.2773</td>
<td>1316.1423</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1654.8071</td>
<td>827.9072</td>
<td>1637.7809</td>
<td>819.3939</td>
<td>1618.7966</td>
<td>818.9019</td>
<td>S</td>
<td>1762.8558</td>
<td>1351.6316</td>
<td>1734.2923</td>
<td>1322.1183</td>
<td>1734.2451</td>
<td>1322.6635</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1852.9187</td>
<td>941.9272</td>
<td>1835.8916</td>
<td>933.4494</td>
<td>1816.9076</td>
<td>932.9574</td>
<td>V</td>
<td>2062.1812</td>
<td>1622.5942</td>
<td>2029.1547</td>
<td>1613.0810</td>
<td>2029.1547</td>
<td>1613.0810</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0835</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VLAACLTEKGAEQLR

Found in O88451, Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b***</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y^4**</th>
<th>y^5**</th>
<th>χ</th>
<th>y^6**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0727</td>
<td>20.5415</td>
<td>V</td>
<td>1500.7978</td>
<td>795.9026</td>
<td>1573.7713</td>
<td>787.3893</td>
<td>1572.7873</td>
<td>786.8973</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1398</td>
<td>107.0835</td>
<td>L</td>
<td>1477.7138</td>
<td>739.9683</td>
<td>1460.0872</td>
<td>730.8472</td>
<td>1459.9232</td>
<td>730.3522</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>284.1826</td>
<td>142.4021</td>
<td>A</td>
<td>1406.6766</td>
<td>703.8240</td>
<td>1289.6701</td>
<td>695.2287</td>
<td>1388.6661</td>
<td>694.8361</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>355.2340</td>
<td>178.1206</td>
<td>A</td>
<td>1335.6935</td>
<td>668.3234</td>
<td>1318.6930</td>
<td>659.8101</td>
<td>1317.6320</td>
<td>659.3181</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>304.2308</td>
<td>252.6191</td>
<td>C</td>
<td>1186.6426</td>
<td>593.3230</td>
<td>1169.6161</td>
<td>583.3117</td>
<td>1168.6321</td>
<td>584.8197</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>617.3150</td>
<td>309.1611</td>
<td>L</td>
<td>710.3626</td>
<td>325.6830</td>
<td>700.3521</td>
<td>320.6797</td>
<td>1073.5389</td>
<td>527.2829</td>
<td>1055.5320</td>
<td>526.7696</td>
<td>1055.5480</td>
</tr>
<tr>
<td>7</td>
<td>847.4032</td>
<td>424.2063</td>
<td>E</td>
<td>829.3947</td>
<td>415.2010</td>
<td>972.5108</td>
<td>485.7581</td>
<td>935.4848</td>
<td>478.2458</td>
<td>954.5003</td>
<td>477.7583</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1017.5108</td>
<td>509.2590</td>
<td>K</td>
<td>1000.4842</td>
<td>500.7457</td>
<td>999.9002</td>
<td>500.2337</td>
<td>843.4683</td>
<td>422.2378</td>
<td>826.4417</td>
<td>413.7243</td>
<td>823.4577</td>
</tr>
<tr>
<td>9</td>
<td>1074.5322</td>
<td>537.7697</td>
<td>G</td>
<td>1057.5057</td>
<td>529.2565</td>
<td>1096.5317</td>
<td>528.7645</td>
<td>673.3638</td>
<td>337.1850</td>
<td>656.3362</td>
<td>328.6717</td>
<td>655.3522</td>
</tr>
<tr>
<td>10</td>
<td>1145.5693</td>
<td>573.2883</td>
<td>A</td>
<td>1128.5458</td>
<td>564.7750</td>
<td>1127.5388</td>
<td>564.2830</td>
<td>616.3143</td>
<td>308.8743</td>
<td>599.3148</td>
<td>300.1610</td>
<td>598.3070</td>
</tr>
<tr>
<td>11</td>
<td>1274.6119</td>
<td>637.8096</td>
<td>E</td>
<td>1257.5834</td>
<td>629.2963</td>
<td>1256.6014</td>
<td>628.8043</td>
<td>354.3842</td>
<td>173.1257</td>
<td>273.2278</td>
<td>264.6425</td>
<td>272.9396</td>
</tr>
<tr>
<td>12</td>
<td>1402.6705</td>
<td>701.8399</td>
<td>Q</td>
<td>1385.6460</td>
<td>698.3265</td>
<td>1384.6596</td>
<td>692.8336</td>
<td>416.7616</td>
<td>208.6344</td>
<td>399.2530</td>
<td>200.1212</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1515.7356</td>
<td>718.3809</td>
<td>L</td>
<td>1499.7280</td>
<td>749.8678</td>
<td>1497.7484</td>
<td>749.3756</td>
<td>288.2830</td>
<td>144.6021</td>
<td>271.1765</td>
<td>136.0819</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1752.7851</td>
<td>868.3809</td>
<td>R</td>
<td>1735.7956</td>
<td>861.3356</td>
<td>1734.8062</td>
<td>859.3436</td>
<td>1734.8062</td>
<td>859.3436</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide (kDa): 1782.4650

Fixed modifications: MetO (C) *(apply to specified residues or termini only)*

Variable modifications:
- Nél 0.02 (B)
- with neutral loss 49.0000

Ions Score: 21 **Expect:** 0.0002

Matches: 8/154 fragment ions using 14 most intense peaks *(help)*
MS/MS Fragmentation of FLTNNNSAIDKTQSEK

Found in P01860, Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 500 to 1800 Da Full range

Label all possible matches © Label matches used for scoring ©

Monoisotopic mass of neutral peptide Mr (calc.): 1954.8096

Fixed modifications: MMT (C) (apply to specified residues or termini only)
Variable modifications:
K11 = M:126.020 (R), with neutral loss 48.0265

Topscore: 24 Expert: 0.011

Matches: 17/168 fragment ions using 20 most intense peaks

| | b3 | b4 | b5 | b6 | g3 | g4 | g5 | g6 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 | y11 | y12 | y13 | y14 | y15 | y16 |
|---|-----|
| 1 | 148.0757 | 74.3415 | |
| 2 | 261.1598 | 131.0383 | |
| 3 | 362.2074 | 181.6074 | |
| 4 | 476.2564 | 238.6288 | |
| 5 | 590.2934 | 295.6014 | |
| 6 | 704.3364 | 345.6727 | |
| 7 | 791.3562 | 396.1871 | |
| 8 | 862.4054 | 431.7063 | |
| 9 | 975.4894 | 485.2483 | |
| 10 | 1099.5164 | 544.7568 | |
| 11 | 1260.6219 | 630.8146 | |
| 12 | 1361.6966 | 681.3384 | |
| 13 | 1449.7281 | 743.3067 | |
| 14 | 1576.7602 | 788.8837 | |
| 15 | 1705.8028 | 853.4020 | |
| 16 | 1920.8454 | 977.4419 | |

[Graph showing peptide fragmentation peptides]
MS/MS Fragmentation of VLSGEDKSNIK

Found in P01942, Hemoglobin subunit alpha OS=Mus musculus GN=Hba PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1150 Da

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide Mr(calc): 1274.6354

Fixed modifications: MG/MS (C) (apply to specified residues or termini only)

Variable modifications:

K7: n-maleimide (K), with neutral loss 45.0030

Ions Score: 32 Expect: 0.514

Matches: 22/98 fragment ions using 49 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td>1112.2844</td>
<td>566.7369</td>
<td>1115.5719</td>
<td>558.2826</td>
<td>1114.5739</td>
<td>557.7906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td>L</td>
<td>1139.3212</td>
<td>566.7369</td>
<td>1114.5789</td>
<td>557.7906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300.3918</td>
<td>150.5959</td>
<td>S</td>
<td>1019.5004</td>
<td>510.2538</td>
<td>1002.4738</td>
<td>501.7406</td>
<td>1001.4898</td>
<td>501.2485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>557.2132</td>
<td>279.1103</td>
<td>G</td>
<td>932.4634</td>
<td>466.7378</td>
<td>915.4418</td>
<td>458.2245</td>
<td>914.4578</td>
<td>457.7325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>485.2358</td>
<td>243.6316</td>
<td>E</td>
<td>875.4460</td>
<td>438.2271</td>
<td>858.4203</td>
<td>429.7138</td>
<td>857.4363</td>
<td>429.2218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>604.2828</td>
<td>301.1450</td>
<td>D</td>
<td>746.4043</td>
<td>373.7058</td>
<td>729.5777</td>
<td>365.1925</td>
<td>728.3937</td>
<td>564.7005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>858.4203</td>
<td>429.7138</td>
<td>S</td>
<td>461.2718</td>
<td>231.1365</td>
<td>444.4253</td>
<td>222.6263</td>
<td>443.2813</td>
<td>222.1343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>972.4633</td>
<td>486.7355</td>
<td>N</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1085.5473</td>
<td>543.2773</td>
<td>I</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1734</td>
<td>122.0888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>147.1128</td>
<td>74.0600</td>
<td>K</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SQDLSKIMADIR

Found in P05784, Keratin, type I cytoskeletal 18 OS=Mus musculus GN=Krt18 PE=1 SV=5

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from ___ to ___ Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1461.7133

Fixed modifications: M(ethyl) (C) (apply to specified residues or termini only)

Variable modifications:

K8 : m/z CO2 (K), with neutral loss 44.0128

Tide Score: 28 Expect: 0.011

Matches : 9/126 fragment ions using 11 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>h</th>
<th>b</th>
<th>b*</th>
<th>b+</th>
<th>b0</th>
<th>b+</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y+</th>
<th>y0</th>
<th>y+</th>
<th>y0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>100.0393</td>
<td>168.0873</td>
<td>99.5473</td>
<td>Q</td>
<td>133.6988</td>
<td>666.3530</td>
<td>314.6722</td>
<td>657.8397</td>
<td>131.6882</td>
<td>657.3477</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>216.0579</td>
<td>108.5526</td>
<td>199.0713</td>
<td>100.0393</td>
<td>168.0873</td>
<td>99.5473</td>
<td>D</td>
<td>1201.6402</td>
<td>602.3237</td>
<td>1186.6136</td>
<td>593.8105</td>
<td>1185.6295</td>
<td>593.3184</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>331.1248</td>
<td>166.0661</td>
<td>214.0983</td>
<td>157.5528</td>
<td>313.1143</td>
<td>157.0608</td>
<td>L</td>
<td>1088.6132</td>
<td>544.8103</td>
<td>1071.5867</td>
<td>536.2970</td>
<td>1070.5027</td>
<td>535.8050</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>444.2089</td>
<td>222.6081</td>
<td>214.0983</td>
<td>157.5528</td>
<td>313.1143</td>
<td>157.0608</td>
<td>S</td>
<td>975.5292</td>
<td>488.2682</td>
<td>958.5026</td>
<td>479.7550</td>
<td>957.5185</td>
<td>479.2029</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>531.2309</td>
<td>266.1241</td>
<td>314.2144</td>
<td>257.6108</td>
<td>513.2204</td>
<td>257.1188</td>
<td>K</td>
<td>888.4972</td>
<td>444.7522</td>
<td>871.4706</td>
<td>436.2389</td>
<td>870.4866</td>
<td>435.7469</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>701.3464</td>
<td>351.1769</td>
<td>684.3159</td>
<td>342.6636</td>
<td>683.3539</td>
<td>342.1716</td>
<td>I</td>
<td>718.3916</td>
<td>359.6994</td>
<td>701.3651</td>
<td>351.1862</td>
<td>700.3811</td>
<td>350.6942</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>945.4710</td>
<td>473.2391</td>
<td>928.4444</td>
<td>464.7259</td>
<td>927.4604</td>
<td>464.2339</td>
<td>A</td>
<td>744.2671</td>
<td>375.6372</td>
<td>657.2405</td>
<td>239.1239</td>
<td>456.2565</td>
<td>238.6519</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1131.5351</td>
<td>566.2712</td>
<td>1114.5085</td>
<td>557.7579</td>
<td>1113.5245</td>
<td>557.2659</td>
<td>I</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0619</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1244.6191</td>
<td>622.8132</td>
<td>1227.5926</td>
<td>614.2999</td>
<td>1226.6085</td>
<td>613.8079</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1357.6921</td>
<td>680.8432</td>
<td>1340.6657</td>
<td>672.3303</td>
<td>1339.6715</td>
<td>671.8792</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IWLVDSKGLIVK

Found in P06801. NADP-dependent malic enzyme OS=Mus musculus GN=Mal PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1461.7133

Fixed modifications: M(+H) (C) (apply to specified residues or termini only)
Variable modifications: K8 = mal-COOH (K), with neutral loss 48.01528

Tic Score: 28 Expect: 0.011
Matches : 9/128 fragment ions using 11 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b***</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y***</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>S</td>
<td>133.6988</td>
<td>666.3530</td>
<td>314.6722</td>
<td>657.8397</td>
<td>1313.6882</td>
<td>657.3477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>216.0579</td>
<td>108.5526</td>
<td>199.0713</td>
<td>100.0393</td>
<td>108.0873</td>
<td>99.5473</td>
<td>Q</td>
<td>1313.6988</td>
<td>666.3530</td>
<td>314.6722</td>
<td>657.8397</td>
<td>1313.6882</td>
<td>657.3477</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>331.1248</td>
<td>166.0661</td>
<td>314.0983</td>
<td>157.5528</td>
<td>313.1143</td>
<td>157.0608</td>
<td>D</td>
<td>1201.6402</td>
<td>602.3237</td>
<td>1186.6136</td>
<td>593.8105</td>
<td>1185.6295</td>
<td>593.3184</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>531.2909</td>
<td>266.1241</td>
<td>514.2144</td>
<td>257.6108</td>
<td>513.2204</td>
<td>257.1188</td>
<td>S</td>
<td>975.5292</td>
<td>488.2802</td>
<td>958.5026</td>
<td>479.7550</td>
<td>957.5185</td>
<td>479.2029</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>701.3464</td>
<td>351.1769</td>
<td>684.3159</td>
<td>342.6636</td>
<td>683.3539</td>
<td>342.1716</td>
<td>K</td>
<td>888.4972</td>
<td>444.7522</td>
<td>871.4706</td>
<td>436.2389</td>
<td>870.4866</td>
<td>435.7469</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>814.4305</td>
<td>407.7189</td>
<td>797.4040</td>
<td>399.2056</td>
<td>796.4199</td>
<td>398.7136</td>
<td>I</td>
<td>718.3916</td>
<td>359.6994</td>
<td>701.3651</td>
<td>351.1802</td>
<td>700.3811</td>
<td>350.6942</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>945.4710</td>
<td>473.2391</td>
<td>928.4444</td>
<td>464.7259</td>
<td>927.4604</td>
<td>464.2339</td>
<td>M</td>
<td>609.5076</td>
<td>303.1574</td>
<td>588.2810</td>
<td>294.6441</td>
<td>587.2970</td>
<td>294.1521</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1016.5081</td>
<td>508.7577</td>
<td>999.4816</td>
<td>500.2444</td>
<td>998.4975</td>
<td>499.7524</td>
<td>A</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6519</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1244.6191</td>
<td>622.8132</td>
<td>1227.5926</td>
<td>614.2999</td>
<td>1226.6085</td>
<td>613.8079</td>
<td>I</td>
<td>288.2030</td>
<td>144.0561</td>
<td>271.1765</td>
<td>136.0619</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0531</td>
<td>138.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VFLTTAEVISQQVSDLKHLQEGR

MMB Fragmentation of VFLTTAEVISQQVSDLKHLQEGR

Found in: P00801, NADP-dependent malic enzyme Os-Ma musculus Q5=Ma(m) PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

[Extracted Main Output]

Mass Spectral Table

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b+++</th>
<th>b++++</th>
<th>Seq.</th>
<th>r</th>
<th>r'</th>
<th>r''</th>
<th>r+++</th>
<th>r++++</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0787</td>
<td>50.0385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1441</td>
<td>124.0727</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>360.2282</td>
<td>180.1178</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>461.2785</td>
<td>231.1393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>443.2653</td>
<td>222.1363</td>
<td>T</td>
<td>2168.8942</td>
<td>1084.5507</td>
<td>2151.0877</td>
<td>1076.6537</td>
</tr>
<tr>
<td>5</td>
<td>562.3238</td>
<td>281.1664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>544.3130</td>
<td>272.6600</td>
<td>T</td>
<td>2067.8465</td>
<td>1034.5026</td>
<td>2050.0020</td>
<td>1025.5036</td>
</tr>
<tr>
<td>7</td>
<td>762.4032</td>
<td>381.7023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>714.3927</td>
<td>372.7000</td>
<td>E</td>
<td>1848.9617</td>
<td>947.9842</td>
<td>1827.9832</td>
<td>939.4712</td>
</tr>
<tr>
<td>8</td>
<td>861.4776</td>
<td>431.2385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>813.4661</td>
<td>422.2382</td>
<td>v</td>
<td>1765.9191</td>
<td>883.4642</td>
<td>1748.8926</td>
<td>874.9499</td>
</tr>
<tr>
<td>9</td>
<td>974.5575</td>
<td>487.7815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>916.5451</td>
<td>478.7762</td>
<td>i</td>
<td>1666.8597</td>
<td>833.9292</td>
<td>1649.8242</td>
<td>825.4517</td>
</tr>
<tr>
<td>10</td>
<td>1061.5877</td>
<td>531.2975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1043.5772</td>
<td>522.2922</td>
<td>s</td>
<td>1553.7567</td>
<td>777.3870</td>
<td>1536.7401</td>
<td>768.8737</td>
</tr>
<tr>
<td>11</td>
<td>1189.6462</td>
<td>595.3268</td>
<td>572.1629</td>
<td>506.8235</td>
<td>486.3215</td>
<td>Q</td>
<td>1466.7346</td>
<td>733.8170</td>
<td>1449.7041</td>
<td>722.5707</td>
<td>1448.7241</td>
<td>724.8657</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>1317.7049</td>
<td>659.3561</td>
<td>600.8783</td>
<td>530.3058</td>
<td>495.9285</td>
<td>Q</td>
<td>1538.7874</td>
<td>669.8417</td>
<td>1521.8495</td>
<td>651.3284</td>
<td>1520.8465</td>
<td>650.8564</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>1416.7733</td>
<td>705.8903</td>
<td>639.9768</td>
<td>570.7770</td>
<td>519.7627</td>
<td>E</td>
<td>1769.8580</td>
<td>699.8830</td>
<td>1752.9202</td>
<td>673.8624</td>
<td>1750.9265</td>
<td>673.3904</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>1563.8085</td>
<td>753.4065</td>
<td>686.7678</td>
<td>623.8390</td>
<td>561.8748</td>
<td>s</td>
<td>1845.8745</td>
<td>743.4010</td>
<td>1831.8684</td>
<td>727.3622</td>
<td>1829.8684</td>
<td>727.3622</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>1785.9787</td>
<td>864.9723</td>
<td>798.9723</td>
<td>735.9459</td>
<td>672.9573</td>
<td>K</td>
<td>2253.9967</td>
<td>892.9491</td>
<td>2226.9491</td>
<td>871.4934</td>
<td>2224.9491</td>
<td>871.4934</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>1925.9967</td>
<td>963.5209</td>
<td>908.7972</td>
<td>845.8877</td>
<td>780.8736</td>
<td>K</td>
<td>2593.9967</td>
<td>992.9491</td>
<td>2566.9491</td>
<td>971.4934</td>
<td>2564.9491</td>
<td>971.4934</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>2059.0808</td>
<td>1020.0406</td>
<td>1055.0808</td>
<td>990.0406</td>
<td>920.0406</td>
<td>L</td>
<td>3023.9967</td>
<td>1092.9491</td>
<td>2996.9491</td>
<td>971.4934</td>
<td>2994.9491</td>
<td>971.4934</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>2167.1394</td>
<td>1084.0732</td>
<td>1120.1128</td>
<td>1055.0608</td>
<td>984.0506</td>
<td>Q</td>
<td>3392.9967</td>
<td>1182.9491</td>
<td>3365.9491</td>
<td>1162.4934</td>
<td>3363.9491</td>
<td>1162.4934</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>2395.1820</td>
<td>1148.9468</td>
<td>1184.9468</td>
<td>1140.8153</td>
<td>1104.8153</td>
<td>E</td>
<td>3611.1300</td>
<td>1281.9491</td>
<td>3584.9491</td>
<td>1262.4934</td>
<td>3582.9491</td>
<td>1262.4934</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>2553.2034</td>
<td>1277.1015</td>
<td>1313.1015</td>
<td>1268.5921</td>
<td>1228.5921</td>
<td>G</td>
<td>3869.1300</td>
<td>1368.9491</td>
<td>3842.9491</td>
<td>1349.4934</td>
<td>3840.9491</td>
<td>1349.4934</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>2735.2489</td>
<td>1417.1247</td>
<td>1453.1247</td>
<td>1404.6143</td>
<td>1364.6143</td>
<td>E</td>
<td>4085.1300</td>
<td>1453.9491</td>
<td>4058.9491</td>
<td>1434.4934</td>
<td>4056.9491</td>
<td>1434.4934</td>
<td>2</td>
</tr>
</tbody>
</table>

Match Score: 28/222 fragment ions using 67 most intense ions

Ions Score: 3.60E-06

Expected: 3.60E-06

Match: 28/222 fragment ions using 67 most intense ions
MS/MS Fragmentation of GKYVTIYTNYENGK

Found in P19157, Glutathione S-transferase P1 OS=Mus musculus GN=Gstp1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Flat from 200 to 1800 Da Full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide M r(m/e): 1047.9961
Fixed modifications: MMTS (C) apply to specified residues or termini only
Variable modifications:
K2 : Met_1056 (B), with neutral loss 42.0106
Ions Scored: 66 ExactMass: 1.7e+006
Matches : 12/152 fragment ions using 15 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>bK</th>
<th>h0</th>
<th>hK</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>yK</th>
<th>y**K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>K</td>
<td>1747.8901</td>
<td>874.4487</td>
<td>1730.8636</td>
<td>850.9354</td>
</tr>
<tr>
<td>3</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>390.2660</td>
<td>Y</td>
<td>1577.7846</td>
<td>789.3959</td>
<td>1560.7531</td>
<td>780.8827</td>
</tr>
<tr>
<td>6</td>
<td>704.3978</td>
<td>704.3978</td>
<td>704.3978</td>
<td>704.3978</td>
<td>704.3978</td>
<td>L</td>
<td>1214.6012</td>
<td>697.8062</td>
<td>1197.5786</td>
<td>590.2930</td>
</tr>
<tr>
<td>7</td>
<td>817.4189</td>
<td>817.4189</td>
<td>817.4189</td>
<td>817.4189</td>
<td>817.4189</td>
<td>I</td>
<td>1391.5211</td>
<td>651.2642</td>
<td>1084.4946</td>
<td>542.7509</td>
</tr>
<tr>
<td>8</td>
<td>980.5201</td>
<td>980.5201</td>
<td>980.5201</td>
<td>980.5201</td>
<td>980.5201</td>
<td>V</td>
<td>898.4371</td>
<td>494.7222</td>
<td>911.4105</td>
<td>486.2089</td>
</tr>
<tr>
<td>9</td>
<td>1081.5298</td>
<td>1081.5298</td>
<td>1081.5298</td>
<td>1081.5298</td>
<td>1081.5298</td>
<td>T</td>
<td>825.3373</td>
<td>413.1903</td>
<td>808.3472</td>
<td>404.8772</td>
</tr>
<tr>
<td>10</td>
<td>1195.6358</td>
<td>1195.6358</td>
<td>1195.6358</td>
<td>1195.6358</td>
<td>1195.6358</td>
<td>N</td>
<td>724.3210</td>
<td>362.6667</td>
<td>707.2995</td>
<td>354.1353</td>
</tr>
<tr>
<td>11</td>
<td>1358.6901</td>
<td>1358.6901</td>
<td>1358.6901</td>
<td>1358.6901</td>
<td>1358.6901</td>
<td>Y</td>
<td>610.2381</td>
<td>305.6452</td>
<td>593.2596</td>
<td>297.1319</td>
</tr>
<tr>
<td>13</td>
<td>1601.7846</td>
<td>1601.7846</td>
<td>1601.7846</td>
<td>1601.7846</td>
<td>1601.7846</td>
<td>N</td>
<td>318.1772</td>
<td>159.5922</td>
<td>301.1506</td>
<td>151.0790</td>
</tr>
<tr>
<td>14</td>
<td>1658.8061</td>
<td>1658.8061</td>
<td>1658.8061</td>
<td>1658.8061</td>
<td>1658.8061</td>
<td>G</td>
<td>204.1343</td>
<td>102.5700</td>
<td>187.1077</td>
<td>94.0573</td>
</tr>
<tr>
<td>15</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>147.1128</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
Fragmentation of IKAFLSSPEHVNRPINGNGK

Found in P19157, Gutathione S-transferase P | OrthoDB accession OGRGtp1 | Peptidase S182

Click mouse within plot area to zoom in by factor of two about that point.

Label all possible matches ✉️ Label matches used for scoring ✉️

Monoisotopic mass of neutral peptide Metabolife 2023.5700
Fixed modifications: **MSS** (C) (apply to specified residues or terminal only)
Variable modifications:
GS = m/z 0.059 (K), with neutral loss 49.964

Matches: 17/194 fragment ions using 25 most intense peaks (Help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b′</th>
<th>b′′</th>
<th>b′′′</th>
<th>Seq.</th>
<th>y</th>
<th>y′</th>
<th>y′′</th>
<th>y′′′</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0013</td>
<td>57.5493</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>284.1689</td>
<td>142.6621</td>
<td>267.1705</td>
<td>154.0888</td>
<td>K</td>
<td>2107.3645</td>
<td>1054.0558</td>
<td>2060.0778</td>
<td>1044.5425</td>
<td>2086.9067</td>
<td>1045.0503</td>
</tr>
<tr>
<td>3</td>
<td>166.2240</td>
<td>178.1265</td>
<td>169.5974</td>
<td>169.6074</td>
<td>A</td>
<td>1918.9898</td>
<td>949.0030</td>
<td>1919.9722</td>
<td>940.8998</td>
<td>1918.9882</td>
<td>959.9977</td>
</tr>
<tr>
<td>4</td>
<td>502.3024</td>
<td>251.6548</td>
<td>248.2183</td>
<td>248.2146</td>
<td>P</td>
<td>1865.9617</td>
<td>933.4815</td>
<td>1848.8381</td>
<td>924.9712</td>
<td>1847.8511</td>
<td>924.7924</td>
</tr>
<tr>
<td>5</td>
<td>618.3669</td>
<td>308.1849</td>
<td>298.9396</td>
<td>298.9396</td>
<td>L</td>
<td>1718.9835</td>
<td>859.9503</td>
<td>1701.9667</td>
<td>851.9430</td>
<td>1700.9827</td>
<td>850.8460</td>
</tr>
<tr>
<td>6</td>
<td>702.4115</td>
<td>351.7120</td>
<td>349.5319</td>
<td>349.5319</td>
<td>S</td>
<td>1698.8992</td>
<td>801.4082</td>
<td>1588.7826</td>
<td>794.8590</td>
<td>1537.7896</td>
<td>794.0390</td>
</tr>
<tr>
<td>7</td>
<td>789.4090</td>
<td>395.2040</td>
<td>392.2183</td>
<td>392.2183</td>
<td>S</td>
<td>1518.7772</td>
<td>759.8922</td>
<td>1501.7506</td>
<td>751.7389</td>
<td>1500.7666</td>
<td>750.8894</td>
</tr>
<tr>
<td>8</td>
<td>886.5033</td>
<td>443.7535</td>
<td>441.4767</td>
<td>441.4767</td>
<td>P</td>
<td>1431.7441</td>
<td>716.3762</td>
<td>1414.7186</td>
<td>707.6629</td>
<td>1413.7346</td>
<td>707.3709</td>
</tr>
<tr>
<td>9</td>
<td>1015.6418</td>
<td>506.2766</td>
<td>498.7623</td>
<td>498.7623</td>
<td>I</td>
<td>1334.6994</td>
<td>667.8438</td>
<td>1317.6658</td>
<td>658.3365</td>
<td>1316.6818</td>
<td>658.8445</td>
</tr>
<tr>
<td>10</td>
<td>1182.9049</td>
<td>576.8060</td>
<td>568.3228</td>
<td>568.3228</td>
<td>H</td>
<td>1201.6498</td>
<td>601.3285</td>
<td>1184.6232</td>
<td>591.8153</td>
<td>1183.6293</td>
<td>591.8153</td>
</tr>
<tr>
<td>11</td>
<td>1251.6732</td>
<td>626.3402</td>
<td>617.8270</td>
<td>617.8270</td>
<td>V</td>
<td>1068.5909</td>
<td>534.7901</td>
<td>1051.5643</td>
<td>526.2858</td>
<td>1050.5643</td>
<td>526.2858</td>
</tr>
<tr>
<td>12</td>
<td>1356.7161</td>
<td>683.9417</td>
<td>674.8484</td>
<td>674.8484</td>
<td>N</td>
<td>968.8525</td>
<td>485.2646</td>
<td>952.4595</td>
<td>476.7516</td>
<td>951.4595</td>
<td>476.7516</td>
</tr>
<tr>
<td>13</td>
<td>1321.8132</td>
<td>761.4132</td>
<td>752.8990</td>
<td>752.8990</td>
<td>E</td>
<td>815.4791</td>
<td>428.2434</td>
<td>808.4530</td>
<td>419.7301</td>
<td>807.4530</td>
<td>419.7301</td>
</tr>
<tr>
<td>14</td>
<td>1618.8700</td>
<td>809.9396</td>
<td>801.4254</td>
<td>801.4254</td>
<td>P</td>
<td>699.3764</td>
<td>350.1928</td>
<td>682.3519</td>
<td>341.6706</td>
<td>681.3519</td>
<td>341.6706</td>
</tr>
<tr>
<td>15</td>
<td>1731.9414</td>
<td>866.4807</td>
<td>857.9674</td>
<td>857.9674</td>
<td>P</td>
<td>602.3526</td>
<td>301.6665</td>
<td>585.2991</td>
<td>293.1535</td>
<td>584.2991</td>
<td>293.1535</td>
</tr>
<tr>
<td>16</td>
<td>1814.9970</td>
<td>933.5023</td>
<td>924.9890</td>
<td>924.9890</td>
<td>N</td>
<td>489.2416</td>
<td>245.1244</td>
<td>472.2150</td>
<td>236.6132</td>
<td>471.2150</td>
<td>236.6132</td>
</tr>
<tr>
<td>17</td>
<td>1963.0132</td>
<td>925.0190</td>
<td>915.4957</td>
<td>915.4957</td>
<td>G</td>
<td>375.3987</td>
<td>188.1090</td>
<td>353.8173</td>
<td>179.5897</td>
<td>352.8173</td>
<td>179.5897</td>
</tr>
<tr>
<td>18</td>
<td>2017.0614</td>
<td>1009.0343</td>
<td>1000.5116</td>
<td>1000.5116</td>
<td>N</td>
<td>518.3772</td>
<td>259.5922</td>
<td>501.1506</td>
<td>241.7074</td>
<td>500.1506</td>
<td>241.7074</td>
</tr>
<tr>
<td>19</td>
<td>2074.0828</td>
<td>1037.5413</td>
<td>1028.0282</td>
<td>1028.0282</td>
<td>G</td>
<td>204.3343</td>
<td>102.5708</td>
<td>197.1074</td>
<td>94.0575</td>
<td>196.1074</td>
<td>94.0575</td>
</tr>
<tr>
<td>20</td>
<td>2147.1128</td>
<td>1074.0600</td>
<td>1064.5385</td>
<td>1064.5385</td>
<td>K</td>
<td>124.3128</td>
<td>62.1468</td>
<td>117.0740</td>
<td>54.0475</td>
<td>116.0740</td>
<td>54.0475</td>
</tr>
</tbody>
</table>
ALPGHLKPFETLLSQNQGGK
NDYVKALPGHLKPETFILSQNQGGK
MS/MS Fragmentation of EMLQQSILK
Found in E9Q3D6, Heat shock protein HSP 90-beta (Fragment) OS=Mus musculus GN=Hsp90ab1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Pxl from 160 to 1580 Da
Label all possible matches Label matches used for scoring

Nonisotopic mass of neutral peptide Mr(calc): 1302.6853
Fixed modifications: M(C) (apply to specified residues or termini only)
Variable modifications:
K7: m+1_COO (K), with neutral loss 45.0990

Ions Score: 20 Expect: 0.047
Matches: 20/54 fragment ions using 32 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b</th>
<th>b'</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261.0404</td>
<td>131.0488</td>
<td>243.0798</td>
<td>122.0435</td>
<td>M</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>374.1744</td>
<td>187.5908</td>
<td>356.1639</td>
<td>178.5856</td>
<td>L</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>502.2330</td>
<td>251.6201</td>
<td>485.2064</td>
<td>243.1069</td>
<td>Q</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>630.2916</td>
<td>315.6494</td>
<td>613.2650</td>
<td>307.1362</td>
<td>Q</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>717.3236</td>
<td>359.1654</td>
<td>700.2971</td>
<td>350.6522</td>
<td>S</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>887.4291</td>
<td>444.2182</td>
<td>870.4026</td>
<td>435.7049</td>
<td>K</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1000.5132</td>
<td>500.7602</td>
<td>983.4866</td>
<td>492.2470</td>
<td>K</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1113.5973</td>
<td>557.3023</td>
<td>1096.5707</td>
<td>548.7890</td>
<td>L</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0865</td>
<td>65.5468</td>
<td>K</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ILKVIR

Found in P07901, **Heat shock protein HSP 90-alpha OS=** Mus musculus **GN=** Hsp90aa1 **PE=1 SV=4**

Click mouse within plot area to zoom in by factor of two about that point.

Monoisotopic mass of neutral peptide Mr(calc): 826.5276

Fixed modifications:
- **MS/MS (C)** (apply to specified residues or termini only)

Variable modifications:
- **K**
 - **mal_C02 (K), with neutral loss 48.9898**

Ions Score: 37 **Expect:** 0.0054

Matches: 10/36 fragment ions using 14 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y++</th>
<th>y*++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>L</td>
<td>670.4610</td>
<td>335.7341</td>
<td>653.4345</td>
<td>327.2209</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>397.2809</td>
<td>199.1441</td>
<td>380.2544</td>
<td>190.6308</td>
<td>K</td>
<td>557.3770</td>
<td>279.1921</td>
<td>540.3504</td>
<td>270.6788</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>496.3493</td>
<td>248.6783</td>
<td>479.3228</td>
<td>240.1650</td>
<td>V</td>
<td>387.2714</td>
<td>194.1394</td>
<td>370.2449</td>
<td>185.6261</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>609.4334</td>
<td>305.2203</td>
<td>592.4069</td>
<td>296.7071</td>
<td>I</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0919</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TMVVHEKQDDLGK

Found in P08228, Superoxide dismutase (Cu-Zn) OS=Mus musculus GN=Sod1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from blank 200 to blank 1600 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz (calc): 1554.7454
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7: oxidation (K), with neutral loss 43.0086
Incor Score: 28.0 Repeat: 6.02
Matches: 12/120 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>b</td>
<td>b'</td>
<td>b''</td>
<td>b'''</td>
<td>84.0444</td>
<td>42.5258</td>
<td>8.0550</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>233.0554</td>
<td>215.0849</td>
<td>108.0461</td>
<td>144.0751</td>
<td>720.8612</td>
<td>1423.6886</td>
<td>712.2479</td>
<td>1422.7046</td>
<td>711.8559</td>
</tr>
<tr>
<td>3</td>
<td>353.0538</td>
<td>314.5333</td>
<td>157.5808</td>
<td>1398.6747</td>
<td>653.3410</td>
<td>1292.6481</td>
<td>646.8277</td>
<td>1291.6461</td>
<td>646.3257</td>
</tr>
<tr>
<td>4</td>
<td>451.2322</td>
<td>413.2217</td>
<td>207.1145</td>
<td>1210.6063</td>
<td>603.8056</td>
<td>1193.5797</td>
<td>597.2953</td>
<td>1192.5937</td>
<td>596.8013</td>
</tr>
<tr>
<td>5</td>
<td>568.2912</td>
<td>500.2806</td>
<td>215.6439</td>
<td>1111.3228</td>
<td>556.2726</td>
<td>1094.2118</td>
<td>547.7395</td>
<td>1093.2237</td>
<td>547.8757</td>
</tr>
<tr>
<td>6</td>
<td>697.3388</td>
<td>679.3232</td>
<td>340.1552</td>
<td>974.4789</td>
<td>487.7431</td>
<td>957.4524</td>
<td>479.2298</td>
<td>956.6684</td>
<td>478.7837</td>
</tr>
<tr>
<td>7</td>
<td>787.4393</td>
<td>759.4218</td>
<td>425.7100</td>
<td>494.4287</td>
<td>252.2180</td>
<td>1042.8028</td>
<td>1041.7828</td>
<td>1040.7628</td>
<td>1039.7428</td>
</tr>
<tr>
<td>8</td>
<td>952.4979</td>
<td>978.4713</td>
<td>489.7393</td>
<td>877.4787</td>
<td>489.2473</td>
<td>765.3308</td>
<td>338.1690</td>
<td>658.3042</td>
<td>329.6538</td>
</tr>
<tr>
<td>9</td>
<td>1110.5248</td>
<td>1092.5143</td>
<td>546.7088</td>
<td>547.7202</td>
<td>724.1397</td>
<td>530.2457</td>
<td>625.6685</td>
<td>529.2671</td>
<td>625.1345</td>
</tr>
<tr>
<td>10</td>
<td>1225.5151</td>
<td>618.2795</td>
<td>504.7662</td>
<td>510.5412</td>
<td>364.2574</td>
<td>452.2453</td>
<td>216.6623</td>
<td>415.2187</td>
<td>208.1130</td>
</tr>
<tr>
<td>11</td>
<td>1338.6385</td>
<td>1321.6093</td>
<td>661.3083</td>
<td>1120.6235</td>
<td>660.8163</td>
<td>1077.4657</td>
<td>659.5790</td>
<td>1077.4657</td>
<td>659.5790</td>
</tr>
<tr>
<td>12</td>
<td>1395.6373</td>
<td>1378.6507</td>
<td>681.8190</td>
<td>1377.4657</td>
<td>659.5790</td>
<td>1377.4657</td>
<td>659.5790</td>
<td>1377.4657</td>
<td>659.5790</td>
</tr>
<tr>
<td>13</td>
<td>1477.6362</td>
<td>1451.6093</td>
<td>740.6060</td>
<td>1451.6093</td>
<td>740.6060</td>
<td>1451.6093</td>
<td>740.6060</td>
<td>1451.6093</td>
<td>740.6060</td>
</tr>
</tbody>
</table>

TMVVHEKQDDLGK
HVGDLGNVTAGKDGVANVSIEDR
MS/MS Fragmentation of FHVEEEGKGK

Found in P00401. Phosphoglycerate kinase 2. OS=Mus musculus. GN=Pgk2. PE=1. SV=1.

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from 150 to 1150 Da

Label all possible matches □ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1244.5673

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

XN : male_C02 (K), with neutral loss 43.00508

Ions Score: 36 Expect: 0.0084

Matches : 17/80 fragment ions using 38 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y++</th>
<th>y+</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0737</td>
<td>74.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>285.1346</td>
<td>143.0769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>1058.5164</td>
<td>527.7618</td>
<td>1037.4898</td>
<td>519.2485</td>
<td>1036.5038</td>
<td>518.7365</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>384.2030</td>
<td>192.6051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>917.4575</td>
<td>459.2324</td>
<td>900.4306</td>
<td>450.7191</td>
<td>896.4469</td>
<td>450.2271</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>513.2456</td>
<td>257.1264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>818.3890</td>
<td>409.6982</td>
<td>801.6325</td>
<td>401.1849</td>
<td>800.3785</td>
<td>400.6929</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>642.2882</td>
<td>321.6477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>689.3464</td>
<td>345.1769</td>
<td>672.3199</td>
<td>336.6536</td>
<td>671.3359</td>
<td>336.1716</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>771.3208</td>
<td>385.1690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>566.3639</td>
<td>280.6556</td>
<td>543.2773</td>
<td>272.1423</td>
<td>542.2933</td>
<td>271.6503</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>828.3523</td>
<td>414.6798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>431.2613</td>
<td>216.1343</td>
<td>414.2347</td>
<td>207.6210</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>998.4578</td>
<td>499.7325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>491.2193</td>
<td>981.4312</td>
<td>980.4472</td>
<td>940.7272</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1055.4791</td>
<td>538.2433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
VDFNVPMKNNQITNNQR

Hypothetical mass of neutral peptide M (calcd): 2110.9560
Fixed modifications: ME/2 (C) apply to specified residues or termini only
Variable modifications: XI 0: |val_CDE| (D), with neutral loss 0.0808
Ion Score: 94 Expect: 9.60E23
Matches: 14/176 fragment ions using 15 most intense peaks (20%)
MS/MS Fragmentation of VDFNVPMKNNQITNNQR
Found in Peptide, Phosphorylase kinase 2 OS=Mus musculus GN=Phk2 PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 400 to 1000 Da Full range
Label all possible matches □ Label matches used for scoring *

Monoisotopic mass of neutral peptide (Prtcalc): 2132.9099
Fixed modifications: M + H (apply to specified residues or terminal only)
Variable modifications:
N : Oxidation (M), with neutral losses 0.0000 (shown in table), 62.0153
K : ma002 (K), with neutral loss 44.0096
Loss Source: □ Expect: 0.00000
Matches: 22/271 fragment ions using 60 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y**</th>
<th>b*</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y**</th>
<th>y**</th>
<th>y**</th>
<th>y**</th>
<th>y**</th>
<th>y**</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>215.1072</td>
<td>108.0550</td>
<td>344.1653</td>
<td>172.5536</td>
<td>F</td>
<td>1875.9150</td>
<td>958.4601</td>
<td>1858.8865</td>
<td>929.9469</td>
<td>1857.6024</td>
<td>929.4549</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>362.1717</td>
<td>181.5822</td>
<td>513.2698</td>
<td>256.6394</td>
<td>N</td>
<td>1728.8446</td>
<td>864.9229</td>
<td>1711.8180</td>
<td>858.4127</td>
<td>1710.6240</td>
<td>853.9207</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>476.2140</td>
<td>238.6106</td>
<td>659.283</td>
<td>329.6075</td>
<td>N</td>
<td>1572.7118</td>
<td>797.775</td>
<td>1597.7312</td>
<td>799.3912</td>
<td>1596.7611</td>
<td>798.3992</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>575.2824</td>
<td>283.1448</td>
<td>755.3235</td>
<td>377.6576</td>
<td>P</td>
<td>1515.7333</td>
<td>758.3703</td>
<td>1546.7067</td>
<td>749.3870</td>
<td>1547.7227</td>
<td>749.3850</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>672.3352</td>
<td>336.6712</td>
<td>854.3686</td>
<td>432.6759</td>
<td>M</td>
<td>1418.6805</td>
<td>709.8439</td>
<td>1401.6535</td>
<td>701.3335</td>
<td>1400.6699</td>
<td>700.3856</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>781.3706</td>
<td>410.1889</td>
<td>932.4440</td>
<td>401.6756</td>
<td>M</td>
<td>1311.5396</td>
<td>583.5261</td>
<td>1254.6183</td>
<td>567.8139</td>
<td>1253.6345</td>
<td>567.3208</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>895.4761</td>
<td>457.2417</td>
<td>1021.6455</td>
<td>486.7284</td>
<td>K</td>
<td>1271.6451</td>
<td>636.5262</td>
<td>1254.6183</td>
<td>627.8139</td>
<td>1253.6345</td>
<td>627.3208</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1108.5190</td>
<td>552.2631</td>
<td>1186.6925</td>
<td>543.7499</td>
<td>N</td>
<td>1101.5396</td>
<td>551.2734</td>
<td>1084.5130</td>
<td>542.7601</td>
<td>1083.5290</td>
<td>542.2681</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1217.5619</td>
<td>609.2846</td>
<td>1295.8380</td>
<td>600.2713</td>
<td>N</td>
<td>1199.5314</td>
<td>600.2793</td>
<td>1184.5130</td>
<td>542.7601</td>
<td>1183.5290</td>
<td>542.2681</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1324.6265</td>
<td>673.3139</td>
<td>1382.8940</td>
<td>664.8006</td>
<td>Q</td>
<td>1227.6099</td>
<td>664.8086</td>
<td>1217.6099</td>
<td>664.8086</td>
<td>1217.6099</td>
<td>664.8086</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1438.7066</td>
<td>729.8559</td>
<td>1497.9927</td>
<td>721.3427</td>
<td>N</td>
<td>1440.6940</td>
<td>720.8506</td>
<td>1430.6940</td>
<td>720.8506</td>
<td>1430.6940</td>
<td>720.8506</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1559.7532</td>
<td>786.3798</td>
<td>1627.6725</td>
<td>771.1665</td>
<td>T</td>
<td>1541.7417</td>
<td>771.3745</td>
<td>1531.7417</td>
<td>761.3745</td>
<td>1531.7417</td>
<td>761.3745</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1787.8381</td>
<td>894.4227</td>
<td>1865.8627</td>
<td>888.9094</td>
<td>N</td>
<td>1769.8627</td>
<td>888.4174</td>
<td>1759.8627</td>
<td>888.4174</td>
<td>1759.8627</td>
<td>888.4174</td>
<td></td>
</tr>
</tbody>
</table>
| 17 | R | 175.1190 | 88.0631 | 158.9024 | 79.5498 | 1
MS/MS Fragmentation of **KYAEAVGR**

Found in **P09411**, Phosphoglycerate kinase 1 OS=Mus musculus GN=Pgk1 PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from: 150 to 900 Da Full range

Label all possible matches Label matches used for scoring

**Monoisotopic mass of neutral peptide Mr(calc): **978.4770

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K1 : met_COO$^-$ (K), with neutral loss 49.0000

Ions Score: 42 **Expect:** 0.0028

Matches: 9/70 fragment ions using 15 most intense peaks **(help)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''''</th>
<th>b0</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td></td>
<td></td>
<td>K</td>
<td>765.3890</td>
<td>383.1981</td>
<td>748.3624</td>
<td>374.6849</td>
<td></td>
<td>747.3784</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>167.5917</td>
<td>317.1495</td>
<td>159.0784</td>
<td>Y</td>
<td></td>
<td>A</td>
<td>602.3257</td>
<td>301.6665</td>
<td>585.2901</td>
<td>293.1532</td>
<td>584.3151</td>
<td>292.6612</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>405.2132</td>
<td>203.1103</td>
<td>388.1867</td>
<td>194.5970</td>
<td></td>
<td></td>
<td>F</td>
<td>531.2885</td>
<td>266.1479</td>
<td>514.2620</td>
<td>257.6346</td>
<td>513.2780</td>
<td>257.1426</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>534.2558</td>
<td>267.6316</td>
<td>517.2293</td>
<td>259.1183</td>
<td>516.2453</td>
<td>258.6263</td>
<td>R</td>
<td>402.2450</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>605.2930</td>
<td>303.1501</td>
<td>588.2664</td>
<td>294.6368</td>
<td>837.2824</td>
<td>294.1448</td>
<td>A</td>
<td>331.2088</td>
<td>166.1081</td>
<td>314.1823</td>
<td>157.5948</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>761.3828</td>
<td>381.1951</td>
<td>744.3563</td>
<td>372.6818</td>
<td>743.3723</td>
<td>372.1898</td>
<td>G</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>402.2450</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(help)
SVVLMSHLGRPDGVPMPDKYSLEPVAAELK
MS/MS Fragmentation of QTVAVGVIKAVDK
Found in P101256, Elongation factor 1-alpha 1 OS=Mus musculus GN=Esf1a1 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot from] 200 to 1200 Da [Full range]
Label all possible matches [Label matches used for scoring]

QTVAVGVIKAVDK

Monoisotopic mass of neutral peptide Mr(calc): 1412.7876
Fixed modifications: Met(O) (C) (apply to specified residues or termini only)
Variable modifications:
K9 : ala2-COO (K), with neutral loss 43.00955
Ions Score: 20 Expect: 0.289
Matches : 25/110 Fragment ions using 41 most intense peaks (hkl)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b</th>
<th>y</th>
<th>Seq.</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0166</td>
<td>112.0393</td>
<td>56.5233</td>
<td>Q</td>
<td>T</td>
<td>1241.7464</td>
<td>621.3768</td>
<td>1224.7193</td>
<td>612.8635</td>
<td>1223.7358</td>
<td>612.3715</td>
</tr>
<tr>
<td>2</td>
<td>236.1135</td>
<td>115.5604</td>
<td>213.0870</td>
<td>107.0471</td>
<td>212.1030</td>
<td>106.5551</td>
<td>V</td>
<td>1140.6947</td>
<td>570.8539</td>
<td>1123.8721</td>
<td>562.3397</td>
<td>1123.8881</td>
</tr>
<tr>
<td>3</td>
<td>329.1819</td>
<td>155.0946</td>
<td>312.1554</td>
<td>156.5813</td>
<td>311.1714</td>
<td>156.0895</td>
<td>V</td>
<td>1140.6947</td>
<td>570.8539</td>
<td>1123.8721</td>
<td>562.3397</td>
<td>1123.8881</td>
</tr>
<tr>
<td>4</td>
<td>400.2191</td>
<td>200.6132</td>
<td>383.1925</td>
<td>192.0999</td>
<td>382.2085</td>
<td>191.6079</td>
<td>A</td>
<td>1041.6303</td>
<td>521.3188</td>
<td>1024.8037</td>
<td>512.8023</td>
<td>1023.8197</td>
</tr>
<tr>
<td>5</td>
<td>499.2875</td>
<td>250.1474</td>
<td>482.2609</td>
<td>241.5341</td>
<td>481.2769</td>
<td>241.1421</td>
<td>V</td>
<td>970.5932</td>
<td>485.8002</td>
<td>953.5665</td>
<td>477.2869</td>
<td>952.5826</td>
</tr>
<tr>
<td>6</td>
<td>556.3089</td>
<td>278.6531</td>
<td>539.2824</td>
<td>270.1448</td>
<td>538.2984</td>
<td>269.8528</td>
<td>G</td>
<td>871.5247</td>
<td>436.2690</td>
<td>854.4882</td>
<td>427.7527</td>
<td>833.5142</td>
</tr>
<tr>
<td>7</td>
<td>655.3774</td>
<td>328.1923</td>
<td>638.3508</td>
<td>319.6790</td>
<td>637.3688</td>
<td>319.1870</td>
<td>V</td>
<td>814.5033</td>
<td>407.7553</td>
<td>797.4767</td>
<td>399.2402</td>
<td>796.4927</td>
</tr>
<tr>
<td>8</td>
<td>768.4614</td>
<td>384.7343</td>
<td>751.4149</td>
<td>376.2211</td>
<td>750.4199</td>
<td>375.7291</td>
<td>I</td>
<td>711.5424</td>
<td>358.2211</td>
<td>698.4033</td>
<td>349.7078</td>
<td>697.4213</td>
</tr>
<tr>
<td>9</td>
<td>938.5669</td>
<td>469.7871</td>
<td>921.5404</td>
<td>461.2736</td>
<td>920.5564</td>
<td>460.7813</td>
<td>K</td>
<td>602.2508</td>
<td>301.6790</td>
<td>585.3243</td>
<td>293.1653</td>
<td>584.3402</td>
</tr>
<tr>
<td>10</td>
<td>1069.645</td>
<td>530.3057</td>
<td>992.7775</td>
<td>496.7621</td>
<td>991.5935</td>
<td>496.3004</td>
<td>A</td>
<td>452.2435</td>
<td>236.6263</td>
<td>415.2187</td>
<td>208.1130</td>
<td>414.2347</td>
</tr>
<tr>
<td>12</td>
<td>1223.6924</td>
<td>612.3533</td>
<td>1206.6729</td>
<td>603.8401</td>
<td>1205.6889</td>
<td>603.3481</td>
<td>D</td>
<td>262.1597</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1123</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MBD Fragmentation of LPLQDVYKIGGIGTVPVGR
Found in P10126, Elongation factor 1 alpha 1 OS=Mus musculus GN=EF1al PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point:
Or, Plot from 100 to 1700 Da Full range
Label all possible matches Label matches used for scoring

LPLQDVYKIGGIGTVPVGR

Monoisotopic mass of neutral peptide (m) (calc): 2467.1168
Fixed modifications: HMTS (C) apply to specified residues or termini only
Variable modifications:
K: m1_22G (K) with neutral loss 41 Da
Ion Score: 52 Expect: 0.0048
Matches: 18/122 fragment ions using 14 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>y</th>
<th>y''</th>
<th>Seq</th>
<th>y'</th>
<th>y''</th>
<th>y^+</th>
<th>y''^+</th>
<th>y'^+</th>
<th>y'''^+</th>
<th>y'^'^+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.2492</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>211.1441</td>
<td>106.0737</td>
<td>P</td>
<td>1911.0898</td>
<td>956.0386</td>
<td>1894.0493</td>
<td>947.5253</td>
<td>1892.0399</td>
<td>947.0335</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>324.2282</td>
<td>162.6177</td>
<td>L</td>
<td>1814.0171</td>
<td>907.5122</td>
<td>1796.9903</td>
<td>988.9989</td>
<td>1796.0868</td>
<td>988.3069</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>452.2687</td>
<td>226.6470</td>
<td>435.2602</td>
<td>218.1337</td>
<td>Q</td>
<td>1700.9380</td>
<td>920.9071</td>
<td>1683.9064</td>
<td>842.4569</td>
<td>1682.9224</td>
<td>841.6649</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>567.3137</td>
<td>284.1605</td>
<td>550.2871</td>
<td>275.6472</td>
<td>249.8031</td>
<td>275.1552</td>
<td>D</td>
<td>1572.8744</td>
<td>786.9408</td>
<td>1555.8479</td>
<td>778.4276</td>
<td>1554.8639</td>
<td>777.9256</td>
</tr>
<tr>
<td>6</td>
<td>666.3821</td>
<td>333.6947</td>
<td>649.3596</td>
<td>325.1814</td>
<td>648.5715</td>
<td>324.8884</td>
<td>V</td>
<td>1457.8473</td>
<td>729.4274</td>
<td>1440.8209</td>
<td>720.9141</td>
<td>1439.8389</td>
<td>720.4221</td>
</tr>
<tr>
<td>8</td>
<td>899.5188</td>
<td>440.7291</td>
<td>882.5344</td>
<td>491.7658</td>
<td>881.5404</td>
<td>491.3735</td>
<td>K</td>
<td>1195.7157</td>
<td>598.5611</td>
<td>1178.6892</td>
<td>585.8482</td>
<td>1177.7052</td>
<td>585.3567</td>
</tr>
<tr>
<td>9</td>
<td>1113.6350</td>
<td>556.8213</td>
<td>1095.6085</td>
<td>548.3079</td>
<td>1094.6245</td>
<td>547.8119</td>
<td>I</td>
<td>1025.6102</td>
<td>513.3087</td>
<td>1008.5937</td>
<td>504.7855</td>
<td>1007.5996</td>
<td>504.3035</td>
</tr>
<tr>
<td>10</td>
<td>1169.6565</td>
<td>583.3316</td>
<td>1152.6299</td>
<td>576.8186</td>
<td>1151.6459</td>
<td>576.3266</td>
<td>G</td>
<td>913.5261</td>
<td>456.7667</td>
<td>895.4966</td>
<td>448.2354</td>
<td>894.5156</td>
<td>447.7614</td>
</tr>
<tr>
<td>11</td>
<td>1236.6789</td>
<td>615.8426</td>
<td>1218.6514</td>
<td>605.3293</td>
<td>1208.6674</td>
<td>604.8375</td>
<td>G</td>
<td>853.5047</td>
<td>428.2560</td>
<td>838.4781</td>
<td>419.7427</td>
<td>837.4841</td>
<td>419.2507</td>
</tr>
<tr>
<td>12</td>
<td>1339.7620</td>
<td>670.3846</td>
<td>1322.7355</td>
<td>661.8714</td>
<td>1321.7515</td>
<td>661.3764</td>
<td>F</td>
<td>768.4832</td>
<td>398.7452</td>
<td>751.4657</td>
<td>391.2320</td>
<td>750.4727</td>
<td>390.7400</td>
</tr>
<tr>
<td>13</td>
<td>1566.8336</td>
<td>698.8954</td>
<td>1549.7989</td>
<td>691.3831</td>
<td>1547.8739</td>
<td>690.8961</td>
<td>G</td>
<td>681.3892</td>
<td>345.2032</td>
<td>668.3782</td>
<td>334.6899</td>
<td>667.3886</td>
<td>334.1979</td>
</tr>
<tr>
<td>14</td>
<td>1497.8312</td>
<td>749.4192</td>
<td>1480.8046</td>
<td>740.9059</td>
<td>1479.8206</td>
<td>740.4139</td>
<td>T</td>
<td>628.8777</td>
<td>314.6925</td>
<td>611.3311</td>
<td>306.1792</td>
<td>610.3671</td>
<td>305.6872</td>
</tr>
<tr>
<td>15</td>
<td>1596.8966</td>
<td>786.9514</td>
<td>1579.8730</td>
<td>780.4401</td>
<td>1578.8890</td>
<td>780.9481</td>
<td>V</td>
<td>527.5159</td>
<td>264.1686</td>
<td>510.5032</td>
<td>255.6514</td>
<td>509.5140</td>
<td>255.1593</td>
</tr>
<tr>
<td>16</td>
<td>1693.9523</td>
<td>847.4706</td>
<td>1676.9258</td>
<td>838.9665</td>
<td>1675.9418</td>
<td>838.4744</td>
<td>P</td>
<td>428.2616</td>
<td>214.6344</td>
<td>411.2350</td>
<td>206.1212</td>
<td>410.2437</td>
<td>205.6295</td>
</tr>
<tr>
<td>17</td>
<td>1793.0208</td>
<td>897.0140</td>
<td>1775.9942</td>
<td>888.5007</td>
<td>1775.0162</td>
<td>888.0087</td>
<td>V</td>
<td>331.2088</td>
<td>166.1081</td>
<td>314.1823</td>
<td>157.5948</td>
<td>313.1906</td>
<td>157.1081</td>
</tr>
<tr>
<td>18</td>
<td>1850.0422</td>
<td>925.5347</td>
<td>1833.0157</td>
<td>917.0115</td>
<td>1832.0315</td>
<td>916.5195</td>
<td>R</td>
<td>175.1150</td>
<td>88.8631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>157.9373</td>
<td>79.0561</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

LPLQDVYKIGGIGTVPVGR
MS/MS Fragmentation of **VGEFSGANKEK**

Found in P10639, Thioredoxin OS=Mus musculus GN=Txm PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 150 to 1200 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1260.6779

Fixed modifications: HMTS (C) (apply to specified residues or termini only)

Variable modifications: K9 : ma_C=O (K), with neutral loss 43.9898

Ions Score: 42 Expect: 0.00069

Matches : 18/100 fragment ions using 40 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+</th>
<th>b*</th>
<th>b**++</th>
<th>b*</th>
<th>b**+++</th>
<th>Seq.</th>
<th>y</th>
<th>y**+</th>
<th>y*</th>
<th>y**++</th>
<th>y*</th>
<th>y**+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>157.0972</td>
<td>79.0522</td>
<td></td>
<td>G</td>
<td>1198.3269</td>
<td>554.7671</td>
<td>1091.5004</td>
<td>546.2538</td>
<td>1000.5164</td>
<td>545.7618</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>286.1397</td>
<td>143.5735</td>
<td></td>
<td>E</td>
<td>1051.5035</td>
<td>526.2564</td>
<td>1034.4789</td>
<td>517.7431</td>
<td>1033.4949</td>
<td>517.2511</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>433.2382</td>
<td>217.1077</td>
<td></td>
<td>F</td>
<td>922.4629</td>
<td>461.7351</td>
<td>905.4368</td>
<td>453.2218</td>
<td>904.4523</td>
<td>452.7298</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>520.2402</td>
<td>260.6237</td>
<td></td>
<td>S</td>
<td>775.3945</td>
<td>388.2009</td>
<td>758.3679</td>
<td>379.8676</td>
<td>757.3839</td>
<td>379.1956</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>577.2617</td>
<td>289.1345</td>
<td></td>
<td>G</td>
<td>688.3624</td>
<td>344.6849</td>
<td>671.3359</td>
<td>336.1716</td>
<td>670.3519</td>
<td>335.6706</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>762.3417</td>
<td>381.6745</td>
<td></td>
<td>N</td>
<td>560.3839</td>
<td>280.6556</td>
<td>543.2773</td>
<td>272.1423</td>
<td>542.2933</td>
<td>271.6503</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>932.4472</td>
<td>466.7272</td>
<td></td>
<td>K</td>
<td>446.2669</td>
<td>223.6341</td>
<td>429.2344</td>
<td>215.1208</td>
<td>428.2504</td>
<td>214.6288</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1061.4898</td>
<td>531.2485</td>
<td></td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

VGEFSGANKEK
LLLPGELAKHAVSEGTK

MS/MS Fragmentation of LLLPGELAKHAVSEGTK
Found in P10853, Histone H2B type 1-F, J. Ob. Mus musculus GN=Hist1h2bf PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from to Da Full range
Label all possible matches Label matches used for scoring

Macroscopic mass of neutral peptide Mr(m/z): 1047.3998
Fixed modifications: M (C) apply to specified residues or termini only
Variable modification: K : m1_c
with neutral loss 48.0595
iu score: 88 Expect: 0.0005
Matches : 45/156 fragments using 55 most intense peaks

```
<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>di</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>L</td>
<td>1691.9327</td>
<td>846.4700</td>
<td>1574.9061</td>
<td>837.0567</td>
<td>1673.9221</td>
<td>837.4647</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>340.2595</td>
<td>170.6334</td>
<td>L</td>
<td>1578.8466</td>
<td>789.9279</td>
<td>1561.8221</td>
<td>781.4147</td>
<td>1560.8180</td>
<td>780.8227</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>437.3122</td>
<td>219.1560</td>
<td>P</td>
<td>1465.7645</td>
<td>733.3835</td>
<td>1448.7380</td>
<td>724.8726</td>
<td>1447.7340</td>
<td>724.8106</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>404.3317</td>
<td>247.6705</td>
<td>G</td>
<td>1368.7118</td>
<td>684.8595</td>
<td>1351.6852</td>
<td>676.3482</td>
<td>1350.7012</td>
<td>675.8542</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>623.3763</td>
<td>312.1858</td>
<td>603.3657</td>
<td>303.1865</td>
<td>E</td>
<td>1311.6983</td>
<td>656.3488</td>
<td>1294.6658</td>
<td>647.8335</td>
<td>1293.6797</td>
<td>647.3435</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>736.4604</td>
<td>368.7336</td>
<td>718.4498</td>
<td>359.7285</td>
<td>L</td>
<td>1182.6477</td>
<td>591.8273</td>
<td>1165.6212</td>
<td>583.3142</td>
<td>1164.6371</td>
<td>582.8222</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>807.4975</td>
<td>404.2224</td>
<td>789.4366</td>
<td>393.2471</td>
<td>A</td>
<td>1989.3687</td>
<td>953.2853</td>
<td>1922.3371</td>
<td>926.7722</td>
<td>1913.3581</td>
<td>926.8202</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>977.6010</td>
<td>489.3091</td>
<td>960.5764</td>
<td>480.7919</td>
<td>K</td>
<td>998.5263</td>
<td>499.7669</td>
<td>981.5000</td>
<td>491.2336</td>
<td>980.5180</td>
<td>490.7616</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1183.6990</td>
<td>593.3511</td>
<td>1168.6725</td>
<td>584.3399</td>
<td>1167.6685</td>
<td>584.3479</td>
<td>A</td>
<td>691.3637</td>
<td>346.1847</td>
<td>674.3355</td>
<td>337.6714</td>
<td>673.3515</td>
<td>337.1974</td>
</tr>
<tr>
<td>12</td>
<td>1284.7674</td>
<td>642.3847</td>
<td>1267.7409</td>
<td>634.3741</td>
<td>1266.7566</td>
<td>633.8821</td>
<td>V</td>
<td>620.3239</td>
<td>310.6661</td>
<td>603.2948</td>
<td>302.1293</td>
<td>602.3144</td>
<td>310.6608</td>
</tr>
<tr>
<td>13</td>
<td>1371.7995</td>
<td>685.4034</td>
<td>1354.7729</td>
<td>677.8901</td>
<td>1353.7889</td>
<td>677.3981</td>
<td>S</td>
<td>521.2566</td>
<td>261.1319</td>
<td>504.2390</td>
<td>252.8160</td>
<td>503.2460</td>
<td>252.2266</td>
</tr>
<tr>
<td>14</td>
<td>1456.8421</td>
<td>750.9247</td>
<td>1433.8135</td>
<td>742.4114</td>
<td>1422.8321</td>
<td>741.9194</td>
<td>E</td>
<td>434.2245</td>
<td>217.6199</td>
<td>417.1890</td>
<td>209.1026</td>
<td>416.2140</td>
<td>208.6106</td>
</tr>
<tr>
<td>15</td>
<td>1577.8615</td>
<td>779.4049</td>
<td>1560.8370</td>
<td>770.9231</td>
<td>1559.8530</td>
<td>770.4301</td>
<td>G</td>
<td>303.1819</td>
<td>153.0946</td>
<td>288.1554</td>
<td>144.8813</td>
<td>287.1174</td>
<td>144.6892</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

| di | 147.1128 | 74.0900 | 130.0863 | 65.5488 |    |
```
MS/MS Fragmentation of SLHDALCVVKR

Found in P11983, T-complex protein 1 subunit alpha OS=Mus musculus GN=Tcp1 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide M(m/z): 1071.6659
Fixed modifications: HexS (C) (apply to specified residues or termini only)
Variable modifications:
K10: mal_CDG (E), with neutral loss 41.9908
Ions Score: 80 Expect: 0.0013
Matches: 17/35 fragment ions using 43 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**+</th>
<th>y0</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td>1241.6493</td>
<td>621.3283</td>
<td>1224.6228</td>
<td>612.8150</td>
<td>1223.6387</td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0600</td>
<td>L</td>
<td>1241.6493</td>
<td>621.3283</td>
<td>1224.6228</td>
<td>612.8150</td>
<td>1223.6387</td>
</tr>
<tr>
<td>3</td>
<td>318.1823</td>
<td>169.5948</td>
<td>320.1717</td>
<td>160.5895</td>
<td>H</td>
<td>1118.5652</td>
<td>564.7863</td>
<td>1111.5387</td>
<td>556.2730</td>
<td>1110.5547</td>
</tr>
<tr>
<td>4</td>
<td>455.2099</td>
<td>227.1082</td>
<td>435.1987</td>
<td>218.1030</td>
<td>D</td>
<td>991.5062</td>
<td>496.2568</td>
<td>974.4798</td>
<td>487.7425</td>
<td>973.4928</td>
</tr>
<tr>
<td>5</td>
<td>522.2463</td>
<td>262.6268</td>
<td>506.2383</td>
<td>253.6215</td>
<td>A</td>
<td>876.4794</td>
<td>438.7433</td>
<td>859.4528</td>
<td>430.2301</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>637.3304</td>
<td>319.1688</td>
<td>619.3198</td>
<td>310.1536</td>
<td>L</td>
<td>805.4422</td>
<td>403.2348</td>
<td>788.4157</td>
<td>394.7115</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>786.3273</td>
<td>393.6673</td>
<td>768.3167</td>
<td>384.6620</td>
<td>C</td>
<td>692.3582</td>
<td>346.6827</td>
<td>675.3317</td>
<td>338.1605</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>885.3957</td>
<td>443.2015</td>
<td>867.3852</td>
<td>434.1962</td>
<td>V</td>
<td>543.2613</td>
<td>272.1843</td>
<td>526.3348</td>
<td>263.6710</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>984.4614</td>
<td>492.7357</td>
<td>966.4536</td>
<td>483.7304</td>
<td>Y</td>
<td>444.3929</td>
<td>222.8501</td>
<td>427.2863</td>
<td>214.1368</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1154.5697</td>
<td>577.7885</td>
<td>1137.5431</td>
<td>569.2752</td>
<td>1136.5391</td>
<td>568.7832</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DLYLENPEIKIR

Found in P21981, Protein-glutamine gamma-glutamyltransferase 2 OS=Mus musculus GN=Tgm2 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or Range [200] to [1500] Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 1597.8144

- Fixed modifications: M25 (O) (apply to specified residues or termini only)
- Variable modifications: K10: mal-COO (K), with neutral loss 63.01503

Zone Score: 21 Expect: 0.1

Matches: 16/114 fragment ions using 30 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>m/z</th>
<th>b</th>
<th>b^2</th>
<th>b^3</th>
<th>b^4</th>
<th>b^6</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^++++</th>
<th>M</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>239.1183</td>
<td>115.0628</td>
<td>211.1977</td>
<td>106.0375</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>392.1816</td>
<td>195.0944</td>
<td>374.1710</td>
<td>187.5892</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>505.2657</td>
<td>253.1365</td>
<td>487.3551</td>
<td>244.1312</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>634.3083</td>
<td>317.6578</td>
<td>616.2977</td>
<td>308.6525</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>748.3512</td>
<td>374.6792</td>
<td>731.3246</td>
<td>368.1669</td>
<td>730.3406</td>
<td>365.6740</td>
<td>616.2977</td>
<td>308.6525</td>
<td>142.8049</td>
<td>1412.7784</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
</tr>
<tr>
<td>7</td>
<td>845.4040</td>
<td>423.2056</td>
<td>828.7774</td>
<td>414.6923</td>
<td>827.3934</td>
<td>414.2093</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>974.4466</td>
<td>487.7269</td>
<td>957.4200</td>
<td>479.2136</td>
<td>956.4360</td>
<td>478.7216</td>
<td>827.3934</td>
<td>414.2093</td>
<td>715.4061</td>
<td>4141.7944</td>
<td>706.8928</td>
<td>1141.7944</td>
<td>715.4061</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1087.5366</td>
<td>544.2689</td>
<td>1070.5041</td>
<td>555.7557</td>
<td>1069.5201</td>
<td>555.2637</td>
<td>957.4200</td>
<td>479.2136</td>
<td>956.4360</td>
<td>478.7216</td>
<td>827.3934</td>
<td>414.2093</td>
<td>715.4061</td>
<td>4141.7944</td>
</tr>
<tr>
<td>10</td>
<td>1257.6381</td>
<td>620.3217</td>
<td>1240.6096</td>
<td>620.8084</td>
<td>1239.6256</td>
<td>620.3164</td>
<td>1070.5041</td>
<td>555.7557</td>
<td>1069.5201</td>
<td>555.2637</td>
<td>957.4200</td>
<td>479.2136</td>
<td>956.4360</td>
<td>478.7216</td>
</tr>
</tbody>
</table>

DLYLENPEIKIR
SVEVSDPVPGDLVKAR
MS/MS Fragmentation of FHYKTDQGIK

Found in P24270, Catalase O8-Mus musculus GN=Cat PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1200 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1331.6303

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- K4 : mas_G2O (K), with neutral loss 43.0598

Score: 72, **Expect:** 0.17

Matches: 7/80 fragment ions using 10 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y0</th>
<th>y0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>285.1346</td>
<td>143.0709</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>448.1879</td>
<td>224.6026</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>618.3035</td>
<td>509.6554</td>
<td>601.2769</td>
<td>301.1421</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>719.3511</td>
<td>380.1792</td>
<td>702.3246</td>
<td>351.6639</td>
<td>701.3408</td>
<td>351.1738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>834.3781</td>
<td>417.6827</td>
<td>817.3515</td>
<td>409.1794</td>
<td>816.3675</td>
<td>408.6874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>962.4367</td>
<td>481.7200</td>
<td>945.4101</td>
<td>473.2087</td>
<td>944.4261</td>
<td>472.7167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1019.4581</td>
<td>510.2327</td>
<td>1002.4316</td>
<td>501.7194</td>
<td>1001.4476</td>
<td>501.2274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1132.5422</td>
<td>556.7747</td>
<td>1115.5156</td>
<td>558.2615</td>
<td>1114.5316</td>
<td>557.7694</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

FHYKTDQGIK
MS/MS Fragmentation of **TFYTKVLNEEER**

Found in P24270. Catalase OS=Mus musculus GN=Cat PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point

O1, Platform from 200 to 1500 Da [Full range]
Label all possible matches ☑ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(mole): 1613.7972

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
- K6: w, m(+), o(+)
- K: w, m(+), o(+)
- N: w, m(+), o(+)

Ions Score: 24 **Expect:** 0.0009

Matches: 76/122 fragment ions using 70 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b'''</th>
<th>b''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>y'''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''</th>
<th>y'''</th>
<th>y''</th>
<th>y''''</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5211</td>
<td>84.0444</td>
<td>42.5258</td>
<td>F</td>
<td>1469.7271</td>
<td>735.3672</td>
<td>1452.7005</td>
<td>726.8539</td>
<td>1451.7165</td>
<td>726.3619</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>249.1234</td>
<td>125.0653</td>
<td>331.1128</td>
<td>116.0600</td>
<td>Y</td>
<td>1322.6587</td>
<td>661.8330</td>
<td>1305.6321</td>
<td>653.3197</td>
<td>1304.6481</td>
<td>652.8277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>642.1867</td>
<td>206.5970</td>
<td>394.1761</td>
<td>197.5917</td>
<td>K</td>
<td>1058.5377</td>
<td>529.7775</td>
<td>1041.5221</td>
<td>521.2842</td>
<td>1040.5371</td>
<td>520.7272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>413.2344</td>
<td>127.1208</td>
<td>495.2238</td>
<td>248.1125</td>
<td>T</td>
<td>1159.5953</td>
<td>580.3013</td>
<td>1142.3566</td>
<td>571.7880</td>
<td>1141.3848</td>
<td>571.2969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>683.3399</td>
<td>342.1736</td>
<td>666.3134</td>
<td>333.6603</td>
<td>K</td>
<td>1058.5377</td>
<td>529.7775</td>
<td>1041.5221</td>
<td>521.2842</td>
<td>1040.5371</td>
<td>520.7272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>782.4032</td>
<td>391.7079</td>
<td>765.3818</td>
<td>383.1945</td>
<td>V</td>
<td>884.4421</td>
<td>444.7247</td>
<td>871.4156</td>
<td>436.2114</td>
<td>870.4316</td>
<td>425.7194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>895.4294</td>
<td>448.2498</td>
<td>878.4658</td>
<td>439.7366</td>
<td>L</td>
<td>789.3717</td>
<td>395.1905</td>
<td>772.3472</td>
<td>386.6772</td>
<td>771.3632</td>
<td>386.1852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1069.5352</td>
<td>505.2713</td>
<td>992.5088</td>
<td>496.7380</td>
<td>N</td>
<td>676.2897</td>
<td>338.6485</td>
<td>659.2631</td>
<td>330.1352</td>
<td>658.2791</td>
<td>329.6432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1158.5779</td>
<td>599.7928</td>
<td>1121.3314</td>
<td>581.2793</td>
<td>E</td>
<td>362.2467</td>
<td>281.6270</td>
<td>345.2202</td>
<td>273.1137</td>
<td>344.2862</td>
<td>272.6217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1267.6205</td>
<td>634.3139</td>
<td>1220.5939</td>
<td>625.8006</td>
<td>R</td>
<td>433.2041</td>
<td>217.1057</td>
<td>416.1778</td>
<td>208.3924</td>
<td>415.1936</td>
<td>208.1004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1396.8631</td>
<td>698.8332</td>
<td>1379.8365</td>
<td>690.3219</td>
<td>R</td>
<td>304.1613</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1119</td>
<td>143.5791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1525.0055</td>
<td>759.8610</td>
<td>1508.9583</td>
<td>752.3492</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>157.5078</td>
<td>79.0648</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GASIVEDKLVEDLK
Found in P26443, Glutamate dehydrogenase 1, mitochondrial OS=Mus musculus GN=Glud1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1000 Da

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1600.9196
Fixed modifications: M(T) (C) (apply to specified residues or terminal only)
Variable modifications:
K8 = mal, CO2 (K), with neutral loss 42.0058

Ions Score: 27 Mascot Prob: 0.0007
Matches : 52/124 fragment ions using 80 most intense peaks

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b+1</th>
<th>b+2</th>
<th>b+3</th>
<th>Seq.</th>
<th>y</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>y+4</th>
<th>y+5</th>
<th>y+6</th>
<th>y+7</th>
<th>y+8</th>
<th>y+9</th>
<th>y+10</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0387</td>
<td>29.5180</td>
<td>G</td>
<td>1500.8156</td>
<td>750.9114</td>
<td>1483.7890</td>
<td>742.3981</td>
<td>1482.8030</td>
<td>741.9061</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>120.0659</td>
<td>65.0386</td>
<td>A</td>
<td>1485.7890</td>
<td>743.3980</td>
<td>1482.8030</td>
<td>741.9061</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>216.0979</td>
<td>108.0336</td>
<td>198.0873</td>
<td>99.5473</td>
<td>S</td>
<td>1429.7785</td>
<td>712.3929</td>
<td>1412.7519</td>
<td>706.8795</td>
<td>1411.7679</td>
<td>706.8787</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>327.1219</td>
<td>165.0604</td>
<td>311.1714</td>
<td>155.0893</td>
<td>I</td>
<td>1342.7464</td>
<td>671.3783</td>
<td>1325.7199</td>
<td>655.3633</td>
<td>1324.7339</td>
<td>662.8716</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>428.2504</td>
<td>214.1203</td>
<td>410.2398</td>
<td>205.6253</td>
<td>V</td>
<td>1229.6624</td>
<td>615.3348</td>
<td>1212.6358</td>
<td>606.8215</td>
<td>1211.6518</td>
<td>606.3295</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>529.2890</td>
<td>279.1501</td>
<td>539.2842</td>
<td>270.1448</td>
<td>E</td>
<td>1136.5939</td>
<td>565.8006</td>
<td>1113.5674</td>
<td>557.3873</td>
<td>1112.5834</td>
<td>556.7853</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>627.1509</td>
<td>316.6636</td>
<td>654.3081</td>
<td>327.6583</td>
<td>D</td>
<td>1001.5514</td>
<td>501.2794</td>
<td>984.5248</td>
<td>492.7660</td>
<td>983.5408</td>
<td>492.2740</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>842.4254</td>
<td>421.7164</td>
<td>823.3989</td>
<td>413.3031</td>
<td>834.4149</td>
<td>412.7111</td>
<td>K</td>
<td>886.5244</td>
<td>442.7658</td>
<td>869.4979</td>
<td>435.2526</td>
<td>988.5138</td>
<td>434.7605</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1054.5757</td>
<td>527.7926</td>
<td>1037.5314</td>
<td>519.7279</td>
<td>1036.5673</td>
<td>518.7873</td>
<td>V</td>
<td>692.3348</td>
<td>302.1710</td>
<td>586.3083</td>
<td>293.6578</td>
<td>585.3243</td>
<td>293.1658</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1183.6202</td>
<td>592.3139</td>
<td>1166.5993</td>
<td>583.8006</td>
<td>1165.6099</td>
<td>583.3065</td>
<td>E</td>
<td>594.2264</td>
<td>252.6368</td>
<td>487.2399</td>
<td>244.1236</td>
<td>486.2358</td>
<td>243.6316</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1298.6474</td>
<td>649.8274</td>
<td>1281.6209</td>
<td>641.3141</td>
<td>1280.6369</td>
<td>640.8221</td>
<td>D</td>
<td>375.2238</td>
<td>188.1125</td>
<td>359.1973</td>
<td>179.6023</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1411.7318</td>
<td>708.3694</td>
<td>1394.7090</td>
<td>697.8361</td>
<td>1393.7209</td>
<td>697.2641</td>
<td>L</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0883</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|14 | K | 147.1128 | 74.0500 | 130.0843 | 65.5486 | 1
MS/MS Fragmentation of YNLYGKDMK
Found in P30116, Glutathione S-transferase A3 OS=Mus musculus GN=Gsta3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, plot from 150 to 1150 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1222.59933
Fixed modifications: M(D) (C) (apply to specified residues or termini only)
Variable modifications:
K6 : niV (V), with neutral loss 41.0080
M8 : Oxidation (M), with neutral losses 0.0000 (shown in table), 60.9880
Ions Score: 27 Expect: 0.0080
Matches : 18/124 fragment ions using 10 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>b^0</th>
<th>b^0++</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1026.4025</td>
<td>513.7409</td>
<td>1009.4659</td>
<td>505.2366</td>
<td>1008.4819</td>
</tr>
<tr>
<td>2</td>
<td>278.1135</td>
<td>130.5604</td>
<td>261.0870</td>
<td>131.0471</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>554.2609</td>
<td>277.6341</td>
<td>537.2344</td>
<td>269.1108</td>
<td>Y</td>
<td></td>
<td></td>
<td>799.3655</td>
<td>400.1864</td>
<td>782.3389</td>
<td>391.6731</td>
<td>781.3549</td>
</tr>
<tr>
<td>5</td>
<td>611.2824</td>
<td>306.1448</td>
<td>594.2550</td>
<td>297.6316</td>
<td>G</td>
<td></td>
<td></td>
<td>636.3621</td>
<td>318.6547</td>
<td>619.2756</td>
<td>310.1414</td>
<td>618.2916</td>
</tr>
<tr>
<td>6</td>
<td>781.3879</td>
<td>391.1976</td>
<td>764.3614</td>
<td>382.8443</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>896.4149</td>
<td>448.7111</td>
<td>879.3883</td>
<td>440.1978</td>
<td>D</td>
<td></td>
<td></td>
<td>499.1751</td>
<td>205.0912</td>
<td>392.1486</td>
<td>196.5779</td>
<td>391.1646</td>
</tr>
<tr>
<td>8</td>
<td>1043.4503</td>
<td>522.2288</td>
<td>1026.4227</td>
<td>513.7155</td>
<td>M</td>
<td></td>
<td></td>
<td>294.1482</td>
<td>147.5777</td>
<td>277.1217</td>
<td>139.0645</td>
<td>147.1123</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YFPAFEKVLK
Found in P30115, Glutathione S-transferase A3 OS=Mus musculus GN=Gsta3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1000 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1326.6250
Fixed modifications: C(5) (C) (apply to specified residues or termini only)
Variable modifications:
K7 : m/z CO2 (K), with neutral loss 43.0150
Ions Score: 16 Expect: 0.22
Matches: 28/75 fragment ions using 74 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>Seq</th>
<th>b</th>
<th>b**</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>y</th>
<th>y**</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>164.0706</td>
<td>82.5389</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>311.1390</td>
<td>156.0731</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>408.1918</td>
<td>204.5995</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>479.2289</td>
<td>249.1181</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>626.2973</td>
<td>313.6323</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>755.3899</td>
<td>378.1736</td>
<td>737.3293</td>
<td>369.1683</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>925.4454</td>
<td>465.2264</td>
<td>908.4189</td>
<td>454.7131</td>
<td>907.4349</td>
<td>454.2211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>1024.5138</td>
<td>512.7606</td>
<td>1007.4873</td>
<td>504.2473</td>
<td>1006.5033</td>
<td>502.7553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>1117.5979</td>
<td>569.3026</td>
<td>1120.5714</td>
<td>560.7895</td>
<td>1119.5873</td>
<td>560.2973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0833</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

YFPAFEKVLK
MS/MS Fragmentation of KLEEGEQFVK
Found in P32020, Non-specific lipid-transfer protein OS=Mus musculus GN=Scp2 PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1420.6722
Fixed modifications: HETR (C) (apply to specified residues or termini only)
Variable modifications:
K: Fla_002 (M), with neutral loss 44.0590
Ions Score: 34 Expect: 0.0037
Matches : 21/108 fragment ions using 22 more intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>89.0690</td>
<td>154.0853</td>
<td>77.3468</td>
<td>K</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1925</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0838</td>
<td>L</td>
<td>1207.5841</td>
<td>694.2657</td>
<td>1190.5776</td>
<td>595.7824</td>
<td>1189.5735</td>
<td>595.7904</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>413.2295</td>
<td>207.1234</td>
<td>395.2129</td>
<td>198.6101</td>
<td>E</td>
<td>1094.5800</td>
<td>547.7537</td>
<td>1077.4735</td>
<td>539.2404</td>
<td>1076.4895</td>
<td>538.7484</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>542.2821</td>
<td>271.6447</td>
<td>525.2555</td>
<td>263.1214</td>
<td>E</td>
<td>965.4575</td>
<td>483.2524</td>
<td>948.4369</td>
<td>474.7191</td>
<td>947.4669</td>
<td>474.2271</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>671.3246</td>
<td>336.1680</td>
<td>654.2981</td>
<td>327.6527</td>
<td>E</td>
<td>836.4149</td>
<td>418.7111</td>
<td>819.3883</td>
<td>410.1978</td>
<td>818.4043</td>
<td>409.7028</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>728.3461</td>
<td>364.6767</td>
<td>711.3196</td>
<td>356.1634</td>
<td>E</td>
<td>707.3723</td>
<td>354.1898</td>
<td>690.3457</td>
<td>345.6765</td>
<td>689.3617</td>
<td>345.1845</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>985.4475</td>
<td>493.2273</td>
<td>968.4207</td>
<td>484.7140</td>
<td>Q</td>
<td>521.5082</td>
<td>261.1577</td>
<td>504.2817</td>
<td>252.6445</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1112.2137</td>
<td>566.7615</td>
<td>1115.4891</td>
<td>558.2482</td>
<td>F</td>
<td>393.2496</td>
<td>197.1285</td>
<td>376.2231</td>
<td>188.6152</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1211.5841</td>
<td>616.2957</td>
<td>1214.5576</td>
<td>607.7824</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IETVNKSWNALAAPSEK
Found in P23717, Cytoplasmic aconitate hydratase OG=Mus musculus ON=Aco1 PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Me(calc): 1442.5464
Fixed modifications: NMTS (C) Apply to specified residues or terminal only
Variable modifications:
NA
 : m/z, 282 (R), with nominal mass 68.0000
Ion Score: 99, Expect: 9.00E-11
Method: 24/180 fragment Ion using 61 most intense peaks (calc)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y0</th>
<th>y0'</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1140.0913</td>
<td>57.3403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1786.8970</td>
<td>839.9521</td>
<td>1769.8705</td>
<td>865.4389</td>
<td>1768.8664</td>
<td>858.4960</td>
</tr>
<tr>
<td>3</td>
<td>344.1816</td>
<td>172.5944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1657.8244</td>
<td>820.4508</td>
<td>1640.8279</td>
<td>820.9176</td>
<td>1439.8436</td>
<td>820.4246</td>
</tr>
<tr>
<td>4</td>
<td>443.2560</td>
<td>222.1297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1556.8067</td>
<td>778.9076</td>
<td>1538.7802</td>
<td>770.3037</td>
<td>1538.7662</td>
<td>769.9017</td>
</tr>
<tr>
<td>5</td>
<td>537.2919</td>
<td>279.1351</td>
<td>540.2694</td>
<td>270.6598</td>
<td>539.2834</td>
<td>270.1448</td>
<td>N</td>
<td>1437.7268</td>
<td>720.3728</td>
<td>1440.7118</td>
<td>720.8395</td>
<td>1367.7278</td>
<td>720.3675</td>
</tr>
<tr>
<td>6</td>
<td>727.5965</td>
<td>364.2039</td>
<td>710.3719</td>
<td>355.6896</td>
<td>709.3879</td>
<td>355.1876</td>
<td>K</td>
<td>1143.6954</td>
<td>672.3513</td>
<td>1126.6688</td>
<td>663.8381</td>
<td>1125.6484</td>
<td>663.3451</td>
</tr>
<tr>
<td>7</td>
<td>814.4369</td>
<td>407.2189</td>
<td>797.4046</td>
<td>399.2039</td>
<td>796.4199</td>
<td>398.7136</td>
<td>S</td>
<td>1111.3819</td>
<td>587.2298</td>
<td>1106.5833</td>
<td>578.7853</td>
<td>1115.3679</td>
<td>587.2933</td>
</tr>
<tr>
<td>8</td>
<td>1000.5084</td>
<td>500.7555</td>
<td>983.4833</td>
<td>492.5433</td>
<td>982.4983</td>
<td>491.7323</td>
<td>W</td>
<td>1086.5578</td>
<td>543.7826</td>
<td>1069.5313</td>
<td>535.2693</td>
<td>1066.5473</td>
<td>534.7773</td>
</tr>
<tr>
<td>9</td>
<td>1114.5257</td>
<td>537.3800</td>
<td>1097.5262</td>
<td>549.2687</td>
<td>1096.5422</td>
<td>548.7747</td>
<td>N</td>
<td>990.4783</td>
<td>450.7429</td>
<td>932.4520</td>
<td>442.2596</td>
<td>918.4780</td>
<td>441.7376</td>
</tr>
<tr>
<td>10</td>
<td>1185.5889</td>
<td>593.5966</td>
<td>1168.5636</td>
<td>584.7853</td>
<td>1167.5793</td>
<td>584.2933</td>
<td>A</td>
<td>986.4356</td>
<td>453.7214</td>
<td>769.4000</td>
<td>385.2082</td>
<td>768.4250</td>
<td>384.7162</td>
</tr>
<tr>
<td>12</td>
<td>1369.7118</td>
<td>685.3592</td>
<td>1352.3845</td>
<td>676.8459</td>
<td>1351.7005</td>
<td>676.3539</td>
<td>I</td>
<td>692.3144</td>
<td>301.6068</td>
<td>595.2879</td>
<td>293.1476</td>
<td>584.0339</td>
<td>292.6556</td>
</tr>
<tr>
<td>13</td>
<td>1440.7482</td>
<td>720.8777</td>
<td>1423.7216</td>
<td>712.3644</td>
<td>1422.7370</td>
<td>711.8274</td>
<td>A</td>
<td>531.2772</td>
<td>266.1423</td>
<td>514.2508</td>
<td>257.6290</td>
<td>513.2667</td>
<td>257.1370</td>
</tr>
<tr>
<td>14</td>
<td>1537.8009</td>
<td>769.4014</td>
<td>1520.7744</td>
<td>760.8909</td>
<td>1519.7094</td>
<td>760.3988</td>
<td>P</td>
<td>460.2482</td>
<td>230.6327</td>
<td>441.2316</td>
<td>222.1105</td>
<td>442.2562</td>
<td>211.6195</td>
</tr>
<tr>
<td>15</td>
<td>1624.8329</td>
<td>812.0201</td>
<td>1607.8904</td>
<td>804.4068</td>
<td>1606.8224</td>
<td>803.0148</td>
<td>S</td>
<td>362.1874</td>
<td>182.0796</td>
<td>346.1609</td>
<td>173.5841</td>
<td>345.1769</td>
<td>173.0927</td>
</tr>
<tr>
<td>16</td>
<td>1753.8755</td>
<td>877.4414</td>
<td>1736.8490</td>
<td>868.8281</td>
<td>1735.8650</td>
<td>868.4361</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.1448</td>
<td>129.5761</td>
</tr>
</tbody>
</table>
| 17 | | | | | | | K | 147.1125 | 74.0600 | 130.0863 | 65.3468 | 147.1125 | 74.0600 | 1
MS/MS Fragmentation of DFESECLGAKQGFK

Found in P28271, Cytoplasmic acetyl-CoA hydrolase OS=Mus musculus GN=Aco1 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from to Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(��olo): 1560.6889

**Fixed modifications: **MSS3 (C) (apply to specified residues or termini only)

**Variable modifications: **

R9 : m/z 0.022 (K), with neutral loss 42.0568

Ions Score: 17 **Expect:** 0.043

Matches: 20/110 fragment ions using 58 most intense peaks **(best)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>h</th>
<th>h''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>263.1026</td>
<td>32.0259</td>
<td>245.0921</td>
<td>123.0497</td>
<td>F</td>
<td>1402.6494</td>
<td>701.8233</td>
<td>3385.6228</td>
<td>893.3159</td>
</tr>
<tr>
<td>3</td>
<td>592.1452</td>
<td>196.5766</td>
<td>374.1347</td>
<td>187.5710</td>
<td>E</td>
<td>1255.5816</td>
<td>628.2941</td>
<td>1235.5544</td>
<td>619.7808</td>
</tr>
<tr>
<td>4</td>
<td>479.1773</td>
<td>240.0923</td>
<td>461.1867</td>
<td>231.0870</td>
<td>S</td>
<td>1126.5384</td>
<td>593.7178</td>
<td>1109.5118</td>
<td>525.2932</td>
</tr>
<tr>
<td>5</td>
<td>628.1472</td>
<td>314.5507</td>
<td>610.1636</td>
<td>305.5854</td>
<td>C</td>
<td>1059.5663</td>
<td>520.2658</td>
<td>1022.4798</td>
<td>511.7435</td>
</tr>
<tr>
<td>6</td>
<td>741.2582</td>
<td>371.1328</td>
<td>723.2477</td>
<td>362.1275</td>
<td>L</td>
<td>890.6094</td>
<td>445.7584</td>
<td>873.4829</td>
<td>437.2451</td>
</tr>
<tr>
<td>7</td>
<td>798.2797</td>
<td>399.6435</td>
<td>780.2691</td>
<td>390.6382</td>
<td>G</td>
<td>777.4254</td>
<td>389.2163</td>
<td>760.3988</td>
<td>380.7036</td>
</tr>
<tr>
<td>8</td>
<td>869.3168</td>
<td>435.1620</td>
<td>851.3062</td>
<td>426.1568</td>
<td>A</td>
<td>720.4089</td>
<td>360.7086</td>
<td>703.3774</td>
<td>352.1923</td>
</tr>
<tr>
<td>9</td>
<td>1039.4223</td>
<td>520.2164</td>
<td>1022.3958</td>
<td>511.0705</td>
<td>K1</td>
<td>649.3660</td>
<td>325.1870</td>
<td>832.3402</td>
<td>316.6738</td>
</tr>
<tr>
<td>10</td>
<td>1167.4809</td>
<td>594.2441</td>
<td>1150.4544</td>
<td>565.7308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1224.3024</td>
<td>612.7548</td>
<td>1207.4758</td>
<td>604.2415</td>
<td>G</td>
<td>351.2027</td>
<td>176.1030</td>
<td>334.1761</td>
<td>167.5917</td>
</tr>
<tr>
<td>12</td>
<td>1371.5705</td>
<td>686.2890</td>
<td>1354.5447</td>
<td>677.7758</td>
<td>F</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>139.0810</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DFESCLGAKQGFK
MS/MS Fragmentation of MKNPFAHLAEPLDAQQPGKR

Found in P28271, Cytosolic acyl-CoA hydrolase Os-1

Fixed modifications: Carbonyl S (C), Oxidation (M)

Variable modifications:
K: M100 (50), with neutral loss 43 Da

Exact Mass: 2276.1371
Monoisotopic mass of neutral peptide Precursor: 2276.1371

Matched: 20/364 fragment ions using 15 most intense pairs
MS/MS Fragmentation of **KPFDDAKCVESAK**

Found in **FJ0115**, Glutathione S-transferase A3 OS=Mus musculus GN=GstA3 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, **Platform** 200 to 1000 Da **Full range**

Label all possible matches ✂ Label matches used for scoring ✡

Monoisotopic mass of neutral peptide Mz (calc): 1260.0021

Fixed modifications: NMTS (C) **(apply to specified residues or terminal only)**

Variable modifications: K7: **mal_CYS (K)**, with neutral loss 44.9598

Ion Score: 27 **Expect:** 5.0005

Matches: 24/184 fragment ions using 30 most intense peaks (help)

| # | b | y | y' | y'' | Seq | y' | y'' | y^2 | y^3 | y^4 | y^5 | y^6 | y^7 | y^8 | y^9 | y^10 | y^11 | y^12 | y^13 | y^14 |
|---|---|---|---|---|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 126.1022 | 65.0548 | 112.0757 | 56.5415 | K | 1397.6076 | 690.3074 | 1280.5810 | 690.7941 | 1279.5970 | 690.3021 | 13 |
| 2 | 226.1550 | 113.5811 | 209.1285 | 105.0570 | P | 1397.6076 | 690.3074 | 1280.5810 | 690.7941 | 1279.5970 | 690.3021 | 12 |
| 4 | 488.3584 | 244.6288 | 471.2238 | 236.1155 | D | 1153.4864 | 577.2468 | 1136.4598 | 568.7335 | 1135.4758 | 568.2415 | 10 |
| 5 | 603.2773 | 302.1423 | 595.2598 | 292.6290 | D | 1058.4594 | 519.7334 | 1021.4229 | 511.2201 | 1020.4484 | 510.7281 | 9 |
| 6 | 674.3144 | 337.6608 | 657.2879 | 326.1476 | A | 923.4235 | 462.2199 | 906.0406 | 453.7065 | 905.4219 | 453.2146 | 8 |
| 7 | 844.4199 | 422.7136 | 827.3934 | 414.2003 | K | 852.3954 | 426.7013 | 835.3683 | 418.1881 | 834.3848 | 417.6950 | 7 |
| 8 | 902.4160 | 497.2121 | 876.3903 | 488.9088 | C | 682.2899 | 341.6866 | 665.2633 | 333.1353 | 664.2793 | 332.6433 | 6 |
| 9 | 1092.4833 | 566.7463 | 1075.4337 | 558.2390 | Y | 593.2900 | 261.1501 | 516.2664 | 258.6668 | 512.2824 | 258.3102 | 5 |
| 10 | 1221.5279 | 611.2676 | 1204.5013 | 602.7543 | E | 434.2245 | 217.6159 | 417.1900 | 209.1026 | 416.2140 | 208.6106 | 4 |
| 11 | 1380.5399 | 654.7836 | 1291.5333 | 646.2703 | S | 305.1819 | 153.0946 | 288.1543 | 144.5813 | 287.1714 | 144.0893 | 3 |
| 12 | 1379.5970 | 660.3012 | 1362.5705 | 651.7880 | A | 218.1490 | 109.5786 | 201.1234 | 101.6063 | 2 |
| 13 | 1471.1128 | 74.0600 | 130.0683 | 65.5463 | K | 147.1128 | 74.0600 | 130.0683 | 65.5463 | 1 |
MS/MS Fragmentation of LQNLQLQPGKAK
Found in P32020, Non-specific lipid-transfer protein OS=Mus musculus GN=Sep2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide M(H2O): 1422.7821
Fixed modifications: HET3 (C) (apply to specified residues or termini only)
Variable modifications:
K16 : =N COO (-), with neutral loss 42.0106
Ions Score: 35 Expect: 0.01
Matches: 24/36 Fragment ions using 50 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>Q</td>
<td>1266.7161</td>
<td>633.3819</td>
<td>1249.8999</td>
<td>625.3486</td>
</tr>
<tr>
<td>3</td>
<td>356.1928</td>
<td>178.6001</td>
<td>339.1663</td>
<td>170.0368</td>
<td>N</td>
<td>1138.6579</td>
<td>569.3226</td>
<td>1121.6312</td>
<td>561.3193</td>
</tr>
<tr>
<td>4</td>
<td>469.2769</td>
<td>235.1381</td>
<td>452.2504</td>
<td>226.6283</td>
<td>L</td>
<td>1024.6150</td>
<td>512.3111</td>
<td>1007.5834</td>
<td>504.2978</td>
</tr>
<tr>
<td>5</td>
<td>587.3355</td>
<td>299.1714</td>
<td>580.3089</td>
<td>290.6581</td>
<td>Q</td>
<td>911.5309</td>
<td>456.2691</td>
<td>894.5043</td>
<td>447.7358</td>
</tr>
<tr>
<td>6</td>
<td>710.4198</td>
<td>355.7134</td>
<td>693.3930</td>
<td>347.2001</td>
<td>L</td>
<td>783.4722</td>
<td>392.2398</td>
<td>766.4458</td>
<td>383.7282</td>
</tr>
<tr>
<td>7</td>
<td>838.4781</td>
<td>419.4727</td>
<td>821.4516</td>
<td>411.2294</td>
<td>Q</td>
<td>670.3882</td>
<td>335.6978</td>
<td>653.5617</td>
<td>327.1845</td>
</tr>
<tr>
<td>8</td>
<td>925.5390</td>
<td>468.2691</td>
<td>918.3043</td>
<td>459.7358</td>
<td>P</td>
<td>542.3297</td>
<td>271.6885</td>
<td>522.9031</td>
<td>263.1552</td>
</tr>
<tr>
<td>9</td>
<td>992.5524</td>
<td>496.7979</td>
<td>952.5238</td>
<td>488.2665</td>
<td>G</td>
<td>445.2789</td>
<td>233.1421</td>
<td>428.2594</td>
<td>214.6288</td>
</tr>
<tr>
<td>10</td>
<td>1162.6579</td>
<td>581.8326</td>
<td>1145.6313</td>
<td>573.3193</td>
<td>K</td>
<td>388.2554</td>
<td>194.6314</td>
<td>371.2289</td>
<td>186.1181</td>
</tr>
<tr>
<td>11</td>
<td>1233.6950</td>
<td>617.3511</td>
<td>1216.6683</td>
<td>608.8379</td>
<td>A</td>
<td>218.1499</td>
<td>199.5786</td>
<td>201.1234</td>
<td>101.6053</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0500</td>
<td>130.0843</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SYENQKPPFDAO

Found in P37040, NADPH-cytochrome P450 reductase OS=Mus musculus GN=Por PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1400 Da

Label all possible matches ☑️ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mr(calc): 1508.6780

Fixed modifications: MCF8 (C) (apply to specified residues or termini only)

Variable modifications:

K5 : m/z 50.988 (K) with neutral loss 48.9090

Ions Score: 23 Expect: 0.0048

Matches: 12/127 fragment ions using 23 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.0287</td>
<td>35.1180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.1026</td>
<td>251.0250</td>
<td>233.0821</td>
<td>117.0497</td>
<td>Y</td>
<td></td>
<td>1378.6538</td>
<td>689.3853</td>
<td>1361.6372</td>
<td>681.3222</td>
<td>1260.6532</td>
<td>680.8302</td>
</tr>
<tr>
<td>3</td>
<td>380.1452</td>
<td>190.5762</td>
<td>362.1247</td>
<td>181.5710</td>
<td>E</td>
<td></td>
<td>1215.6064</td>
<td>608.3029</td>
<td>1190.5739</td>
<td>599.7066</td>
<td>1197.5899</td>
<td>599.2986</td>
</tr>
<tr>
<td>4</td>
<td>494.1828</td>
<td>247.5977</td>
<td>477.1616</td>
<td>239.0844</td>
<td>476.1770</td>
<td>238.5924</td>
<td>N</td>
<td>1006.3578</td>
<td>543.7826</td>
<td>1005.5313</td>
<td>535.2693</td>
<td>1006.5473</td>
</tr>
<tr>
<td>5</td>
<td>622.2467</td>
<td>311.6270</td>
<td>605.2202</td>
<td>303.1137</td>
<td>604.2862</td>
<td>302.6217</td>
<td>Q</td>
<td>972.5149</td>
<td>486.7611</td>
<td>955.4884</td>
<td>478.2478</td>
<td>954.5043</td>
</tr>
<tr>
<td>6</td>
<td>792.3213</td>
<td>396.6798</td>
<td>775.3257</td>
<td>388.1665</td>
<td>774.3417</td>
<td>387.6745</td>
<td>K</td>
<td>814.4563</td>
<td>422.7318</td>
<td>817.4208</td>
<td>414.2185</td>
<td>824.4518</td>
</tr>
<tr>
<td>7</td>
<td>889.4080</td>
<td>445.2261</td>
<td>872.3785</td>
<td>436.6929</td>
<td>871.3845</td>
<td>436.2069</td>
<td>P</td>
<td>674.5568</td>
<td>337.6790</td>
<td>657.3243</td>
<td>329.1658</td>
<td>656.3402</td>
</tr>
<tr>
<td>8</td>
<td>986.4578</td>
<td>493.7325</td>
<td>969.4312</td>
<td>485.2193</td>
<td>968.4472</td>
<td>484.7272</td>
<td>P</td>
<td>577.2980</td>
<td>289.1327</td>
<td>560.2715</td>
<td>280.6394</td>
<td>559.2875</td>
</tr>
<tr>
<td>9</td>
<td>1133.5262</td>
<td>597.2667</td>
<td>1116.4997</td>
<td>538.7535</td>
<td>1115.5156</td>
<td>538.2615</td>
<td>F</td>
<td>480.2435</td>
<td>240.6283</td>
<td>463.2187</td>
<td>232.1130</td>
<td>462.2347</td>
</tr>
<tr>
<td>10</td>
<td>1248.5321</td>
<td>624.7802</td>
<td>1231.5266</td>
<td>616.2669</td>
<td>1230.5426</td>
<td>615.7749</td>
<td>D</td>
<td>332.1769</td>
<td>167.0921</td>
<td>316.1503</td>
<td>159.2788</td>
<td>315.1663</td>
</tr>
<tr>
<td>11</td>
<td>1319.5903</td>
<td>660.2988</td>
<td>1302.5637</td>
<td>651.7855</td>
<td>1301.5797</td>
<td>651.2953</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
FLKIAEVGAGGNK
MS/MS Fragmentation of ILGYIKSGQQEGAK
Found in P47738, Aldolase A, mitochondrial OS=Mus musculus GN=Aldh2 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1576.0287
Fixed modifications: M(15) N(12) (apply to specified residues or termini only)
Variable modifications:
K : mal(9) (K), with neutral loss 41.992
Ions Score: 27 Expect: 0.0072
Matches : 15/220 Segments ions using 22 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b+</th>
<th>b+</th>
<th>b+</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5463</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td>1420.7431</td>
<td>710.8732</td>
<td>1403.7165</td>
<td>702.3619</td>
<td>1402.7325</td>
<td>701.8699</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>227.1554</td>
<td>114.0913</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>1420.7431</td>
<td>710.8732</td>
<td>1403.7165</td>
<td>702.3619</td>
<td>1402.7325</td>
<td>701.8699</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>284.1909</td>
<td>142.6021</td>
<td>G</td>
<td>130.7699</td>
<td>65.4331</td>
<td>1290.6025</td>
<td>640.8109</td>
<td>1239.6484</td>
<td>645.3279</td>
<td>1250.6131</td>
<td>643.3184</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>447.2602</td>
<td>224.1337</td>
<td>Y</td>
<td>1250.6131</td>
<td>643.3184</td>
<td>1233.6110</td>
<td>617.3091</td>
<td>1323.6270</td>
<td>616.8171</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>560.3443</td>
<td>280.6758</td>
<td>I</td>
<td>1087.5740</td>
<td>544.2907</td>
<td>1070.5347</td>
<td>535.7775</td>
<td>1069.5637</td>
<td>535.2655</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>730.4498</td>
<td>365.7265</td>
<td>713.4232</td>
<td>357.2153</td>
<td>671.3552</td>
<td>345.1832</td>
<td>668.3526</td>
<td>344.1832</td>
<td>666.3526</td>
<td>344.1832</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>817.4818</td>
<td>409.2445</td>
<td>800.4553</td>
<td>400.2393</td>
<td>799.4713</td>
<td>400.2393</td>
<td>798.4713</td>
<td>400.2393</td>
<td>797.4713</td>
<td>400.2393</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>874.5033</td>
<td>437.7553</td>
<td>857.7476</td>
<td>420.2420</td>
<td>856.4927</td>
<td>428.7500</td>
<td>854.4927</td>
<td>428.7500</td>
<td>852.4927</td>
<td>428.7500</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>900.5219</td>
<td>501.7846</td>
<td>985.5353</td>
<td>493.2713</td>
<td>984.5513</td>
<td>492.7793</td>
<td>983.5513</td>
<td>492.7793</td>
<td>982.5513</td>
<td>492.7793</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1130.6249</td>
<td>565.8139</td>
<td>1113.5939</td>
<td>557.3006</td>
<td>1112.6099</td>
<td>556.8086</td>
<td>1111.6099</td>
<td>556.8086</td>
<td>1110.6099</td>
<td>556.8086</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1259.6630</td>
<td>650.3552</td>
<td>1242.6385</td>
<td>621.8219</td>
<td>1241.6525</td>
<td>621.8219</td>
<td>1240.6525</td>
<td>621.8219</td>
<td>1239.6525</td>
<td>621.8219</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1318.6845</td>
<td>683.8459</td>
<td>1299.6579</td>
<td>650.3326</td>
<td>1298.6739</td>
<td>649.8406</td>
<td>1297.6739</td>
<td>649.8406</td>
<td>1296.6739</td>
<td>649.8406</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1387.7216</td>
<td>694.3644</td>
<td>1370.6931</td>
<td>688.3512</td>
<td>1369.7110</td>
<td>688.3512</td>
<td>1368.7110</td>
<td>688.3512</td>
<td>1367.7110</td>
<td>688.3512</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1477.7588</td>
<td>747.0860</td>
<td>1459.7301</td>
<td>728.0800</td>
<td>1458.7459</td>
<td>727.0800</td>
<td>1457.7459</td>
<td>727.0800</td>
<td>1456.7459</td>
<td>727.0800</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1546.7959</td>
<td>799.1071</td>
<td>1528.7672</td>
<td>780.1011</td>
<td>1527.7829</td>
<td>779.1011</td>
<td>1526.7829</td>
<td>779.1011</td>
<td>1525.7829</td>
<td>779.1011</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILGYIKSGQQEGAK
VPAINVNDHSVTKSK

Monoisotopic mass of neutral peptide M(prot) = 1555.8646
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K10: m/z CO2 (K), with neutral loss 43.0058
Ions Score: 25 Expect: 9.0695
Matches: 49/132 fragment ions using 91 most intense peaks (help)

<table>
<thead>
<tr>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101.0127</td>
<td>50.5412</td>
<td>V</td>
<td>1414.7526</td>
</tr>
<tr>
<td>2</td>
<td>197.1285</td>
<td>99.0579</td>
<td>P</td>
<td>1414.7526</td>
</tr>
<tr>
<td>3</td>
<td>268.1586</td>
<td>134.5804</td>
<td>A</td>
<td>1317.7066</td>
</tr>
<tr>
<td>4</td>
<td>381.2199</td>
<td>191.1283</td>
<td>T</td>
<td>1266.6638</td>
</tr>
<tr>
<td>5</td>
<td>495.2926</td>
<td>248.1499</td>
<td>G</td>
<td>1132.5797</td>
</tr>
<tr>
<td>6</td>
<td>594.3610</td>
<td>297.6841</td>
<td>V</td>
<td>919.5568</td>
</tr>
<tr>
<td>7</td>
<td>708.4039</td>
<td>354.7050</td>
<td>N</td>
<td>920.4684</td>
</tr>
<tr>
<td>8</td>
<td>823.4680</td>
<td>421.2191</td>
<td>D</td>
<td>806.4254</td>
</tr>
<tr>
<td>9</td>
<td>910.4629</td>
<td>453.7351</td>
<td>S</td>
<td>691.5285</td>
</tr>
<tr>
<td>10</td>
<td>1009.5133</td>
<td>505.2603</td>
<td>H</td>
<td>604.3665</td>
</tr>
<tr>
<td>11</td>
<td>1110.5796</td>
<td>555.7931</td>
<td>T</td>
<td>585.2986</td>
</tr>
<tr>
<td>12</td>
<td>1230.6418</td>
<td>640.8458</td>
<td>K</td>
<td>464.3594</td>
</tr>
<tr>
<td>13</td>
<td>1367.7165</td>
<td>684.3619</td>
<td>C</td>
<td>242.1448</td>
</tr>
<tr>
<td>14</td>
<td>147.1128</td>
<td>74.0600</td>
<td>I</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
MEMBI Fragmentation of HGEVCPAGWKPGSDTIKPDVNK

Found in: R9E9Q0, Pseudocotyle sp. 1, Cnidarians; R8E9Q0, Pseudocotyle sp. 1, Cnidarians

Click near the plot area to zoom in by a factor of two around that point.

O: [Full range] 200 to 1900 Da

Label all possible matches & [Label matches used for scoring]

Identification matrix

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>p</th>
<th>p''</th>
<th>p'''</th>
<th>p''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.062</td>
<td>69.5367</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>191.0877</td>
<td>98.0475</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>334.1303</td>
<td>162.6588</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>437.1957</td>
<td>212.1030</td>
<td>405.1881</td>
<td>203.0977</td>
<td></td>
<td>2100.0253</td>
<td>1050.5163</td>
<td>2082.9987</td>
<td>1042.0030</td>
<td>2062.0147</td>
<td>1041.1110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>669.3845</td>
<td>335.1278</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>740.3253</td>
<td>370.6464</td>
<td>722.2740</td>
<td>361.6411</td>
<td></td>
<td>154.9072</td>
<td>877.9172</td>
<td>1737.806</td>
<td>869.6440</td>
<td>1735.8566</td>
<td>858.8516</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>879.3969</td>
<td>399.1271</td>
<td>779.2563</td>
<td>390.1518</td>
<td></td>
<td>1538.8701</td>
<td>842.4878</td>
<td>1666.8435</td>
<td>833.9254</td>
<td>1665.9595</td>
<td>833.8334</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>933.3863</td>
<td>492.1967</td>
<td></td>
<td></td>
<td></td>
<td>965.7575</td>
<td>483.1815</td>
<td></td>
<td>1626.8486</td>
<td>813.8579</td>
<td>1609.8220</td>
<td>805.4147</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>1111.4813</td>
<td>556.2442</td>
<td>1094.4546</td>
<td>547.7310</td>
<td>1093.4706</td>
<td>547.2389</td>
<td></td>
<td>1440.7693</td>
<td>720.8883</td>
<td>1423.7471</td>
<td>712.3750</td>
<td>1422.7587</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>1208.5399</td>
<td>604.7706</td>
<td>1191.5074</td>
<td>596.2573</td>
<td>1190.5234</td>
<td>595.7655</td>
<td></td>
<td>1512.6768</td>
<td>856.8408</td>
<td>1295.6478</td>
<td>648.3275</td>
<td>1294.6538</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>1265.5534</td>
<td>635.2013</td>
<td>1248.5289</td>
<td>624.7681</td>
<td>1247.5449</td>
<td>624.2761</td>
<td></td>
<td>1525.6226</td>
<td>803.3144</td>
<td>1188.5950</td>
<td>599.8011</td>
<td>1187.6110</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>1522.5874</td>
<td>767.7974</td>
<td>1533.5697</td>
<td>668.2841</td>
<td>1534.5769</td>
<td>667.7921</td>
<td></td>
<td>1812.6001</td>
<td>759.8037</td>
<td>1311.7475</td>
<td>717.2904</td>
<td>1310.3993</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>1427.6164</td>
<td>743.3108</td>
<td>1550.5837</td>
<td>725.7976</td>
<td>1469.6038</td>
<td>725.3035</td>
<td></td>
<td>1871.5681</td>
<td>756.3787</td>
<td>1346.5415</td>
<td>727.7444</td>
<td>1345.5075</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>1568.6621</td>
<td>784.8347</td>
<td>1551.6355</td>
<td>776.3114</td>
<td>1550.6351</td>
<td>775.2934</td>
<td></td>
<td>1936.5421</td>
<td>748.7742</td>
<td>959.5416</td>
<td>470.2609</td>
<td>938.5306</td>
<td>485.6878</td>
</tr>
<tr>
<td>16</td>
<td>1681.7461</td>
<td>841.3671</td>
<td>1654.7196</td>
<td>832.8634</td>
<td>1663.7356</td>
<td>832.3714</td>
<td></td>
<td>1955.4954</td>
<td>428.2104</td>
<td>838.4669</td>
<td>419.7317</td>
<td>837.4829</td>
<td>419.8241</td>
</tr>
<tr>
<td>17</td>
<td>1753.8517</td>
<td>926.4298</td>
<td>1634.8251</td>
<td>917.9162</td>
<td>1633.8441</td>
<td>917.4242</td>
<td></td>
<td>2047.4994</td>
<td>371.7083</td>
<td>725.3828</td>
<td>563.1951</td>
<td>724.3980</td>
<td>362.7030</td>
</tr>
<tr>
<td>18</td>
<td>1948.7084</td>
<td>974.6586</td>
<td>1931.8779</td>
<td>966.4426</td>
<td>1930.8599</td>
<td>965.9506</td>
<td></td>
<td>2157.3039</td>
<td>286.6556</td>
<td>555.2773</td>
<td>278.1423</td>
<td>554.2523</td>
<td>277.6305</td>
</tr>
<tr>
<td>19</td>
<td>2063.8916</td>
<td>1832.4069</td>
<td>2046.9048</td>
<td>1923.9290</td>
<td>2045.9208</td>
<td>1923.4810</td>
<td></td>
<td>2172.2511</td>
<td>238.1292</td>
<td>958.2283</td>
<td>229.6139</td>
<td>957.2403</td>
<td>229.1249</td>
</tr>
<tr>
<td>21</td>
<td>2277.0412</td>
<td>1139.0259</td>
<td>2269.0262</td>
<td>1130.1173</td>
<td>2259.0311</td>
<td>1130.0197</td>
<td></td>
<td>2411.1557</td>
<td>131.0184</td>
<td>244.9292</td>
<td>122.5682</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Neuroendocrine mass of neutral peptide (Picograms): 246.1005

Fixed modifications: M(m/z) C(H) [apply to specified residues or termini only]

Variable modifications:

KET: m/z 202.0081 with neutral loss 46.0264

Score: 52

Matches: 61/124 fragment ions using 109 most intense peaks.
MS/MS Fragmentation of DGLQNEKSVPTPVK
Found in P38069, Hydroxymethylglutaryl-CoA lyase, mitochondrial OS=Mus musculus GN=Hmgcl PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or [Plot from 200 to 1000 Da] [Full range]
Label all possible matches ◐ Label matches used for scoring ◐

Monotopic mass of neutral peptide Mr(m+e) : 1702.8856
Fixed modifications: M(128) (C) (apply to specified residues or termini only)
Variable modifications:
W7 n1:C02 (F), with neutral loss 43.9580
Ions Score: 81 Expect: 0.0039
Matches : 26/156 fragment ions using 11 most intense peaks (m/z)

<table>
<thead>
<tr>
<th>z</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^-</th>
<th>b^-^+</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^-</th>
<th>y^-^+</th>
<th>y^+^+</th>
<th>y^-^+</th>
<th>y</th>
<th>y^-^+</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>173.0557</td>
<td>87.0345</td>
<td>152.0451</td>
<td>78.0202</td>
<td>G</td>
<td>1551.8741</td>
<td>776.4247</td>
<td>134.8475</td>
<td>767.9274</td>
<td>1533.8635</td>
<td>767.4554</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>286.1397</td>
<td>143.5735</td>
<td>280.1292</td>
<td>134.5682</td>
<td>L</td>
<td>1494.8526</td>
<td>749.9299</td>
<td>1477.8261</td>
<td>739.4167</td>
<td>1476.8421</td>
<td>738.9247</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>414.1983</td>
<td>207.6042</td>
<td>397.1718</td>
<td>199.0895</td>
<td>Q</td>
<td>1381.7080</td>
<td>691.3879</td>
<td>1364.7420</td>
<td>682.8746</td>
<td>1363.7350</td>
<td>682.3826</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>528.2417</td>
<td>264.6243</td>
<td>511.2147</td>
<td>256.1110</td>
<td>N</td>
<td>1253.7109</td>
<td>627.3586</td>
<td>1226.6834</td>
<td>618.8454</td>
<td>1225.6994</td>
<td>618.3513</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>657.2838</td>
<td>329.1456</td>
<td>640.2573</td>
<td>320.6523</td>
<td>E</td>
<td>1139.6671</td>
<td>570.3732</td>
<td>1122.6495</td>
<td>561.8239</td>
<td>1121.6565</td>
<td>561.3319</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>827.3894</td>
<td>414.1983</td>
<td>810.3628</td>
<td>403.8621</td>
<td>K</td>
<td>1010.6245</td>
<td>505.8159</td>
<td>993.9570</td>
<td>497.3626</td>
<td>992.6159</td>
<td>496.8106</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>914.3214</td>
<td>457.7143</td>
<td>897.3949</td>
<td>449.2011</td>
<td>S</td>
<td>849.5189</td>
<td>420.7651</td>
<td>823.4924</td>
<td>412.2498</td>
<td>822.5084</td>
<td>411.7578</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1027.3537</td>
<td>514.2564</td>
<td>1000.4759</td>
<td>505.7431</td>
<td>I</td>
<td>753.4369</td>
<td>377.2471</td>
<td>736.4060</td>
<td>368.7383</td>
<td>735.4763</td>
<td>368.2148</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1126.3739</td>
<td>562.7906</td>
<td>1109.5473</td>
<td>553.2773</td>
<td>V</td>
<td>640.4028</td>
<td>320.7031</td>
<td>623.3785</td>
<td>312.1918</td>
<td>622.3923</td>
<td>311.6998</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1223.6256</td>
<td>612.3170</td>
<td>1206.6001</td>
<td>603.8037</td>
<td>P</td>
<td>541.3344</td>
<td>271.1709</td>
<td>524.3070</td>
<td>262.6576</td>
<td>523.3298</td>
<td>262.1656</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1326.6763</td>
<td>662.8408</td>
<td>1307.6478</td>
<td>654.3275</td>
<td>T</td>
<td>444.2817</td>
<td>222.6445</td>
<td>427.2351</td>
<td>214.1312</td>
<td>426.2711</td>
<td>213.6924</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1421.7371</td>
<td>711.3672</td>
<td>1404.7005</td>
<td>702.8539</td>
<td>P</td>
<td>343.3340</td>
<td>172.1206</td>
<td>326.2074</td>
<td>161.6704</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1520.7955</td>
<td>760.9014</td>
<td>1503.7690</td>
<td>752.3881</td>
<td>V</td>
<td>246.1512</td>
<td>123.5642</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2058.7955</td>
<td>1029.3977</td>
<td>2005.8087</td>
<td>1998.8087</td>
<td>K</td>
<td>147.1128</td>
<td>74.0690</td>
<td>130.0863</td>
<td>65.5488</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KFSGVYLEKEVVEK

Found in P40566, Indolealkylamine N-methyltransferase

OS=Mus musculus, GN=Indmt, PE=1, SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or: Plot from 200 to 1000 Da

Label all possible matches © Label matches used for scoring *

Monoisotopic mass of neutral peptide Mr(calc): 1729.8981

Fixed modifications: 4HET (C) (apply to specified residues or terminal only)

Variable modifications:

KO: m/z CO2 (K), with neutral loss 45.99540

Ions Score: 66 Exponent: 0.00020

Matched / Fragment ions using 105 most intense peaks

| z | b | b'' | b|b'' | y | y'' | y|y'' | y|y'' | y|y'' | y|y'' | y|y'' | m/e |
|---|---------|----------|-----|-----|---------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 129.0222| 65.0348 | 112.0757 | 56.5415 | K | 1568.8297 | 784.9140 | 1251.7941 | 778.4007 | 1520.8101 | 775.9087 |
| 2 | 276.1707 | 138.3890 | 259.1441 | 130.0737 | F | 1421.7212 | 711.3798 | 1404.7257 | 702.8665 | 1403.7417 | 702.3745 |
| 5 | 519.2526 | 260.1499 | 502.2600 | 251.6366 | 501.2820 | 251.1446 | V | --- | --- | --- | --- | --- |
| 6 | 682.3559 | 341.6816 | 665.3293 | 333.1683 | 664.3453 | 332.6763 | Y | --- | --- | --- | --- | --- |
| 7 | 792.4400 | 396.2236 | 777.4154 | 388.7103 | 777.4284 | 388.2133 | L | --- | --- | --- | --- | --- |
| 8 | 924.4825 | 462.7440 | 907.4560 | 454.2316 | 906.4720 | 453.7396 | E | --- | --- | --- | --- | --- |
| 9 | 1094.5881 | 547.7977 | 1077.5815 | 538.2844 | 1076.5773 | 538.7524 | K | --- | --- | --- | --- | --- |
| 10 | 1253.6307 | 612.3190 | 1236.6041 | 603.8057 | 1235.6201 | 603.3137 | F | --- | --- | --- | --- | --- |
| 11 | 1322.6991 | 661.8332 | 1305.6721 | 653.3599 | 1304.6813 | 652.8479 | V | --- | --- | --- | --- | --- |
| 12 | 1421.7675 | 711.2874 | 1404.7409 | 702.8741 | 1403.7569 | 702.8382 | V | --- | --- | --- | --- | --- |
| 13 | 1550.8101 | 772.9087 | 1533.7825 | 765.3934 | 1532.7992 | 766.9034 | E | --- | --- | --- | --- | --- |
| 14 | K | 147.1128 | 74.0600 | 130.0863 | 65.5468 | 1 |
MS/MS Fragmentation of FSGVYLEKEVVEK

Found in P40936. Indole/tryptamine N-methyltransferase OS=Mus musculus GN=mmt PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Monoisotopic mass of neutral peptide Mr(calc): 1011.0032

Fixed modifications: NMES (C) (apply to specified residues or termini only)

Variable modifications:

KM: m/z CO2 (K), with neutral loss 44.0159

Ions Score: 51 Expect: 2e-05

Matches: 27/120 fragment ions using 60 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>b^0</th>
<th>b^0^+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^0</th>
<th>y^0^+</th>
<th>y^0^0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5315</td>
<td>217.0972</td>
<td>109.0522</td>
<td>S</td>
<td>1421.7522</td>
<td>711.3796</td>
<td>1404.7257</td>
<td>702.3665</td>
<td>1403.4714</td>
<td>702.3745</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>235.1077</td>
<td>117.0535</td>
<td>274.1186</td>
<td>137.0629</td>
<td>G</td>
<td>1334.7202</td>
<td>687.8637</td>
<td>1317.8937</td>
<td>689.3505</td>
<td>1318.7096</td>
<td>688.8285</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>391.1976</td>
<td>195.1024</td>
<td>373.1870</td>
<td>187.0972</td>
<td>Y</td>
<td>1277.6987</td>
<td>639.3330</td>
<td>1260.6722</td>
<td>630.8397</td>
<td>1259.6882</td>
<td>630.3477</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>554.2099</td>
<td>277.6241</td>
<td>536.2504</td>
<td>268.6288</td>
<td>Y</td>
<td>1176.6363</td>
<td>589.3188</td>
<td>1161.6028</td>
<td>581.3655</td>
<td>1160.6198</td>
<td>580.8135</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>657.3150</td>
<td>328.6161</td>
<td>649.3344</td>
<td>325.1709</td>
<td>L</td>
<td>1015.5870</td>
<td>508.2381</td>
<td>998.5405</td>
<td>499.7739</td>
<td>997.5564</td>
<td>599.2819</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>796.3876</td>
<td>398.6974</td>
<td>778.3770</td>
<td>389.6921</td>
<td>E</td>
<td>902.4829</td>
<td>451.7451</td>
<td>885.4564</td>
<td>443.2318</td>
<td>884.4724</td>
<td>442.7398</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1096.5857</td>
<td>548.2715</td>
<td>1078.5992</td>
<td>539.7582</td>
<td>1077.5251</td>
<td>539.2662</td>
<td>E</td>
<td>666.3488</td>
<td>302.1710</td>
<td>586.3083</td>
<td>293.6573</td>
<td>585.3243</td>
<td>293.1263</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1194.6041</td>
<td>597.8057</td>
<td>1177.5776</td>
<td>589.2924</td>
<td>1176.5916</td>
<td>588.8004</td>
<td>V</td>
<td>474.9292</td>
<td>237.6498</td>
<td>457.2657</td>
<td>229.1635</td>
<td>456.2817</td>
<td>228.6445</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1293.6725</td>
<td>647.3399</td>
<td>1276.6440</td>
<td>638.8266</td>
<td>1275.6620</td>
<td>639.3346</td>
<td>Y</td>
<td>375.2238</td>
<td>188.1155</td>
<td>358.1972</td>
<td>179.6023</td>
<td>375.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1422.7151</td>
<td>711.8612</td>
<td>1405.8663</td>
<td>703.3479</td>
<td>1404.7046</td>
<td>702.8359</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0861</td>
<td>238.1448</td>
<td>129.5761</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1471.8128</td>
<td>74.0800</td>
<td>130.0861</td>
<td>65.3468</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of \textbf{VYIGGDEYKEFTPK}

Found in \textbf{P40936}. Isolated tryptic peptide of \textit{N}-methyltransferase OS=Mus musculus ON-Innt PE=1 SV=1

Click: mouse within plot area to zoom in by factor of two about that point

Or: Plot from \textbf{300} to \textbf{1900} Da

Label all possible matches \checkmark Label matches used for scoring \checkmark

Monoisotopic mass of neutral peptide Mr(m/z): 1889.8465

Fixed modifications: Met(OAc) (C) (apply to specified residues or termini only)

Variable modifications:

K10: \textit{N}-methyl (K), with neutral loss 42 u

Ions Score: 25 Expect: 0.01

Matches: 20/186 fragment ions using 50 most intense peaks

\begin{table}[h]
\begin{tabular}{cccccccccc}
\hline
\textbf{#} & \textbf{b} & \textbf{b}^+ & \textbf{b}^++ & \textbf{b}^+++ & \textbf{Seq.} & \textbf{y} & \textbf{y}^+ & \textbf{y}^++ & \textbf{y}^+++ & \textbf{y}^++++ & \textbf{y}^+++++ & \textbf{y}^++++++ \\
\hline
1 & 100.0737 & 50.3413 & & & V & 1717.7956 & 859.4014 & 1700.7890 & 850.3881 & 1699.7820 & 859.3961 & 14 \\
2 & 263.1390 & 132.0731 & & & Y & 1717.7956 & 859.4014 & 1700.7890 & 850.3881 & 1699.7820 & 859.3961 & 14 \\
3 & 506.2660 & 245.6366 & & & G & 1441.6782 & 721.3277 & 714.6216 & 712.8144 & 712.3224 & 12 \\
4 & 406.2660 & 204.6366 & & & G & 1384.6267 & 692.8170 & 684.6002 & 684.3037 & 683.8117 & 11 \\
5 & 619.3066 & 310.1579 & & & E & 1327.6952 & 664.3063 & 657.5878 & 653.7950 & 653.5301 & 10 \\
6 & 754.3355 & 376.6714 & & & D & 1198.5626 & 599.7850 & 591.2717 & 590.7797 & 9 \\
7 & 997.3989 & 449.2031 & & & Y & 1083.5357 & 542.2715 & 533.5752 & 533.5351 & 5 \\
8 & 1016.4415 & 513.7244 & & & E & 920.4724 & 460.7398 & 903.4458 & 452.2266 & 452.4858 & 7 \\
9 & 1096.5470 & 598.7771 & & & K & 791.4398 & 396.2185 & 774.4332 & 387.7053 & 773.4192 & 6 \\
10 & 1322.5896 & 663.2829 & & & E & 612.3343 & 311.1683 & 604.2977 & 302.6525 & 302.1003 & 5 \\
11 & 1475.6580 & 736.8326 & & & F & 492.2817 & 246.6445 & 475.5551 & 238.1312 & 274.2711 & 4 \\
12 & 1573.7087 & 778.8432 & & & T & 345.2132 & 173.1103 & 328.1867 & 164.5070 & 327.2027 & 3 \\
13 & 1670.7584 & 835.8829 & & & P & 244.1656 & 122.5864 & 227.1390 & 115.0731 & & 2 \\
14 & 1763.7139 & 827.3966 & & & K & 147.1128 & 74.0600 & 130.0863 & 65.5468 & & 1 \\
\hline
\end{tabular}
\end{table}
MS/MS Fragmentation of VSEVKPTYR
Found in P42689, Transcriptional activator protein Pur-alpha
OS=Mus musculus GN=Pur PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or: Plot from 150 to 1100 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1163.8522
Fixed modifications: Met5 (C) (apply to specified residues or termini only)
Variable modifications:
Ions Score: 25 Expect: 0.042
Matches : 15/32 fragment ions using 28 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>b*0</th>
<th>Seq.</th>
<th>y</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y*0</th>
<th>y++0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.1077</td>
<td>94.0575</td>
<td>169.0972</td>
<td>85.0522</td>
<td></td>
<td>S</td>
<td>1021.5313</td>
<td>511.2603</td>
<td>1004.5047</td>
<td>502.7560</td>
<td>1003.5207</td>
<td>502.2640</td>
</tr>
<tr>
<td>3</td>
<td>316.1503</td>
<td>158.5788</td>
<td>298.1397</td>
<td>149.5735</td>
<td></td>
<td>E</td>
<td>934.4993</td>
<td>467.7533</td>
<td>917.4727</td>
<td>459.2400</td>
<td>916.4887</td>
<td>458.7480</td>
</tr>
<tr>
<td>4</td>
<td>415.2187</td>
<td>208.1130</td>
<td>397.2082</td>
<td>199.1077</td>
<td></td>
<td>V</td>
<td>805.4567</td>
<td>403.2320</td>
<td>788.4301</td>
<td>394.7187</td>
<td>787.4461</td>
<td>394.2267</td>
</tr>
<tr>
<td>5</td>
<td>585.3243</td>
<td>293.1658</td>
<td>568.2977</td>
<td>284.6525</td>
<td>567.3137</td>
<td>284.1605</td>
<td>K</td>
<td>706.3883</td>
<td>353.6978</td>
<td>689.3617</td>
<td>345.1845</td>
<td>688.3777</td>
</tr>
<tr>
<td>6</td>
<td>682.3770</td>
<td>341.6921</td>
<td>665.3505</td>
<td>333.1789</td>
<td>664.3665</td>
<td>332.6889</td>
<td>P</td>
<td>536.2927</td>
<td>268.6450</td>
<td>519.2562</td>
<td>260.1317</td>
<td>518.2722</td>
</tr>
<tr>
<td>7</td>
<td>783.4247</td>
<td>392.2160</td>
<td>766.3981</td>
<td>383.7027</td>
<td>765.4141</td>
<td>383.2107</td>
<td>T</td>
<td>439.2300</td>
<td>220.1186</td>
<td>422.2034</td>
<td>211.6053</td>
<td>421.2194</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
</tr>
</tbody>
</table>
DFLAGGIAAAAVSKTAVAPIER

MM/MS Fragmentation of DFLAGGIAAAAVSKTAVAPIER
Found in PS1831, ADP/ATP translocase 2 Olemus marinus Q1m4c2.5a P6a1 SV=3

Click mouse within plot area to zoom by a factor of two about that point
Or [Zoom in to 200] [Full range]
Label all possible matches & [Label matches used for scoring]

![Fragmentation Graph](image)

Neurospora Crassa mass of neutral peptide Mz(m/z): 2142.1021

Fixed modifications: MetO (5) (apply to specified residues or termini only)

Variable modifications: EL3 = m/z 203 (N), with neutral loss 48.0555

Ion Score: 28 **Expect**: 0.83

Matches: 42/214 fragment ions using 100 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>y</th>
<th>b</th>
<th>g</th>
<th>y2</th>
<th>y2+</th>
<th>y3</th>
<th>Seq.</th>
<th>y1</th>
<th>y2+</th>
<th>y3+</th>
<th>y0</th>
<th>y0+</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>59.5155</td>
<td>D</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>378.1905</td>
<td>188.5970</td>
<td>358.1761</td>
<td>179.5917</td>
<td>L</td>
<td>1837.0392</td>
<td>919.0390</td>
<td>1820.0276</td>
<td>910.5175</td>
<td>1819.0436</td>
<td>910.0234</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>447.2358</td>
<td>224.1155</td>
<td>429.2132</td>
<td>215.1103</td>
<td>A</td>
<td>1723.9701</td>
<td>862.4837</td>
<td>1706.9468</td>
<td>853.9754</td>
<td>1705.9595</td>
<td>853.8134</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>504.2457</td>
<td>258.6628</td>
<td>486.2347</td>
<td>243.6210</td>
<td>G</td>
<td>1653.9380</td>
<td>826.9701</td>
<td>1635.9064</td>
<td>815.4569</td>
<td>1634.9224</td>
<td>817.8649</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>561.2667</td>
<td>281.1370</td>
<td>543.2562</td>
<td>272.1337</td>
<td>G</td>
<td>1595.9113</td>
<td>789.4594</td>
<td>1578.8580</td>
<td>789.9463</td>
<td>1577.9010</td>
<td>789.9454</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>669.3552</td>
<td>330.6712</td>
<td>642.3246</td>
<td>321.6659</td>
<td>V</td>
<td>1338.8901</td>
<td>769.9467</td>
<td>1321.8657</td>
<td>761.4354</td>
<td>1320.8795</td>
<td>760.9434</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>701.3773</td>
<td>356.1998</td>
<td>673.3617</td>
<td>347.1845</td>
<td>A</td>
<td>1459.8317</td>
<td>720.4346</td>
<td>1442.8012</td>
<td>713.9092</td>
<td>1441.8311</td>
<td>711.4092</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>802.4084</td>
<td>401.7083</td>
<td>784.3988</td>
<td>392.7029</td>
<td>A</td>
<td>1368.7845</td>
<td>684.8259</td>
<td>1351.7589</td>
<td>676.3826</td>
<td>1350.7740</td>
<td>675.8906</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>875.4665</td>
<td>437.2499</td>
<td>855.4239</td>
<td>428.2215</td>
<td>A</td>
<td>1297.7474</td>
<td>648.3774</td>
<td>1280.7209</td>
<td>640.8641</td>
<td>1279.7360</td>
<td>640.3771</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>986.5306</td>
<td>493.7560</td>
<td>968.5200</td>
<td>484.7666</td>
<td>I</td>
<td>1226.7103</td>
<td>613.8584</td>
<td>1209.6838</td>
<td>605.5455</td>
<td>1208.6997</td>
<td>604.8553</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1073.5629</td>
<td>537.2849</td>
<td>1055.5520</td>
<td>528.2796</td>
<td>S</td>
<td>1113.6363</td>
<td>557.3168</td>
<td>1096.5997</td>
<td>548.8035</td>
<td>1095.6157</td>
<td>548.3115</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1243.6811</td>
<td>622.3377</td>
<td>1226.6414</td>
<td>613.3524</td>
<td>K</td>
<td>1026.3942</td>
<td>513.8007</td>
<td>1009.3677</td>
<td>505.2875</td>
<td>1008.3857</td>
<td>504.7955</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1344.7185</td>
<td>672.8615</td>
<td>1327.6952</td>
<td>664.3483</td>
<td>K</td>
<td>1326.7052</td>
<td>665.8563</td>
<td>T</td>
<td>558.4887</td>
<td>248.7480</td>
<td>539.4621</td>
<td>242.2347</td>
<td>538.4781</td>
</tr>
<tr>
<td>16</td>
<td>1515.8223</td>
<td>757.9414</td>
<td>1497.7964</td>
<td>748.9400</td>
<td>V</td>
<td>1996.0180</td>
<td>748.9000</td>
<td>V</td>
<td>584.4039</td>
<td>242.7026</td>
<td>567.3774</td>
<td>241.1926</td>
<td>566.3593</td>
</tr>
<tr>
<td>17</td>
<td>1553.8384</td>
<td>793.4320</td>
<td>1538.8119</td>
<td>784.1916</td>
<td>A</td>
<td>1567.8479</td>
<td>784.2476</td>
<td>A</td>
<td>585.3535</td>
<td>293.1714</td>
<td>578.3099</td>
<td>284.6351</td>
<td>576.3249</td>
</tr>
<tr>
<td>18</td>
<td>1682.9111</td>
<td>841.9592</td>
<td>1661.8847</td>
<td>833.4460</td>
<td>P</td>
<td>1664.0006</td>
<td>832.9540</td>
<td>P</td>
<td>514.2984</td>
<td>257.6585</td>
<td>497.2718</td>
<td>248.1395</td>
<td>496.2878</td>
</tr>
<tr>
<td>19</td>
<td>1795.9953</td>
<td>898.5013</td>
<td>1780.9687</td>
<td>889.9890</td>
<td>I</td>
<td>1778.9687</td>
<td>889.9460</td>
<td>I</td>
<td>417.2456</td>
<td>209.1264</td>
<td>400.2191</td>
<td>200.6132</td>
<td>399.2350</td>
</tr>
<tr>
<td>20</td>
<td>1925.0379</td>
<td>946.0226</td>
<td>1908.0113</td>
<td>934.5093</td>
<td>T</td>
<td>1907.0273</td>
<td>934.0173</td>
<td>T</td>
<td>306.1615</td>
<td>152.5844</td>
<td>287.1305</td>
<td>144.0711</td>
<td>286.1510</td>
</tr>
<tr>
<td>21</td>
<td>2151.1150</td>
<td>108.6681</td>
<td>2123.0964</td>
<td>108.1254</td>
<td>R</td>
<td>1715.1159</td>
<td>88.0651</td>
<td>1597.0624</td>
<td>79.5488</td>
<td>1585.0624</td>
<td>79.1499</td>
<td>1573.0624</td>
<td>78.7508</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YFPTQALNFAFKDK

Found in **P43801**, ADP-ATP translocase 1 (OS=Mus musculus GN=5l21s4 PE=1 SV=4)

Click mouse within plot area to zoom in by factor of two about that point:
Or, Flat from 200 to 1800 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr (amu): 1774.9566

Fixed modifications: MSHS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>K12</th>
<th>m/z 202 (R), with neutral loss 40.0000</th>
</tr>
</thead>
</table>

Intra-Repeat: 72 Expect: 4e-006

Matches: 94/140 fragment ions using 59 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b***</th>
<th>b^0</th>
<th>b^1</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y^+</th>
<th>y**^+</th>
<th>y^0</th>
<th>y^0^+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.3389</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>1568.8108</td>
<td>784.9050</td>
<td>1551.7842</td>
<td>776.3957</td>
<td>1550.8002</td>
<td>775.9037</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>311.1390</td>
<td>155.6751</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1568.8108</td>
<td>784.9050</td>
<td>1551.7842</td>
<td>776.3957</td>
<td>1550.8002</td>
<td>775.9037</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>408.1918</td>
<td>204.5995</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1521.7429</td>
<td>711.3748</td>
<td>1404.7158</td>
<td>702.8615</td>
<td>1403.7318</td>
<td>702.3695</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>509.2393</td>
<td>255.1234</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1323.6896</td>
<td>662.8484</td>
<td>1307.6630</td>
<td>654.3352</td>
<td>1306.6790</td>
<td>653.8431</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>637.2980</td>
<td>319.1527</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>1323.6896</td>
<td>662.8484</td>
<td>1307.6630</td>
<td>654.3352</td>
<td>1306.6790</td>
<td>653.8431</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>708.3352</td>
<td>354.6712</td>
<td>691.3066</td>
<td>146.1579</td>
<td>690.3246</td>
<td>545.6659</td>
<td>A</td>
<td>1095.5833</td>
<td>548.2953</td>
<td>1078.5568</td>
<td>559.7820</td>
<td>1077.5728</td>
<td>559.2600</td>
</tr>
<tr>
<td>7</td>
<td>721.4192</td>
<td>361.2132</td>
<td>804.3627</td>
<td>302.7000</td>
<td>803.4087</td>
<td>402.2030</td>
<td>L</td>
<td>1024.5662</td>
<td>521.7767</td>
<td>1007.5197</td>
<td>504.2635</td>
<td>1006.5356</td>
<td>503.7715</td>
</tr>
<tr>
<td>8</td>
<td>935.4621</td>
<td>468.2347</td>
<td>918.4326</td>
<td>459.7214</td>
<td>917.4516</td>
<td>459.2294</td>
<td>N</td>
<td>911.4621</td>
<td>458.2347</td>
<td>904.4567</td>
<td>447.7214</td>
<td>903.4516</td>
<td>447.2294</td>
</tr>
<tr>
<td>9</td>
<td>1082.5309</td>
<td>541.7689</td>
<td>1085.5040</td>
<td>533.2256</td>
<td>1084.5200</td>
<td>532.7626</td>
<td>F</td>
<td>797.4192</td>
<td>399.2132</td>
<td>780.3927</td>
<td>390.7000</td>
<td>779.4087</td>
<td>390.2080</td>
</tr>
<tr>
<td>10</td>
<td>1153.5677</td>
<td>577.2875</td>
<td>1156.5411</td>
<td>558.7742</td>
<td>1155.5711</td>
<td>558.2822</td>
<td>A</td>
<td>650.5369</td>
<td>325.6790</td>
<td>652.3243</td>
<td>317.1658</td>
<td>652.3402</td>
<td>316.7387</td>
</tr>
<tr>
<td>11</td>
<td>1300.6361</td>
<td>650.8217</td>
<td>1283.6055</td>
<td>642.3041</td>
<td>1282.6235</td>
<td>641.8184</td>
<td>F</td>
<td>579.3137</td>
<td>290.1605</td>
<td>562.2871</td>
<td>281.6472</td>
<td>561.3031</td>
<td>281.1523</td>
</tr>
<tr>
<td>12</td>
<td>1470.7116</td>
<td>735.8744</td>
<td>1453.7115</td>
<td>727.3612</td>
<td>1452.7310</td>
<td>726.8692</td>
<td>K</td>
<td>522.2452</td>
<td>216.6263</td>
<td>415.2187</td>
<td>208.1130</td>
<td>414.2347</td>
<td>207.6210</td>
</tr>
<tr>
<td>13</td>
<td>1588.7680</td>
<td>793.3879</td>
<td>1586.7420</td>
<td>784.8746</td>
<td>1587.7590</td>
<td>784.3826</td>
<td>D</td>
<td>562.1397</td>
<td>251.1352</td>
<td>562.0692</td>
<td>242.1292</td>
<td>244.1292</td>
<td>222.5682</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALVSTKWLAESIR

Found in P52196, Thiosulfate sulfurtransferase Os=Mus musculus GN=Tst PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1400 Da Full range

Label all possible matches ✓ Label matches used for scoring ✓

Monoisotopic mass of neutral peptide Mr(calc): 1536.8355

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K8 : +1.000 (N-term), with neutral loss 48.0152

Matches : 7/124 fragment ions using 24 most intense peaks (help)

| # | b | b++ | b' | b'++ | y0 | y0+ | y1 | y1+ | y2 | y2+ | y3 | y3+ | y4 | y4+ | y5 | y5+ | y6 | y6+ |
|---|-----|-----|----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 72 | | | | A | | | | | | | | | | | | | |
| 2 | 185 | 93 | 67 | | L | 1444.| 722.| 1427.| 714.| 838.| 713.| 606.| 713.| 563.| 713.| 542.| 713.|
| 8 | 941.| 543.| 34.| | L | 688.| 344.| 671.| 336.| 189.| 671.| 336.| 189.| 671.| 336.| 189.| 671.|
| 9 | 1012.| 582.| 20.| | A | 575.| 283.| 558.| 279.| 647.| 279.| 555.| 279.| 555.| 279.| 555.| 279.|
| 11 | 1228.| 657.| 57.| | S | 375.| 188.| 358.| 179.| 607.| 179.| 595.| 179.| 595.| 179.| 595.| 179.|
| 13 | | | | | R | 175.| 88.6.| 158.| 79.5.| 498.| 79.5.| 498.| 79.5.| 498.| 79.5.| 498.| 79.5.|

Help
MS/MS Fragmentation of QALKNLGEILK
Found in P52760, Ribonuclease UK114 OS=Mus musculus ON=Hrsp12 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(calc): 1211.7398
Fixed modifications: M+N3 (C) apply to specified residues or termini only
Variable modifications:
K4 : mal-COO (K), with neutral loss 43.0096
Ions Score: 51 Expect: 0.0076
Matches : 14/100 fragment ions using 24 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b'</th>
<th>b'^+</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y''</th>
<th>y'^+</th>
<th>y^''</th>
<th>y^0</th>
<th>y^0^+</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0893</td>
<td>56.5223</td>
<td>Q</td>
<td>1110.6669</td>
<td>570.8530</td>
<td>1123.6721</td>
<td>582.3397</td>
<td>1122.6881</td>
<td>561.8477</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200.1030</td>
<td>100.5551</td>
<td>183.0764</td>
<td>92.0418</td>
<td>A</td>
<td>1110.6669</td>
<td>570.8530</td>
<td>1123.6721</td>
<td>582.3397</td>
<td>1122.6881</td>
<td>561.8477</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>157.0972</td>
<td>296.1603</td>
<td>148.5839</td>
<td>L</td>
<td>1069.6616</td>
<td>535.3344</td>
<td>1052.6330</td>
<td>526.8211</td>
<td>1051.6510</td>
<td>526.8211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>483.2926</td>
<td>242.1499</td>
<td>466.2660</td>
<td>233.6366</td>
<td>K</td>
<td>956.5775</td>
<td>478.7924</td>
<td>939.5510</td>
<td>470.2791</td>
<td>938.5669</td>
<td>469.7871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>397.3333</td>
<td>299.1714</td>
<td>380.3089</td>
<td>280.0381</td>
<td>N</td>
<td>786.4720</td>
<td>393.7390</td>
<td>769.4454</td>
<td>385.2204</td>
<td>768.4614</td>
<td>384.7345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>710.4196</td>
<td>355.7134</td>
<td>693.3930</td>
<td>347.2001</td>
<td>L</td>
<td>672.4291</td>
<td>336.7182</td>
<td>655.4025</td>
<td>328.2049</td>
<td>654.4185</td>
<td>327.7129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>767.4410</td>
<td>384.2241</td>
<td>750.4145</td>
<td>375.7169</td>
<td>G</td>
<td>559.3450</td>
<td>280.1761</td>
<td>542.3184</td>
<td>271.6629</td>
<td>541.3344</td>
<td>271.7108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>896.4384</td>
<td>448.7454</td>
<td>879.4571</td>
<td>440.2522</td>
<td>E</td>
<td>878.4730</td>
<td>439.7402</td>
<td>861.4522</td>
<td>430.2522</td>
<td>850.4384</td>
<td>424.8302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1009.5677</td>
<td>505.2875</td>
<td>992.5411</td>
<td>496.7742</td>
<td>I</td>
<td>991.5517</td>
<td>496.2822</td>
<td>984.5571</td>
<td>487.1441</td>
<td>983.5517</td>
<td>484.3184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1122.6817</td>
<td>561.8295</td>
<td>1105.6252</td>
<td>553.3162</td>
<td>L</td>
<td>1069.6616</td>
<td>535.3344</td>
<td>1052.6330</td>
<td>526.8211</td>
<td>1051.6510</td>
<td>526.8211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>147.1128</td>
<td>74.0660</td>
<td>130.0863</td>
<td>65.5485</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VISTTKAPAAIGPYSQAVQVDR
KVISTTKAPAAIGPYSQAVVQVDR

MS/MS Fragmentation of KVISTTKAPAAIGPYSQAVVQVDR
Found in P07709, Ribosomal protein S11
OS=Homo sapiens GN=RP12 DE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or: (Full range) 200 to 3500 Da (Standard)
Label all possible matches © Label matches used for scoring ©

Monoisotopic mass of neutral peptide m/z (calc): 1385.6746
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K* : N-term (X), with neutral loss 43.0107
Ion score: 43 EXACT: 0.000264
Matches: 51/136 fragment ions line using 115 most intense peaks (calc)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>m/z</th>
<th>Da</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129_1022</td>
<td>65.0545</td>
<td>112.0787</td>
<td>55.5415</td>
<td>K</td>
</tr>
<tr>
<td>2</td>
<td>228_1707</td>
<td>114.5490</td>
<td>211.1441</td>
<td>106.0757</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>241_1511</td>
<td>173.1150</td>
<td>224.2282</td>
<td>182.8177</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>428_4167</td>
<td>216.8417</td>
<td>411.2810</td>
<td>206.1337</td>
<td>210.2672</td>
</tr>
<tr>
<td>5</td>
<td>529_2244</td>
<td>265.1709</td>
<td>522.2079</td>
<td>256.6576</td>
<td>511.3299</td>
</tr>
<tr>
<td>6</td>
<td>630_2671</td>
<td>235.0947</td>
<td>612.3556</td>
<td>307.1014</td>
<td>412.7515</td>
</tr>
<tr>
<td>7</td>
<td>700_2847</td>
<td>400.7475</td>
<td>811.4811</td>
<td>592.2242</td>
<td>732.4771</td>
</tr>
<tr>
<td>8</td>
<td>652_4237</td>
<td>526.4980</td>
<td>541.4922</td>
<td>427.7527</td>
<td>335.5142</td>
</tr>
<tr>
<td>9</td>
<td>908_8477</td>
<td>584.7974</td>
<td>552.5101</td>
<td>467.2791</td>
<td>350.0609</td>
</tr>
<tr>
<td>10</td>
<td>1039_6146</td>
<td>520.3199</td>
<td>1022.6381</td>
<td>711.9779</td>
<td>1012.0414</td>
</tr>
<tr>
<td>11</td>
<td>1110_6177</td>
<td>555.8282</td>
<td>1091.8032</td>
<td>547.3100</td>
<td>1092.0412</td>
</tr>
<tr>
<td>12</td>
<td>1223_7485</td>
<td>612.3715</td>
<td>1206.7009</td>
<td>903.8548</td>
<td>1205.7525</td>
</tr>
<tr>
<td>13</td>
<td>1340_6705</td>
<td>680.8433</td>
<td>1361.7307</td>
<td>952.8509</td>
<td>1283.7487</td>
</tr>
<tr>
<td>14</td>
<td>1477_8100</td>
<td>680.4047</td>
<td>1360.7285</td>
<td>950.8524</td>
<td>1359.7005</td>
</tr>
<tr>
<td>15</td>
<td>1588_8374</td>
<td>770.9483</td>
<td>1553.8488</td>
<td>962.4270</td>
<td>1553.8830</td>
</tr>
<tr>
<td>16</td>
<td>1627_9605</td>
<td>814.4519</td>
<td>1620.8738</td>
<td>1055.0481</td>
<td>1609.0048</td>
</tr>
<tr>
<td>17</td>
<td>1755_9606</td>
<td>878.4514</td>
<td>1757.9354</td>
<td>1090.0793</td>
<td>1757.5354</td>
</tr>
<tr>
<td>18</td>
<td>1877_1091</td>
<td>934.4842</td>
<td>1869.9745</td>
<td>1065.4900</td>
<td>1869.9505</td>
</tr>
<tr>
<td>19</td>
<td>1926_9589</td>
<td>663.9304</td>
<td>1326.0439</td>
<td>943.0231</td>
<td>1325.5052</td>
</tr>
<tr>
<td>20</td>
<td>2034_1211</td>
<td>1027.5977</td>
<td>2057.1013</td>
<td>1319.0344</td>
<td>2084.1715</td>
</tr>
<tr>
<td>21</td>
<td>2113_1695</td>
<td>1077.1919</td>
<td>2151.1599</td>
<td>1368.5085</td>
<td>2151.1599</td>
</tr>
<tr>
<td>22</td>
<td>2268_3524</td>
<td>1124.6114</td>
<td>2251.1909</td>
<td>1316.1202</td>
<td>2251.2920</td>
</tr>
<tr>
<td>23</td>
<td>2375_1616</td>
<td>1173.1580</td>
<td>2348.0363</td>
<td>1358.0924</td>
<td>2348.0363</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **ELFDELVKK**

Found in **P55264**, Adenosine kinase OS=Mus musculus GN=Adk PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot from] 150 to 1200 Da [Full range]

Monoisotopic mass of neutral peptide Mr(calc): 1205.6180
Fixed modifications: MMSS (C) (apply to specified residues or termini only)
Variable modifications:
K = ma_lCO2 (K), with neutral loss 43.9998

Ions Score: 30 Expect: 0.011
Matches: 14/74 fragment ions using 19 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>65.5286</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>122.0706</td>
<td>225.1234</td>
<td>113.0653</td>
<td>L</td>
<td>1033.5928</td>
<td>517.3001</td>
<td>1016.5663</td>
<td>508.7688</td>
<td>1015.5823</td>
<td>508.2948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>390.2023</td>
<td>195.6048</td>
<td>372.1918</td>
<td>186.5995</td>
<td>F</td>
<td>920.5088</td>
<td>460.7580</td>
<td>903.4822</td>
<td>452.2447</td>
<td>902.4982</td>
<td>451.7527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>505.2293</td>
<td>253.1183</td>
<td>487.2187</td>
<td>244.1130</td>
<td>D</td>
<td>773.4403</td>
<td>387.2238</td>
<td>756.4138</td>
<td>378.7105</td>
<td>755.4298</td>
<td>378.2185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>747.3559</td>
<td>374.1816</td>
<td>729.3454</td>
<td>365.1763</td>
<td>L</td>
<td>529.3708</td>
<td>265.1890</td>
<td>512.3443</td>
<td>256.6758</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>846.4244</td>
<td>423.7158</td>
<td>828.4138</td>
<td>414.7105</td>
<td>V</td>
<td>416.2867</td>
<td>208.6470</td>
<td>399.2602</td>
<td>200.1337</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1016.5299</td>
<td>508.7686</td>
<td>999.5033</td>
<td>500.2553</td>
<td>K</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>K</td>
<td></td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GQKVLDSGAPIK
Found in P56480, ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 SV=2
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 400 to 1200 Da
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide Mr(scaled): 1297.6878
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K5: mal_COO (K), with neutral loss 49.9596
Ions Scored: 0, Expect: 0.018
Matches: 27/110 fragment ions using 16 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0387</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>156.0373</td>
<td>93.3473</td>
<td>160.0608</td>
<td>85.0340</td>
<td></td>
<td>Q</td>
<td>1157.6838</td>
<td>599.3435</td>
<td>610.6372</td>
<td>1179.6732</td>
<td>590.3432</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>356.1928</td>
<td>178.6031</td>
<td>359.1863</td>
<td>170.0865</td>
<td></td>
<td>K</td>
<td>1069.6252</td>
<td>535.3162</td>
<td>1052.3986</td>
<td>226.8593</td>
<td>1051.6146</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>455.2613</td>
<td>228.1343</td>
<td>458.2347</td>
<td>219.8210</td>
<td></td>
<td>V</td>
<td>899.5197</td>
<td>450.2635</td>
<td>882.4931</td>
<td>441.7502</td>
<td>881.5091</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>568.3453</td>
<td>284.6765</td>
<td>571.3188</td>
<td>276.1620</td>
<td></td>
<td>L</td>
<td>900.4512</td>
<td>400.7293</td>
<td>783.4247</td>
<td>392.2160</td>
<td>782.4407</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>683.3723</td>
<td>342.1896</td>
<td>666.3457</td>
<td>333.7675</td>
<td>665.3617</td>
<td>333.1845</td>
<td>D</td>
<td>687.3672</td>
<td>344.1872</td>
<td>670.3406</td>
<td>335.6740</td>
<td>669.3566</td>
<td>335.1819</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>770.4043</td>
<td>385.7058</td>
<td>753.3777</td>
<td>377.1925</td>
<td>752.3807</td>
<td>376.7065</td>
<td>S</td>
<td>572.3402</td>
<td>286.6738</td>
<td>555.3317</td>
<td>278.1605</td>
<td>554.3297</td>
<td>277.6685</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>827.4258</td>
<td>414.2165</td>
<td>810.3992</td>
<td>405.7032</td>
<td>409.4152</td>
<td>405.2112</td>
<td>G</td>
<td>485.3682</td>
<td>243.1577</td>
<td>468.2817</td>
<td>234.6445</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>898.4629</td>
<td>449.7531</td>
<td>831.4363</td>
<td>441.2118</td>
<td>830.4523</td>
<td>440.7298</td>
<td>A</td>
<td>428.2867</td>
<td>214.6170</td>
<td>411.2602</td>
<td>206.1337</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>995.5153</td>
<td>498.2612</td>
<td>978.4891</td>
<td>489.7482</td>
<td>977.5201</td>
<td>489.2562</td>
<td>P</td>
<td>357.2496</td>
<td>179.1283</td>
<td>340.2231</td>
<td>170.6152</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1108.5997</td>
<td>554.8035</td>
<td>1091.5722</td>
<td>546.3202</td>
<td>1090.5891</td>
<td>545.7982</td>
<td>I</td>
<td>260.1069</td>
<td>130.6021</td>
<td>243.1708</td>
<td>122.0888</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.2458</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MBMS Fragmentation of GQKVLDGAPIKVPGPETLG

Found in P64390, ATP synthase subunit beta, mitochondrial, G5-Mus musculus GN=Atp8b PE=1 SV=2

Click cross within plot area to zoom in or factor of two above that point
Or, Plus from 200 to 1400 Delta Full range
Label all possible matches or matches used for scoring

GQKVLDGAPIKVPGPETLG
MS/MS Fragmentation of **DFIDYYLIKQK**

Found in **P86650**,Cytochrome P450 2C39 OS=**Mus musculus** GN=Cyp2c39 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from __200__ to __1500__ Da Full range

Label all possible matches ✔ Label matches used for scoring ✔

Monoisotopic mass of neutral peptide Mr(mono): 1530.7606
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K9: + ma1,002 (K), with neutral loss 42.0668

Ions Searched: 21 Expect: 0.01
Matches: 10/30 fragment ions using 40 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b'++</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y++</th>
<th>y'++</th>
<th>p</th>
<th>p'</th>
<th>p'++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td></td>
<td>58.5207</td>
<td></td>
<td>98.0237</td>
<td></td>
<td>40.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>263.1026</td>
<td>132.0250</td>
<td></td>
<td>245.0921</td>
<td>123.0497</td>
<td>F</td>
<td>137.7511</td>
<td>688.8792</td>
<td>1355.7246</td>
<td>678.3659</td>
<td>1254.7406</td>
<td>677.8739</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>376.1867</td>
<td>188.5970</td>
<td></td>
<td>358.1761</td>
<td>179.5917</td>
<td>I</td>
<td>1225.6827</td>
<td>613.3450</td>
<td>1208.6562</td>
<td>604.8317</td>
<td>1207.6721</td>
<td>604.3397</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>491.2136</td>
<td>246.1105</td>
<td></td>
<td>473.2031</td>
<td>237.1052</td>
<td>D</td>
<td>1113.5986</td>
<td>556.0830</td>
<td>1095.5721</td>
<td>548.2897</td>
<td>1094.5881</td>
<td>547.7977</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>654.2770</td>
<td>327.6421</td>
<td></td>
<td>656.2650</td>
<td>318.6368</td>
<td>Y</td>
<td>997.5717</td>
<td>499.2895</td>
<td>980.5451</td>
<td>490.7762</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>817.3403</td>
<td>409.1738</td>
<td></td>
<td>799.3297</td>
<td>400.1685</td>
<td>Y</td>
<td>824.5084</td>
<td>417.7578</td>
<td>817.4818</td>
<td>409.2445</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>930.4244</td>
<td>465.7158</td>
<td></td>
<td>912.4138</td>
<td>456.7105</td>
<td>L</td>
<td>671.4459</td>
<td>338.2262</td>
<td>654.4185</td>
<td>327.7129</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>1043.5084</td>
<td>522.2579</td>
<td></td>
<td>1025.4970</td>
<td>513.2526</td>
<td>I</td>
<td>558.3610</td>
<td>279.6841</td>
<td>541.3344</td>
<td>271.1709</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1213.6140</td>
<td>607.3106</td>
<td></td>
<td>1196.5874</td>
<td>598.7973</td>
<td>I</td>
<td>1195.6034</td>
<td>598.3053</td>
<td>445.2769</td>
<td>223.1421</td>
<td>428.2504</td>
<td>214.6288</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1341.6723</td>
<td>671.3399</td>
<td>1324.6460</td>
<td>662.8266</td>
<td>1323.6620</td>
<td>662.3348</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
| 11 | K | | 147.1123 | 74.0600 | 130.0681 | 65.5468 | | | | | | | 1
MS/MS Fragmentation of FKQHVQDWAIPR

Found in P88710, L-gulonolactone oxidase OS=Mus musculus GN=Gulo PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1000 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M_z (calc): 1809.90011
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K2: sul, C02 (K), with neutral loss 48.0089

Matches: 14/101 frequent ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>+</sup></th>
<th>b<sup>++</sup></th>
<th>y</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>Seq.</th>
<th>γ</th>
<th>γ<sup>+</sup></th>
<th>γ<sup>++</sup></th>
<th>γ<sup>+++</sup></th>
<th>γ<sup>++++</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td>1419.7492</td>
<td>710.3782</td>
<td>1402.7226</td>
<td>701.8649</td>
<td>1401.7386</td>
<td>701.3739</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>301.1547</td>
<td>151.0810</td>
<td>K</td>
<td>1249.6436</td>
<td>625.3255</td>
<td>1232.6171</td>
<td>616.8122</td>
<td>1231.6331</td>
<td>616.3622</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>446.2398</td>
<td>223.6235</td>
<td>242.2132</td>
<td>215.1103</td>
<td>Q</td>
<td>585.2987</td>
<td>350.1350</td>
<td>506.1272</td>
<td>283.5987</td>
<td>H</td>
<td>1121.5851</td>
<td>561.2902</td>
<td>1104.5385</td>
</tr>
<tr>
<td>4</td>
<td>682.3671</td>
<td>341.8572</td>
<td>665.3406</td>
<td>333.1739</td>
<td>V</td>
<td>984.5261</td>
<td>492.7667</td>
<td>967.4996</td>
<td>484.2334</td>
<td>966.5155</td>
<td>483.7614</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>810.4257</td>
<td>405.7165</td>
<td>792.3992</td>
<td>397.2032</td>
<td>Q</td>
<td>885.4577</td>
<td>443.2223</td>
<td>868.4312</td>
<td>434.7192</td>
<td>867.4472</td>
<td>434.2272</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1111.5320</td>
<td>556.2896</td>
<td>1094.5024</td>
<td>547.7563</td>
<td>1093.5214</td>
<td>547.2843</td>
<td>W</td>
<td>642.3722</td>
<td>321.8897</td>
<td>625.3457</td>
<td>313.1765</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1182.5691</td>
<td>591.7882</td>
<td>1165.5425</td>
<td>583.2749</td>
<td>1164.5583</td>
<td>582.7829</td>
<td>A</td>
<td>456.2929</td>
<td>228.6501</td>
<td>439.2663</td>
<td>220.1258</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1295.6851</td>
<td>648.3302</td>
<td>1278.6266</td>
<td>639.8169</td>
<td>1277.6426</td>
<td>639.3249</td>
<td>I</td>
<td>385.2558</td>
<td>193.1215</td>
<td>368.2292</td>
<td>184.6183</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1392.7059</td>
<td>696.8566</td>
<td>1375.6793</td>
<td>688.3433</td>
<td>1374.6953</td>
<td>687.8513</td>
<td>P</td>
<td>272.1717</td>
<td>136.5895</td>
<td>255.1452</td>
<td>128.0762</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IKIIAPPER

Found in B1ATY1, Actin, cytoplasmic 2
OS=Mus musculus GN=Act21 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, the plot from 150 to 1050 Da full range

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1121.6444

Fixed modifications: M(C) (apply to specified residues or termini only)
Variable modifications:
- N2: ms1.CO2 (K), with neutral loss 49.0090

Lons Score: 22 Expect: 0.2

Matches: 15/28 fragment ions using 44 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b0</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y0</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>565.5778</td>
<td>483.2926</td>
<td>948.5513</td>
<td>474.7793</td>
<td>947.5673</td>
<td>474.2873</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1069</td>
<td>142.6021</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>565.5778</td>
<td>483.2926</td>
<td>948.5513</td>
<td>474.7793</td>
<td>947.5673</td>
<td>474.2873</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>307.2569</td>
<td>159.1441</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>795.4723</td>
<td>398.2398</td>
<td>778.4458</td>
<td>389.7265</td>
<td>777.4618</td>
<td>388.2345</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>510.3450</td>
<td>255.6861</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>682.3883</td>
<td>341.6978</td>
<td>665.3617</td>
<td>333.1845</td>
<td>664.3777</td>
<td>332.6925</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>581.4021</td>
<td>291.2047</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>569.3042</td>
<td>285.1557</td>
<td>552.2776</td>
<td>276.6425</td>
<td>551.2936</td>
<td>276.1504</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>678.4549</td>
<td>339.7311</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>495.2671</td>
<td>249.6372</td>
<td>481.2405</td>
<td>241.1239</td>
<td>480.2565</td>
<td>240.6319</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>775.5076</td>
<td>388.2575</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>481.2143</td>
<td>240.1108</td>
<td>384.1878</td>
<td>192.5975</td>
<td>383.2037</td>
<td>192.1055</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>894.5502</td>
<td>452.7788</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>285.1510</td>
<td>143.5791</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>175.1190</td>
<td>88.0631</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IKIIAPPERK

Found in BLATV1, Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

![Graph with peaks and masses](image)

Monoisotopic mass of neutral peptide Mr(calo): 1249.7394

Fixed modifications: H3N (C) (apply to specified residues or termini only)

Variable modifications:

- K2: mal-CO2 (K), with neutral loss 49.9898

Ions Score: 19 Expect: 0.13

Matches: 19/88 fragment ions using 52 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b''</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td></td>
<td></td>
<td>K</td>
<td>1039.6728</td>
<td>547.3400</td>
<td>1076.6463</td>
<td>538.8268</td>
<td>1075.6622</td>
<td>538.3348</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>397.2809</td>
<td>199.1441</td>
<td>380.2544</td>
<td>190.6308</td>
<td></td>
<td></td>
<td>I</td>
<td>923.5673</td>
<td>462.2873</td>
<td>906.5407</td>
<td>453.7740</td>
<td>905.5567</td>
<td>453.2820</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>510.3650</td>
<td>255.6861</td>
<td>493.3884</td>
<td>247.1729</td>
<td></td>
<td></td>
<td>I</td>
<td>810.4832</td>
<td>405.7452</td>
<td>793.4567</td>
<td>397.2320</td>
<td>792.4726</td>
<td>396.7400</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>678.4549</td>
<td>339.7311</td>
<td>651.4283</td>
<td>351.2178</td>
<td></td>
<td></td>
<td>P</td>
<td>526.6920</td>
<td>313.6817</td>
<td>609.3355</td>
<td>305.1714</td>
<td>608.3515</td>
<td>304.6794</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>775.5076</td>
<td>388.2575</td>
<td>758.4811</td>
<td>379.7442</td>
<td></td>
<td></td>
<td>P</td>
<td>529.3082</td>
<td>315.1583</td>
<td>512.2827</td>
<td>256.6450</td>
<td>511.2987</td>
<td>256.1530</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>895.5002</td>
<td>452.7788</td>
<td>887.5237</td>
<td>444.2655</td>
<td></td>
<td></td>
<td>E</td>
<td>432.2565</td>
<td>216.6319</td>
<td>415.2300</td>
<td>208.1186</td>
<td>414.2459</td>
<td>207.6266</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1080.6513</td>
<td>530.8293</td>
<td>1043.6248</td>
<td>522.3160</td>
<td>1042.6408</td>
<td>521.8240</td>
<td>R</td>
<td>303.2139</td>
<td>152.1106</td>
<td>286.1874</td>
<td>143.5973</td>
<td>152.1106</td>
<td>286.1874</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0853</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
HQGV
MVGM
GQKD
SYVG
DEAQS
K

Monoisotopic mass of neutral peptide N(t calc): 2446.0984
Fixed modifications: C=NH (apply to specified residues or to whole sequence)
Variable modifications:
HC: Oxidation (M), with neutral losses 0.00000 (shown in table), 0.00000
HS: Deamidation (N), with neutral losses 0.00000 (shown in table), 0.00000
K13: M+COOH (K), with neutral losses 43.0086
Ions Score: 96 Expect: 0.0016
Matches: 20/206 fragment ions using 26 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b'</th>
<th>y'</th>
<th>b''</th>
<th>y''</th>
<th>y*</th>
<th>y**</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118.0062</td>
<td>59.5537</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>122.1462</td>
<td>59.5537</td>
<td>Q</td>
<td>2288.0190</td>
<td>1144.5121</td>
<td>2270.9004</td>
<td>1135.5081</td>
<td>2270.9004</td>
<td>1135.5081</td>
<td>2270.9004</td>
</tr>
<tr>
<td>3</td>
<td>122.1462</td>
<td>59.5537</td>
<td>C</td>
<td>2150.9394</td>
<td>1000.4628</td>
<td>2142.9318</td>
<td>1001.4545</td>
<td>2141.9347</td>
<td>1001.4573</td>
<td>2141.9347</td>
</tr>
<tr>
<td>4</td>
<td>122.1462</td>
<td>59.5537</td>
<td>V</td>
<td>2102.9390</td>
<td>1001.9327</td>
<td>2094.9306</td>
<td>1002.9327</td>
<td>2094.9306</td>
<td>1002.9327</td>
<td>2094.9306</td>
</tr>
<tr>
<td>6</td>
<td>169.2250</td>
<td>95.5537</td>
<td>V</td>
<td>1850.8331</td>
<td>978.8302</td>
<td>1839.8365</td>
<td>970.8406</td>
<td>1838.8315</td>
<td>970.8419</td>
<td>1838.8315</td>
</tr>
<tr>
<td>7</td>
<td>222.1462</td>
<td>109.5537</td>
<td>G</td>
<td>1727.8474</td>
<td>978.5880</td>
<td>1719.8481</td>
<td>970.5887</td>
<td>1717.8481</td>
<td>970.5887</td>
<td>1717.8481</td>
</tr>
<tr>
<td>8</td>
<td>222.1462</td>
<td>109.5537</td>
<td>V</td>
<td>1675.8474</td>
<td>978.5880</td>
<td>1663.8481</td>
<td>970.5887</td>
<td>1661.8481</td>
<td>970.5887</td>
<td>1661.8481</td>
</tr>
<tr>
<td>9</td>
<td>222.1462</td>
<td>109.5537</td>
<td>M</td>
<td>1550.8574</td>
<td>888.8542</td>
<td>1538.8582</td>
<td>883.8549</td>
<td>1536.8582</td>
<td>883.8549</td>
<td>1536.8582</td>
</tr>
<tr>
<td>10</td>
<td>257.4554</td>
<td>124.5537</td>
<td>Q</td>
<td>1456.8681</td>
<td>748.8650</td>
<td>1447.8681</td>
<td>740.8650</td>
<td>1446.8681</td>
<td>740.8650</td>
<td>1446.8681</td>
</tr>
<tr>
<td>11</td>
<td>257.4554</td>
<td>124.5537</td>
<td>X</td>
<td>1368.8789</td>
<td>658.8757</td>
<td>1356.8789</td>
<td>650.8757</td>
<td>1354.8789</td>
<td>650.8757</td>
<td>1354.8789</td>
</tr>
<tr>
<td>12</td>
<td>292.6878</td>
<td>162.5537</td>
<td>D</td>
<td>1198.8123</td>
<td>598.7048</td>
<td>1181.8157</td>
<td>591.7053</td>
<td>1180.8157</td>
<td>591.7053</td>
<td>1180.8157</td>
</tr>
<tr>
<td>13</td>
<td>292.6878</td>
<td>162.5537</td>
<td>S</td>
<td>1038.4953</td>
<td>543.2931</td>
<td>1029.4960</td>
<td>540.2938</td>
<td>1028.4960</td>
<td>540.2938</td>
<td>1028.4960</td>
</tr>
<tr>
<td>14</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>15</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>16</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>17</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>18</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>19</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>20</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>21</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
<tr>
<td>22</td>
<td>192.6878</td>
<td>86.5537</td>
<td>V</td>
<td>966.4862</td>
<td>478.7825</td>
<td>958.4870</td>
<td>471.7828</td>
<td>956.4870</td>
<td>471.7828</td>
<td>956.4870</td>
</tr>
</tbody>
</table>
KDLYANTVLSGGTTMYPGIADR
VLDSGAPIKIPVG PETLGR
MS/MS Fragmentation of VAVEAKNPADLPK

Found in P58252, Elongation factor 2 OS=Mus musculus GN=Elf2 PE=1 SV=2

Monoisotopic mass of neutral peptide Mz(calc): 1496.7011
Fixed modifications: M+H (+) (apply to specified residues or term only)
Variable modifications:
K8 : miss202 (K), with neutral loss 43.01058

Matches : 11/122 fragment ions using 12 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y0</th>
<th>y6</th>
<th>y6'</th>
<th>y6''</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>270.1812</td>
<td>135.5942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>359.2328</td>
<td>200.1155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>438.2696</td>
<td>219.1347</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>517.3051</td>
<td>258.1526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>640.3665</td>
<td>320.6089</td>
<td>623.3399</td>
<td>312.1736</td>
<td>622.3559</td>
<td>311.6816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>754.4094</td>
<td>377.7082</td>
<td>373.3828</td>
<td>369.1951</td>
<td>756.308</td>
<td>368.7030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>851.4521</td>
<td>426.2347</td>
<td>417.7124</td>
<td>833.4516</td>
<td>417.3294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>922.4993</td>
<td>461.7533</td>
<td>905.4727</td>
<td>453.2400</td>
<td>904.4887</td>
<td>452.7480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1037.5262</td>
<td>519.2606</td>
<td>1020.4997</td>
<td>510.7532</td>
<td>1019.4326</td>
<td>510.2615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1150.5603</td>
<td>575.8088</td>
<td>1133.8387</td>
<td>567.2955</td>
<td>1132.3599</td>
<td>566.8035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1247.6930</td>
<td>624.3352</td>
<td>1230.6363</td>
<td>613.8219</td>
<td>1229.6523</td>
<td>613.3299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EITALAPSTMKIK

Found in B1ATY1, Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Flat from 200 to 1500 Da

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(scale): 1467.7805
Fixed modifications: HET0 (C) (apply to specified residues or termini only)
Variable modifications:
K11: std COO (R), with neutral loss 42.0500

Sequence: EITALAPSTMKIK

Matches: 14/516 Fragment ions using 115 most intense peaks (help)
MS/MS Fragmentation of EITALAPSTMKIK

Found in **B1ATY1**, Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1200 Da

Label all possible matches □ Label matches used for scoring

Monoisotopic mass of neutral peptide M (+calc): 1208.7504

Fixed modifications: MTM (C) (apply to specified residues or termini only)

Variable modifications:

- **M**40 : Oxidation (M, with neutral losses 0.0000(shown in table), 0.9500

Ions Scored: 21 Expect: 6.28

Matches: 28/164 fragment ions using 59 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y**</th>
<th>b**</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>Seq</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0499</td>
<td>65.5296</td>
<td>112.0393</td>
<td>86.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>243.3239</td>
<td>122.0706</td>
<td>225.1234</td>
<td>113.0653</td>
<td>I</td>
<td>1331.7603</td>
<td>666.3868</td>
<td>1314.7338</td>
<td>657.8703</td>
<td>1313.7497</td>
<td>657.7385</td>
</tr>
<tr>
<td>3</td>
<td>344.1816</td>
<td>172.5944</td>
<td>326.1710</td>
<td>162.5892</td>
<td>T</td>
<td>1218.6762</td>
<td>609.8418</td>
<td>1201.6497</td>
<td>601.3285</td>
<td>1200.6657</td>
<td>599.8356</td>
</tr>
<tr>
<td>4</td>
<td>415.2187</td>
<td>208.1130</td>
<td>397.2082</td>
<td>199.1077</td>
<td>A</td>
<td>1117.6286</td>
<td>559.3179</td>
<td>1100.6020</td>
<td>550.8046</td>
<td>1099.6180</td>
<td>550.2126</td>
</tr>
<tr>
<td>5</td>
<td>528.3924</td>
<td>264.6530</td>
<td>510.2922</td>
<td>255.6498</td>
<td>L</td>
<td>1946.5914</td>
<td>523.7994</td>
<td>1029.5649</td>
<td>515.2851</td>
<td>1028.5809</td>
<td>514.7941</td>
</tr>
<tr>
<td>6</td>
<td>599.3399</td>
<td>300.1736</td>
<td>581.3292</td>
<td>291.1633</td>
<td>A</td>
<td>933.5074</td>
<td>467.2573</td>
<td>916.4808</td>
<td>458.7441</td>
<td>915.4968</td>
<td>458.2520</td>
</tr>
<tr>
<td>7</td>
<td>696.3927</td>
<td>348.7000</td>
<td>678.3821</td>
<td>339.6947</td>
<td>P</td>
<td>862.4703</td>
<td>431.7268</td>
<td>845.4437</td>
<td>423.2255</td>
<td>844.4597</td>
<td>422.7335</td>
</tr>
<tr>
<td>8</td>
<td>783.4247</td>
<td>392.2160</td>
<td>765.4141</td>
<td>383.2107</td>
<td>S</td>
<td>765.4175</td>
<td>383.2124</td>
<td>748.3910</td>
<td>374.6991</td>
<td>747.4069</td>
<td>374.2071</td>
</tr>
<tr>
<td>9</td>
<td>864.4724</td>
<td>442.7398</td>
<td>846.4618</td>
<td>433.7354</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1031.5978</td>
<td>516.2575</td>
<td>1013.4972</td>
<td>507.2522</td>
<td>M</td>
<td>577.3378</td>
<td>289.1725</td>
<td>560.3112</td>
<td>280.6593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1201.6133</td>
<td>601.3103</td>
<td>1184.5868</td>
<td>592.7970</td>
<td>K</td>
<td>450.3024</td>
<td>215.6548</td>
<td>413.2738</td>
<td>207.1416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1314.6974</td>
<td>657.8523</td>
<td>1297.6703</td>
<td>648.3390</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YSVDIPLDKTVVNK

Found in A2A4Q6, 60S ribosomal protein L27 (Fragment) OS=Mus musculus GN=Rpl27 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot zoomed 200 to 1700 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(calc): 1579.8866
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K9 : nalc_204 (E), with neutral loss 48.9595
Ion Score: 50 Expect: 0.00018
Matches: 19/130 fragment ions using 29 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>y</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>Seq</th>
<th>y'</th>
<th>y+1'</th>
<th>y+2'</th>
<th>y+3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.5389</td>
<td>164.0706</td>
<td>82.5389</td>
<td>164.0706</td>
<td>82.5389</td>
<td>164.0706</td>
<td>82.5389</td>
<td>164.0706</td>
</tr>
<tr>
<td>2</td>
<td>251.1026</td>
<td>126.0550</td>
<td>251.1026</td>
<td>126.0550</td>
<td>251.1026</td>
<td>126.0550</td>
<td>251.1026</td>
<td>126.0550</td>
<td>251.1026</td>
</tr>
<tr>
<td>3</td>
<td>330.1716</td>
<td>166.5399</td>
<td>330.1716</td>
<td>166.5399</td>
<td>330.1716</td>
<td>166.5399</td>
<td>330.1716</td>
<td>166.5399</td>
<td>330.1716</td>
</tr>
<tr>
<td>5</td>
<td>578.2821</td>
<td>289.6417</td>
<td>578.2821</td>
<td>289.6417</td>
<td>578.2821</td>
<td>289.6417</td>
<td>578.2821</td>
<td>289.6417</td>
<td>578.2821</td>
</tr>
<tr>
<td>6</td>
<td>675.3343</td>
<td>338.1710</td>
<td>675.3343</td>
<td>338.1710</td>
<td>675.3343</td>
<td>338.1710</td>
<td>675.3343</td>
<td>338.1710</td>
<td>675.3343</td>
</tr>
<tr>
<td>7</td>
<td>788.4189</td>
<td>394.7131</td>
<td>788.4189</td>
<td>394.7131</td>
<td>788.4189</td>
<td>394.7131</td>
<td>788.4189</td>
<td>394.7131</td>
<td>788.4189</td>
</tr>
<tr>
<td>8</td>
<td>903.4459</td>
<td>452.2266</td>
<td>903.4459</td>
<td>452.2266</td>
<td>903.4459</td>
<td>452.2266</td>
<td>903.4459</td>
<td>452.2266</td>
<td>903.4459</td>
</tr>
<tr>
<td>9</td>
<td>1073.5514</td>
<td>537.2793</td>
<td>1073.5514</td>
<td>537.2793</td>
<td>1073.5514</td>
<td>537.2793</td>
<td>1073.5514</td>
<td>537.2793</td>
<td>1073.5514</td>
</tr>
<tr>
<td>10</td>
<td>1174.5900</td>
<td>587.8032</td>
<td>1174.5900</td>
<td>587.8032</td>
<td>1174.5900</td>
<td>587.8032</td>
<td>1174.5900</td>
<td>587.8032</td>
<td>1174.5900</td>
</tr>
<tr>
<td>11</td>
<td>1273.6674</td>
<td>637.3374</td>
<td>1273.6674</td>
<td>637.3374</td>
<td>1273.6674</td>
<td>637.3374</td>
<td>1273.6674</td>
<td>637.3374</td>
<td>1273.6674</td>
</tr>
<tr>
<td>13</td>
<td>1486.7788</td>
<td>741.8910</td>
<td>1486.7788</td>
<td>741.8910</td>
<td>1486.7788</td>
<td>741.8910</td>
<td>1486.7788</td>
<td>741.8910</td>
<td>1486.7788</td>
</tr>
<tr>
<td>14</td>
<td>1590.8219</td>
<td>796.9263</td>
<td>1590.8219</td>
<td>796.9263</td>
<td>1590.8219</td>
<td>796.9263</td>
<td>1590.8219</td>
<td>796.9263</td>
<td>1590.8219</td>
</tr>
</tbody>
</table>
AVIVKNIDDGTSRDPYSHALVAGIDR
MS/MS Fragmentation of KAVIVKNIDDGTSRDPYPYSHALVAGIDR

Found in: Peptide L27, 892 Da, mass matches GN:Rig127 DB:2 SV:2

Click mouse within view area to zoom in to better view this image.

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^*</th>
<th>b^**</th>
<th>y</th>
<th>y^*</th>
<th>y^**</th>
<th>y^0</th>
<th>y^1</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125.0322</td>
<td>635.5481</td>
<td>118.0737</td>
<td>75.5435</td>
<td>K</td>
<td>288.4262</td>
<td>280.4259</td>
<td>280.4262</td>
<td>280.4262</td>
</tr>
<tr>
<td>2</td>
<td>200.0394</td>
<td>105.0733</td>
<td>118.1182</td>
<td>72.0860</td>
<td>A</td>
<td>1284.4201</td>
<td>1278.4198</td>
<td>1278.4201</td>
<td>1278.4201</td>
</tr>
<tr>
<td>3</td>
<td>269.0708</td>
<td>150.1075</td>
<td>262.1185</td>
<td>141.5924</td>
<td>V</td>
<td>272.4201</td>
<td>272.4198</td>
<td>272.4201</td>
<td>272.4201</td>
</tr>
<tr>
<td>4</td>
<td>412.3998</td>
<td>206.6404</td>
<td>531.5863</td>
<td>494.9527</td>
<td>I</td>
<td>1694.4533</td>
<td>1527.4520</td>
<td>1527.4533</td>
<td>1527.4533</td>
</tr>
<tr>
<td>5</td>
<td>811.8993</td>
<td>466.0181</td>
<td>545.1333</td>
<td>428.4970</td>
<td>V</td>
<td>2441.0692</td>
<td>2172.1390</td>
<td>2172.1402</td>
<td>2172.1402</td>
</tr>
<tr>
<td>6</td>
<td>661.4650</td>
<td>341.3356</td>
<td>566.4193</td>
<td>422.7223</td>
<td>K</td>
<td>2441.0692</td>
<td>2172.1390</td>
<td>2172.1402</td>
<td>2172.1402</td>
</tr>
<tr>
<td>7</td>
<td>761.3087</td>
<td>398.2350</td>
<td>772.4823</td>
<td>588.7474</td>
<td>N</td>
<td>2272.6513</td>
<td>2114.5551</td>
<td>2114.5564</td>
<td>2114.5564</td>
</tr>
<tr>
<td>8</td>
<td>508.9802</td>
<td>454.1000</td>
<td>601.5683</td>
<td>446.2867</td>
<td>I</td>
<td>2114.5551</td>
<td>2114.5564</td>
<td>2114.5567</td>
<td>2114.5567</td>
</tr>
<tr>
<td>9</td>
<td>1022.8307</td>
<td>512.3133</td>
<td>1066.0992</td>
<td>961.8063</td>
<td>D</td>
<td>2634.0931</td>
<td>2502.9874</td>
<td>2502.9892</td>
<td>2502.9892</td>
</tr>
<tr>
<td>10</td>
<td>1530.6402</td>
<td>609.3270</td>
<td>1121.6320</td>
<td>651.3217</td>
<td>D</td>
<td>2972.9413</td>
<td>2857.7340</td>
<td>2857.7343</td>
<td>2857.7343</td>
</tr>
<tr>
<td>11</td>
<td>1162.9981</td>
<td>568.3777</td>
<td>1178.6416</td>
<td>580.2844</td>
<td>G</td>
<td>1161.0454</td>
<td>1007.9265</td>
<td>1007.9268</td>
<td>1007.9268</td>
</tr>
<tr>
<td>12</td>
<td>1265.1788</td>
<td>648.1910</td>
<td>1276.6952</td>
<td>680.3962</td>
<td>T</td>
<td>1279.9029</td>
<td>1140.9012</td>
<td>1140.9015</td>
<td>1140.9015</td>
</tr>
<tr>
<td>13</td>
<td>1263.7470</td>
<td>692.3773</td>
<td>1263.7523</td>
<td>682.3862</td>
<td>D</td>
<td>1263.7523</td>
<td>1139.7506</td>
<td>1139.7509</td>
<td>1139.7509</td>
</tr>
<tr>
<td>14</td>
<td>1566.7500</td>
<td>740.6410</td>
<td>1565.4177</td>
<td>706.6392</td>
<td>I</td>
<td>1566.7500</td>
<td>1402.7483</td>
<td>1402.7486</td>
<td>1402.7486</td>
</tr>
<tr>
<td>15</td>
<td>1564.7500</td>
<td>740.6410</td>
<td>1565.4177</td>
<td>706.6392</td>
<td>I</td>
<td>1564.7500</td>
<td>1402.7483</td>
<td>1402.7486</td>
<td>1402.7486</td>
</tr>
<tr>
<td>16</td>
<td>1751.0256</td>
<td>876.4650</td>
<td>1751.0256</td>
<td>876.4650</td>
<td>P</td>
<td>1751.0256</td>
<td>1592.0185</td>
<td>1592.0188</td>
<td>1592.0188</td>
</tr>
<tr>
<td>17</td>
<td>1814.9200</td>
<td>957.9949</td>
<td>1814.9200</td>
<td>957.9949</td>
<td>Y</td>
<td>1814.9200</td>
<td>1656.9114</td>
<td>1656.9117</td>
<td>1656.9117</td>
</tr>
<tr>
<td>19</td>
<td>2129.0289</td>
<td>1070.0481</td>
<td>2129.0289</td>
<td>1061.0399</td>
<td>H</td>
<td>2129.0289</td>
<td>1917.0222</td>
<td>1917.0225</td>
<td>1917.0225</td>
</tr>
<tr>
<td>20</td>
<td>2210.1200</td>
<td>1155.5583</td>
<td>2210.1200</td>
<td>1146.5495</td>
<td>A</td>
<td>2210.1200</td>
<td>2064.1124</td>
<td>2064.1127</td>
<td>2064.1127</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SFQKIQVR

Found in F6SVV1. Protein Gm9493 OS=Mus musculus GN=Gm9493 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1100 Da Full range

Monoisotopic mass of neutral peptide Mr(calc): 1090.5771
Fixed modifications: MMIS (C) (apply to specified residues or termini only)
Variable modifications:
K4 : Male CO2 (K), with neutral loss 43.0150

Ions Score: 49 Expect: 0.0011
Matches : 13/66 fragment ions using 19 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>100y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td></td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td>960.5625</td>
<td>480.7849</td>
<td>943.5360</td>
<td>472.2716</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>225.1077</td>
<td>118.0575</td>
<td></td>
<td>217.0972</td>
<td>109.0522</td>
<td>F</td>
<td>813.4941</td>
<td>407.2507</td>
<td>796.4676</td>
<td>398.7374</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>363.1663</td>
<td>182.0868</td>
<td>346.1397</td>
<td>173.5735</td>
<td>345.1557</td>
<td>173.0815</td>
<td>Q</td>
<td>683.4355</td>
<td>343.2214</td>
<td>668.4090</td>
<td>334.7081</td>
</tr>
<tr>
<td>4</td>
<td>533.2718</td>
<td>267.1396</td>
<td>516.2453</td>
<td>258.6263</td>
<td>515.2613</td>
<td>258.1343</td>
<td>K</td>
<td>515.3300</td>
<td>258.1086</td>
<td>498.3035</td>
<td>249.6554</td>
</tr>
<tr>
<td>5</td>
<td>646.3559</td>
<td>323.6816</td>
<td>629.3293</td>
<td>315.1683</td>
<td>628.3453</td>
<td>314.6703</td>
<td>I</td>
<td>402.2459</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
</tr>
<tr>
<td>6</td>
<td>774.4145</td>
<td>387.7109</td>
<td>757.3879</td>
<td>379.1976</td>
<td>756.4039</td>
<td>378.7056</td>
<td>Q</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
</tr>
<tr>
<td>7</td>
<td>873.4829</td>
<td>437.2451</td>
<td>856.4563</td>
<td>428.7318</td>
<td>855.4723</td>
<td>428.2398</td>
<td>V</td>
<td>175.1190</td>
<td>85.0631</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FSGKHVVVFIAQR

Found in F6SVV1. Protein Cm0493 OS=Nasus musculus GN=Cm0493 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1000 Da Full range
Label all possible matches ○ Label matches used for scoring ▼

Monoisotopic mass of neutral peptide Mr(calc): 1470.7720
Fixed modifications: wt/C (C) (apply to specified residues or termini only)
Variable modifications: X4 : m1_Cys (K), with neutral loss 42.0050
Ions Score: 28 Expect: 0.73
Matches: 10/105 fragment ions using 10 most intense peaks (half)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b₁⁺</th>
<th>b₂⁺</th>
<th>y</th>
<th>y₁⁺</th>
<th>y₂⁺</th>
<th>y₃⁺</th>
<th>y₄⁺</th>
<th>y₅⁺</th>
<th>y₆⁺</th>
<th>y₇⁺</th>
<th>y₈⁺</th>
<th>y₉⁺</th>
<th>y₁⁰⁺</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td></td>
<td></td>
<td>1283.7219</td>
<td>942.5646</td>
<td>1266.6923</td>
<td>633.35213</td>
<td>1262.7113</td>
<td>563.3593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>225.1077</td>
<td>118.0575</td>
<td>119.0522</td>
<td>S</td>
<td>1283.7219</td>
<td>942.5646</td>
<td>1266.6923</td>
<td>633.35213</td>
<td>1262.7113</td>
<td>563.3593</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>292.1292</td>
<td>146.5682</td>
<td>274.1186</td>
<td>157.5629</td>
<td>G</td>
<td>1196.6989</td>
<td>598.8468</td>
<td>1179.6633</td>
<td>590.3353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>462.2347</td>
<td>231.6210</td>
<td>444.2082</td>
<td>411.2417</td>
<td>K</td>
<td>1139.6684</td>
<td>570.3507</td>
<td>1122.6418</td>
<td>561.8206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>599.2898</td>
<td>300.1204</td>
<td>382.2671</td>
<td>291.6373</td>
<td>H</td>
<td>969.5629</td>
<td>485.2831</td>
<td>952.5363</td>
<td>476.7118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>698.3620</td>
<td>349.6847</td>
<td>681.3353</td>
<td>341.1714</td>
<td>V</td>
<td>832.5040</td>
<td>416.7556</td>
<td>815.4774</td>
<td>408.2423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>797.4304</td>
<td>389.2189</td>
<td>780.4093</td>
<td>390.7026</td>
<td>V</td>
<td>733.4355</td>
<td>367.2214</td>
<td>716.4090</td>
<td>358.7081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>944.4989</td>
<td>472.7531</td>
<td>927.4732</td>
<td>464.2398</td>
<td>926.4883</td>
<td>463.7478</td>
<td>F</td>
<td>634.3671</td>
<td>317.6872</td>
<td>617.3406</td>
<td>309.1739</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1057.5829</td>
<td>529.2951</td>
<td>1040.5064</td>
<td>520.7818</td>
<td>520.2898</td>
<td>I</td>
<td>481.2987</td>
<td>248.1529</td>
<td>470.2722</td>
<td>235.6397</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1128.6200</td>
<td>564.8137</td>
<td>1111.5933</td>
<td>556.3004</td>
<td>1110.8095</td>
<td>555.8004</td>
<td>A</td>
<td>374.2146</td>
<td>187.6110</td>
<td>357.1881</td>
<td>179.0977</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1256.6786</td>
<td>628.8429</td>
<td>1239.6521</td>
<td>620.3297</td>
<td>1238.6681</td>
<td>619.8377</td>
<td>Q</td>
<td>309.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>R</td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GLIKLVSK

Found in E9Q7lH0, Protein Gm16490 OS=Mus musculus GN=Gm16490 PE=4 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calo): 942.5750
Fixed modifications: MBIS (C) (apply to specified residues or termini only)
Variable modifications:
K4 : mal.CO2 (K), with neutral loss 43.9898

Ions Score: 25, Expect: 0.037
Matches: 16/64 fragment ions using 57 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b'</th>
<th>b++</th>
<th>b0</th>
<th>b’++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y'</th>
<th>y++</th>
<th>y0</th>
<th>y’++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>842.5710</td>
<td>421.7891</td>
<td>825.5444</td>
<td>413.2758</td>
<td>824.5604</td>
<td>412.7838</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>729.4869</td>
<td>365.2471</td>
<td>712.4604</td>
<td>356.7338</td>
<td>711.4763</td>
<td>356.2418</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>284.1969</td>
<td>142.6021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>616.4028</td>
<td>308.7051</td>
<td>599.3763</td>
<td>300.1918</td>
<td>598.3923</td>
<td>299.6998</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>566.4549</td>
<td>333.7311</td>
<td>649.4283</td>
<td>325.2178</td>
<td></td>
<td></td>
<td>V</td>
<td>333.2132</td>
<td>167.1103</td>
<td>316.1867</td>
<td>158.5970</td>
<td>315.2027</td>
<td>158.1050</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>753.4869</td>
<td>377.2471</td>
<td>736.4604</td>
<td>368.7338</td>
<td>735.4763</td>
<td>368.2418</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
<td>108.5708</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>K</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **GGKPEPPAMPQPVPTA**
Found in **P52908**, 40S ribosomal protein S3 OS=Mus musculus GN=Rps3 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1674.7520
Fixed modifications: MET3 (C) (apply to specified residues or termini only)
Variable modifications:
K3 : methionine S, with neutral loss 69.0096
M3 : Oxidation (M), with neutral losses 0.0000(shown in table), 69.0096
Tons Score: 11 Expect: 0.38
Matched : 6/246 fragment ions using 11 most intense peaks [help]

| # | b | b'' | b' | b''' | b'''' | Seq | y | y'' | y' | y''' | y'''' | y'''' | y'''' | y'''' | y'''' | y'''' |
|---|---|-----|---|-----|------|-----|---|-----|---|-----|------|------|------|------|------|------|------|
| 1 | 8 | 16 | 8 | 16 | 8 | G | 1574.7883 | 788.8978 | 1557.7618 | 779.3845 | 1556.777 | 778.8925 | 1556.777 | 778.8925 |
| 2 | 285.1597 | 143.0815 | 285.1292 | 134.5682 | K | 1517.7666 | 759.3871 | 1500.7403 | 759.3738 | 1499.7563 | 750.3818 | 1499.7563 | 750.3818 |
| 3 | 382.206 | 191.6079 | 385.1819 | 183.0946 | P | 1547.6613 | 764.3343 | 1530.6348 | 665.8210 | 1529.6508 | 556.329 | 1529.6508 | 556.329 |
| 4 | 511.2537 | 255.1292 | 494.2145 | 247.6159 | 493.2405 | 247.6129 | E | 1250.6086 | 625.8079 | 1233.5820 | 617.2646 | 1232.5980 | 616.8026 | 1232.5980 | 616.8026 |
| 5 | 608.3039 | 304.6556 | 591.2773 | 296.1423 | 590.2933 | 295.6503 | P | 1121.5666 | 561.2866 | 1104.5394 | 552.7333 | 1103.5554 | 552.2813 | 1103.5554 | 552.2813 |
| 6 | 705.3566 | 353.1819 | 688.3301 | 344.6877 | 678.3461 | 344.1767 | P | 1094.5133 | 512.7502 | 1077.4856 | 504.2470 | 1066.5026 | 503.750 | 1066.5026 | 503.750 |
| 7 | 816.3937 | 388.7005 | 799.5672 | 380.1872 | 788.3332 | 379.6952 | A | 927.4604 | 464.2339 | 910.4339 | 455.7206 | 909.4499 | 455.2286 | 909.4499 | 455.2286 |
| 8 | 923.4291 | 462.2182 | 906.4026 | 453.7049 | 905.4186 | 453.2129 | M | 856.4237 | 428.7153 | 839.3988 | 420.2020 | 838.4128 | 419.7100 | 838.4128 | 419.7100 |
| 10 | 1148.5405 | 574.7739 | 1131.5199 | 566.2506 | 1130.5229 | 565.7666 | Q | 612.3352 | 306.6712 | 593.3068 | 298.1579 | 594.3246 | 297.6569 | 594.3246 | 297.6569 |
| 11 | 1245.5932 | 624.3003 | 1228.5677 | 614.7870 | 1227.5257 | 614.2090 | P | 484.2764 | 242.6410 | 466.2690 | 233.6366 | 466.2690 | 233.6366 | 466.2690 | 233.6366 |
| 12 | 1344.6617 | 672.8345 | 1327.6351 | 664.3212 | 1326.6511 | 663.8292 | V | 387.2286 | 194.1153 | 369.2132 | 185.1103 | 369.2132 | 185.1103 | 369.2132 | 185.1103 |
| 13 | 1441.7144 | 721.3608 | 1424.6879 | 712.8475 | 1423.7038 | 712.3556 | P | 288.1554 | 144.5813 | 270.1448 | 135.5761 | 270.1448 | 135.5761 | 270.1448 | 135.5761 |
| 14 | 1542.7621 | 771.8478 | 1525.7353 | 763.3714 | 1524.7515 | 762.8794 | T | 191.1026 | 96.0350 | 173.0821 | 87.0487 | 173.0821 | 87.0487 | 173.0821 | 87.0487 |
| 15 | A | 90.0550 | 45.5311 | 1 |
MS/MS Fragmentation of LIFAGKQLEDGR

Found in I9Q4P0, KxDL motif-containing protein 1 (Fragment) OS=Mus musculus GN=Kxd1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide M (Da): 1431.7339

Fixed modifications: M+H (C) (apply to specified residues or terminal only)

Variable modifications:

| M6 | m/z, C12 (K) with neutral loss 44.9900 |

Ions Score: 38 **Expect:** 0.15

Matches: 9/102 fragment ions using 12 mass intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>374.2438</td>
<td>187.6255</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>445.2809</td>
<td>223.1441</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>502.3024</td>
<td>251.6548</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>672.4079</td>
<td>336.7076</td>
<td>655.3814</td>
<td>328.1943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>800.4665</td>
<td>400.7369</td>
<td>781.4400</td>
<td>392.2236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>913.5506</td>
<td>457.2789</td>
<td>866.5240</td>
<td>448.7656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1042.5932</td>
<td>521.8002</td>
<td>1023.5666</td>
<td>513.2869</td>
<td>1024.5826</td>
<td>512.7949</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1157.6201</td>
<td>579.3137</td>
<td>1140.5936</td>
<td>570.8004</td>
<td>1139.6095</td>
<td>570.3084</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1214.6416</td>
<td>607.8244</td>
<td>1197.6130</td>
<td>599.3111</td>
<td>1196.6310</td>
<td>598.8191</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIFAGKQLEDGR

Monoisotopic mass of neutral peptide M (Da): 1431.7339

Fixed modifications: M+H (C) (apply to specified residues or terminal only)

Variable modifications:

| M6 | m/z, C12 (K) with neutral loss 44.9900 |

Ions Score: 38 **Expect:** 0.15

Matches: 9/102 fragment ions using 12 mass intense peaks (help)
MS/MS Fragmentation of EAFSLFDKGDGDGTITTK
Found in P6204. Calmodulin OS=Mus musculus GN=Caln1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1800 Da
Label all possible matches or Label matches used for scoring

Nanospray mass of revised peptide Mz(calcd): 1920.3044
Fixed modifications: Methyl (C) (apply to specified residues or terminal only)
Variable modifications:
K8 : m1CO2 (K), with neutral loss 44.0264
Ions Score: 58 Expect: 8.0017
Matches: 88/154 fragment ions using 70 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>y</th>
<th>y**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y</th>
<th>y**</th>
<th>y</th>
<th>y**</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0409</td>
<td>65.2236</td>
<td>112.0393</td>
<td>56.3233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.0870</td>
<td>101.0471</td>
<td>183.0764</td>
<td>92.0418</td>
<td>A</td>
<td>1757.8392</td>
<td>857.4333</td>
<td>170.8327</td>
<td>870.9200</td>
<td>1739.8487</td>
<td>870.4280</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>248.1154</td>
<td>174.5813</td>
<td>330.1448</td>
<td>165.5671</td>
<td>F</td>
<td>1586.8221</td>
<td>843.9147</td>
<td>1669.7965</td>
<td>815.4014</td>
<td>1668.8115</td>
<td>834.9094</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>415.1874</td>
<td>218.0971</td>
<td>417.1769</td>
<td>209.0821</td>
<td>S</td>
<td>1130.7377</td>
<td>770.3803</td>
<td>1222.7271</td>
<td>761.8672</td>
<td>1521.7431</td>
<td>761.3752</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>549.2715</td>
<td>274.6394</td>
<td>530.2609</td>
<td>265.6341</td>
<td>L</td>
<td>1452.7271</td>
<td>726.8645</td>
<td>1435.6951</td>
<td>718.3512</td>
<td>1434.7111</td>
<td>717.8592</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>695.3399</td>
<td>348.1736</td>
<td>677.3293</td>
<td>339.1083</td>
<td>F</td>
<td>1339.6376</td>
<td>670.3224</td>
<td>1324.6111</td>
<td>661.8062</td>
<td>1321.6270</td>
<td>661.3172</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>810.3688</td>
<td>405.6871</td>
<td>792.3583</td>
<td>396.6818</td>
<td>D</td>
<td>1192.5682</td>
<td>596.7882</td>
<td>1175.5426</td>
<td>588.2750</td>
<td>1174.5386</td>
<td>587.8730</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>980.4724</td>
<td>490.7398</td>
<td>962.4618</td>
<td>481.7345</td>
<td>K</td>
<td>1077.5477</td>
<td>539.7248</td>
<td>1060.5157</td>
<td>530.7815</td>
<td>1059.5317</td>
<td>530.2695</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1095.4993</td>
<td>528.2533</td>
<td>1078.4728</td>
<td>539.7400</td>
<td>K</td>
<td>1077.5477</td>
<td>539.7248</td>
<td>1060.5157</td>
<td>530.7815</td>
<td>1059.5317</td>
<td>530.2695</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1152.5208</td>
<td>576.7640</td>
<td>1134.5102</td>
<td>567.7587</td>
<td>G</td>
<td>792.4688</td>
<td>596.7085</td>
<td>775.3833</td>
<td>588.1953</td>
<td>774.3992</td>
<td>587.7032</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1324.5692</td>
<td>662.7832</td>
<td>1307.5426</td>
<td>653.2750</td>
<td>G</td>
<td>626.8414</td>
<td>310.6814</td>
<td>603.3348</td>
<td>302.1710</td>
<td>602.3308</td>
<td>301.6790</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1425.6169</td>
<td>713.3212</td>
<td>1408.5903</td>
<td>704.7988</td>
<td>T</td>
<td>563.3399</td>
<td>282.1736</td>
<td>546.3134</td>
<td>273.6603</td>
<td>545.3293</td>
<td>273.1863</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1538.7069</td>
<td>769.8541</td>
<td>1521.6744</td>
<td>761.3408</td>
<td>I</td>
<td>462.3922</td>
<td>231.8405</td>
<td>454.2657</td>
<td>223.3165</td>
<td>444.2817</td>
<td>222.6445</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1689.7094</td>
<td>820.3779</td>
<td>1622.7221</td>
<td>811.8647</td>
<td>I</td>
<td>1621.7380</td>
<td>811.3727</td>
<td>1532.1816</td>
<td>816.5944</td>
<td>331.1976</td>
<td>166.1024</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1740.7983</td>
<td>870.9018</td>
<td>1723.7679</td>
<td>862.3885</td>
<td>T</td>
<td>248.1802</td>
<td>124.5839</td>
<td>221.3399</td>
<td>116.0706</td>
<td>230.1495</td>
<td>115.2786</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SVPTWLKLTSDDVK
Found in P62301, 40S ribosomal protein S13 OS=Mus musculus GN=Rps13 PE=1 SV=2

Monoisotopic mass of neutral peptide Mr(mass): 1672.8812
Fixed modifications: HETQ (C) (apply to specified residues or termini only)
Variable modifications:
KV : nalc_COOH (K), with neutral loss 43.01067
Yons Score: 29 Expect: 0.015

Matches : 29/149 fragment ions using 75 most intense peaks (help)
MS/MS Fragmentation of GNKPWISLPR

Found in P62702, 40S ribosomal protein S1, X isoform OS=Mus musculus GN=Rps4x PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from ___ to ___ Da Full range
Label all possible matches © Label matches used for scoring ©

Monoisotopic mass of neutral peptide Mr(calc): 1252.6564
Fixed modifications: MET(C) (apply to specified residues or termini only)
Variable modifications:
X: mal-COOH (R), with neutral loss 42.0088
Ions Score: 51 Expect: 0.018
Matches : 11/60 fragment ions using 22 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+x++</th>
<th>b+x</th>
<th>a</th>
<th>a+x++</th>
<th>y</th>
<th>y++</th>
<th>y+x++</th>
<th>y+</th>
<th>y+x</th>
<th>y+x++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0297</td>
<td>29.5189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>172.0717</td>
<td>86.5395</td>
<td>155.0451</td>
<td>78.0262</td>
<td></td>
<td>N</td>
<td>1132.6524</td>
<td>576.8298</td>
<td>1135.6259</td>
<td>568.3166</td>
<td>1134.6418</td>
<td>567.8246</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>342.1772</td>
<td>171.5922</td>
<td>321.1596</td>
<td>161.079</td>
<td></td>
<td>K</td>
<td>1038.6995</td>
<td>519.8034</td>
<td>1021.5829</td>
<td>511.2951</td>
<td>1020.5989</td>
<td>510.8031</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>459.2300</td>
<td>229.1185</td>
<td>422.2034</td>
<td>211.6055</td>
<td></td>
<td>P</td>
<td>868.5039</td>
<td>434.7556</td>
<td>851.4774</td>
<td>426.2423</td>
<td>830.4984</td>
<td>425.7503</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>625.3083</td>
<td>313.1583</td>
<td>608.2827</td>
<td>304.6450</td>
<td></td>
<td>W</td>
<td>771.4512</td>
<td>386.2292</td>
<td>754.4216</td>
<td>377.160</td>
<td>753.4406</td>
<td>377.2259</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>738.3933</td>
<td>369.7003</td>
<td>721.3658</td>
<td>361.1870</td>
<td></td>
<td>I</td>
<td>585.3719</td>
<td>293.1896</td>
<td>568.3453</td>
<td>284.6703</td>
<td>567.3613</td>
<td>284.1843</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>825.4254</td>
<td>413.2163</td>
<td>808.3988</td>
<td>404.7030</td>
<td>807.4148</td>
<td>404.2110</td>
<td>S</td>
<td>472.2878</td>
<td>235.6475</td>
<td>455.2613</td>
<td>228.1843</td>
<td>454.2772</td>
<td>227.8423</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>938.5094</td>
<td>469.7584</td>
<td>921.4829</td>
<td>461.2451</td>
<td>920.4098</td>
<td>460.7531</td>
<td>L</td>
<td>385.2588</td>
<td>193.1315</td>
<td>368.2292</td>
<td>184.6183</td>
<td>385.2588</td>
<td>193.1315</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1035.5622</td>
<td>518.2847</td>
<td>1018.5356</td>
<td>509.7715</td>
<td>1017.5516</td>
<td>509.2795</td>
<td>P</td>
<td>272.1717</td>
<td>136.5895</td>
<td>255.1452</td>
<td>128.0762</td>
<td>272.1717</td>
<td>136.5895</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175.1190</td>
<td>88.0531</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NKEAAEYAKLLAK
Found in P02784, 40S ribosomal protein S6 OS=Mus musculus GN=Rps6 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 200 to 1600 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M (calc): 1562.9064
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K10 : m+2 Da, with neutral loss 43.0590
Ion Score: 27 Expect: 0.0017
Matches : 22/158 fragment ions using 50 most intense peaks (m/z)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b***</th>
<th>b**</th>
<th>b*</th>
<th>b0</th>
<th>b-</th>
<th>b-0</th>
<th>b-00</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y**+</th>
<th>y**++</th>
<th>y0</th>
<th>y0++</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0592</td>
<td>58.0287</td>
<td>98.0237</td>
<td>49.5155</td>
<td>N</td>
<td>K</td>
<td>1505.8210</td>
<td>755.4141</td>
<td>1488.7944</td>
<td>744.9009</td>
<td>1487.8104</td>
<td>744.4088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1452</td>
<td>112.0762</td>
<td>226.1180</td>
<td>112.5629</td>
<td>E</td>
<td>1377.7260</td>
<td>689.3666</td>
<td>1330.6095</td>
<td>680.8534</td>
<td>1339.7155</td>
<td>680.3614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>372.1878</td>
<td>186.5975</td>
<td>355.1612</td>
<td>178.0842</td>
<td>E</td>
<td>1248.6934</td>
<td>624.3454</td>
<td>1231.6569</td>
<td>616.3321</td>
<td>1230.6729</td>
<td>615.8401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>501.2304</td>
<td>251.1188</td>
<td>484.2038</td>
<td>242.6055</td>
<td>A</td>
<td>1119.6408</td>
<td>563.3241</td>
<td>1102.6143</td>
<td>551.8108</td>
<td>1101.6303</td>
<td>551.3183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>572.2675</td>
<td>286.6374</td>
<td>555.2409</td>
<td>278.1241</td>
<td>A</td>
<td>1048.6957</td>
<td>524.0855</td>
<td>1031.5772</td>
<td>516.2922</td>
<td>1030.5982</td>
<td>515.8062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>643.3045</td>
<td>323.1559</td>
<td>626.2780</td>
<td>313.6427</td>
<td>A</td>
<td>977.5666</td>
<td>489.2869</td>
<td>960.5401</td>
<td>486.7737</td>
<td>959.5560</td>
<td>485.2817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>772.3472</td>
<td>386.6772</td>
<td>755.3206</td>
<td>378.1640</td>
<td>E</td>
<td>848.3240</td>
<td>424.7656</td>
<td>831.4973</td>
<td>416.2124</td>
<td>830.4183</td>
<td>415.7207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>931.4103</td>
<td>468.2089</td>
<td>914.3840</td>
<td>459.6956</td>
<td>Y</td>
<td>688.4241</td>
<td>343.2440</td>
<td>671.4974</td>
<td>334.7207</td>
<td>670.4183</td>
<td>333.2326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1006.4476</td>
<td>503.7274</td>
<td>989.4211</td>
<td>492.2142</td>
<td>A</td>
<td>564.4236</td>
<td>287.7134</td>
<td>547.3970</td>
<td>269.2022</td>
<td>546.4183</td>
<td>268.7207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1178.5583</td>
<td>588.7802</td>
<td>1159.5266</td>
<td>580.2669</td>
<td>L</td>
<td>444.3240</td>
<td>222.6622</td>
<td>427.2913</td>
<td>214.1494</td>
<td>426.3183</td>
<td>213.6207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1289.6372</td>
<td>645.3222</td>
<td>1272.6107</td>
<td>636.8090</td>
<td>L</td>
<td>332.2340</td>
<td>166.1206</td>
<td>314.2074</td>
<td>157.6074</td>
<td>331.2240</td>
<td>156.1207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1407.7213</td>
<td>701.8460</td>
<td>1384.6547</td>
<td>693.3510</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td>200.1383</td>
<td>100.5787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1473.7584</td>
<td>737.3828</td>
<td>1456.7318</td>
<td>728.8696</td>
<td>A</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0683</td>
<td>65.5468</td>
<td>130.0663</td>
<td>65.5462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EVPNYKLITPAVVSER

Found in P61852, 4OS ribosomal protein S25 OS=Mus musculus GN=Rps25 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Fill zoom to 200 to 1700 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of peptide (M+H)+ of [655.9282]

Fixed modifications: M(18) (apply to specified residues or termini only)

Variable modifications:

Ions Score: 15 **Expect:** 0.00079

Matched: 21/172 fragment ions using 47 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**+**</th>
<th>b**++**</th>
<th>y</th>
<th>y**+**</th>
<th>y**++**</th>
<th>y**+++**</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>136.0499</td>
<td>65.5256</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>229.1183</td>
<td>115.0628</td>
<td>211.1077</td>
<td>106.0573</td>
<td>V</td>
<td>172.7969</td>
<td>864.4882</td>
<td>1710.9425</td>
<td>835.9749</td>
<td>1097.9383</td>
</tr>
<tr>
<td>3</td>
<td>326.1710</td>
<td>165.0892</td>
<td>308.1605</td>
<td>154.3839</td>
<td>P</td>
<td>1638.9096</td>
<td>814.9240</td>
<td>1611.8741</td>
<td>806.4407</td>
<td>1610.8901</td>
</tr>
<tr>
<td>4</td>
<td>440.2140</td>
<td>220.6106</td>
<td>423.1874</td>
<td>212.6974</td>
<td>211.6053</td>
<td>N</td>
<td>1531.8479</td>
<td>766.4276</td>
<td>1514.8213</td>
<td>757.9143</td>
</tr>
<tr>
<td>5</td>
<td>503.2773</td>
<td>302.1425</td>
<td>486.2508</td>
<td>289.6290</td>
<td>385.2567</td>
<td>P</td>
<td>1417.8049</td>
<td>709.0461</td>
<td>1400.7784</td>
<td>700.0923</td>
</tr>
<tr>
<td>7</td>
<td>866.4669</td>
<td>443.7371</td>
<td>869.4403</td>
<td>455.2228</td>
<td>456.4563</td>
<td>434.7318</td>
<td>L</td>
<td>1084.5351</td>
<td>542.8217</td>
<td>1067.6695</td>
</tr>
<tr>
<td>8</td>
<td>999.5510</td>
<td>500.2791</td>
<td>982.5244</td>
<td>491.7568</td>
<td>501.5404</td>
<td>494.2738</td>
<td>I</td>
<td>971.5320</td>
<td>486.2756</td>
<td>954.5255</td>
</tr>
<tr>
<td>9</td>
<td>1106.6986</td>
<td>530.8090</td>
<td>1081.7321</td>
<td>542.2897</td>
<td>1082.3818</td>
<td>541.7977</td>
<td>T</td>
<td>858.4680</td>
<td>429.7376</td>
<td>841.4143</td>
</tr>
<tr>
<td>10</td>
<td>1197.6514</td>
<td>599.3293</td>
<td>1180.6249</td>
<td>590.8181</td>
<td>1179.6408</td>
<td>590.3241</td>
<td>P</td>
<td>757.4292</td>
<td>379.2138</td>
<td>740.3937</td>
</tr>
<tr>
<td>12</td>
<td>1367.7509</td>
<td>684.3821</td>
<td>1350.7304</td>
<td>675.8888</td>
<td>1349.7644</td>
<td>675.3768</td>
<td>V</td>
<td>589.3805</td>
<td>293.1088</td>
<td>572.3093</td>
</tr>
<tr>
<td>13</td>
<td>1466.8253</td>
<td>733.9163</td>
<td>1449.7986</td>
<td>725.4020</td>
<td>1448.8418</td>
<td>724.9199</td>
<td>V</td>
<td>496.2620</td>
<td>243.6346</td>
<td>475.2324</td>
</tr>
<tr>
<td>14</td>
<td>1553.8374</td>
<td>777.4323</td>
<td>1536.8308</td>
<td>768.9190</td>
<td>1533.8468</td>
<td>768.4270</td>
<td>S</td>
<td>391.1836</td>
<td>196.1604</td>
<td>374.1670</td>
</tr>
<tr>
<td>15</td>
<td>1685.9080</td>
<td>811.5366</td>
<td>1665.8734</td>
<td>833.4403</td>
<td>1664.8994</td>
<td>832.9483</td>
<td>E</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1350</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
GGKPEPPAMPQPVP

MS/MS Fragmentation of GGKPEPPAMPQPVP

Found in P62908, 40S ribosomal protein S3 Os-Mus musculus ON-Rps3 PE-1 SV-1

Click menu within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da
Label all possible matches

Monoisotopic mass of neutral peptide (calc): 1655.7974
Fixed modifications: M: C (apply to specified residues or termini only)
Variable modifications:

<table>
<thead>
<tr>
<th>Residues</th>
<th>y5</th>
<th>y4</th>
<th>y3</th>
<th>y2</th>
<th>y1</th>
<th>y0</th>
<th>y-1</th>
<th>y-2</th>
<th>y-3</th>
<th>y-4</th>
<th>y-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1558.7934</td>
<td>779.9003</td>
<td>1541.7668</td>
<td>771.3871</td>
<td>1540.7828</td>
<td>770.8851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1501.7719</td>
<td>751.3896</td>
<td>1484.7424</td>
<td>742.8763</td>
<td>1483.7614</td>
<td>742.3843</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1231.6644</td>
<td>666.3368</td>
<td>1214.6939</td>
<td>657.8226</td>
<td>1213.6559</td>
<td>657.3316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1185.5719</td>
<td>553.2929</td>
<td>1108.3455</td>
<td>544.7759</td>
<td>1057.3053</td>
<td>544.2839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1008.3183</td>
<td>504.7628</td>
<td>991.4217</td>
<td>486.2481</td>
<td>990.5077</td>
<td>485.7757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>911.4555</td>
<td>456.2364</td>
<td>894.4390</td>
<td>447.7231</td>
<td>893.4550</td>
<td>447.2311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>840.4724</td>
<td>420.7178</td>
<td>823.4019</td>
<td>412.2046</td>
<td>822.4178</td>
<td>411.7126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>795.3879</td>
<td>355.1976</td>
<td>792.3614</td>
<td>346.6843</td>
<td>791.3714</td>
<td>346.1923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>612.2382</td>
<td>306.6712</td>
<td>593.3086</td>
<td>298.1579</td>
<td>594.3248</td>
<td>297.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>594.2666</td>
<td>282.2664</td>
<td>566.6843</td>
<td>279.1579</td>
<td>567.3316</td>
<td>278.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>566.6843</td>
<td>266.6843</td>
<td>540.1579</td>
<td>263.1579</td>
<td>541.3316</td>
<td>262.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>530.1579</td>
<td>250.1579</td>
<td>504.1579</td>
<td>247.1579</td>
<td>505.3316</td>
<td>246.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>494.1579</td>
<td>234.1579</td>
<td>468.1579</td>
<td>231.1579</td>
<td>469.3316</td>
<td>230.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>422.1579</td>
<td>202.1579</td>
<td>396.1579</td>
<td>199.1579</td>
<td>397.3316</td>
<td>198.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>386.1579</td>
<td>186.1579</td>
<td>360.1579</td>
<td>183.1579</td>
<td>361.3316</td>
<td>182.6659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of MVNHFIAEFKR

Found in P63017, Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1476.7164
Fixed modifications: MET(S) (apply to specified residues or termini only)
Variable modifications:
K10 : mal_C02 (K), with neutral loss 43.0050
Ions Score: 54 Expect: 0.0017
Matches: 14/99 fragment ions using 28 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b-</th>
<th>b--</th>
<th>b0</th>
<th>b0--</th>
<th>Seq.</th>
<th>y</th>
<th>y--</th>
<th>y-</th>
<th>y++</th>
<th>y0</th>
<th>y0--</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132.0478</td>
<td>66.5275</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>231.1162</td>
<td>116.0617</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1302.6953</td>
<td>651.8513</td>
<td>1285.6888</td>
<td>643.3380</td>
<td>1284.6848</td>
<td>642.8460</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>345.1591</td>
<td>173.0832</td>
<td>328.1326</td>
<td>164.5699</td>
<td></td>
<td>N</td>
<td>1203.6269</td>
<td>602.3171</td>
<td>1186.6004</td>
<td>593.3038</td>
<td>1185.6164</td>
<td>593.3118</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>482.2180</td>
<td>241.6126</td>
<td>465.1915</td>
<td>233.0944</td>
<td></td>
<td>H</td>
<td>1088.5840</td>
<td>545.2956</td>
<td>1072.5574</td>
<td>536.7824</td>
<td>1071.5749</td>
<td>536.2904</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>629.2864</td>
<td>315.1409</td>
<td>612.2599</td>
<td>306.6336</td>
<td></td>
<td>F</td>
<td>952.5251</td>
<td>476.7662</td>
<td>935.4985</td>
<td>468.2529</td>
<td>934.5145</td>
<td>467.7069</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>742.3705</td>
<td>371.6889</td>
<td>725.3439</td>
<td>363.1756</td>
<td></td>
<td>I</td>
<td>805.4567</td>
<td>403.2320</td>
<td>788.4301</td>
<td>394.7187</td>
<td>787.4641</td>
<td>394.2267</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>813.4076</td>
<td>407.2074</td>
<td>796.3811</td>
<td>398.6942</td>
<td></td>
<td>A</td>
<td>692.3726</td>
<td>346.6899</td>
<td>675.3461</td>
<td>338.1767</td>
<td>674.3620</td>
<td>337.6847</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>942.4502</td>
<td>471.7287</td>
<td>925.4236</td>
<td>463.2155</td>
<td>924.4396</td>
<td>462.7235</td>
<td>E</td>
<td>621.3355</td>
<td>311.1714</td>
<td>604.3089</td>
<td>302.6581</td>
<td>603.3249</td>
<td>302.1661</td>
</tr>
<tr>
<td>9</td>
<td>1089.5186</td>
<td>545.2629</td>
<td>1072.4921</td>
<td>536.7497</td>
<td>1071.5090</td>
<td>536.2577</td>
<td>F</td>
<td>492.2929</td>
<td>246.6501</td>
<td>475.2663</td>
<td>238.1368</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1259.6241</td>
<td>630.3157</td>
<td>1242.5976</td>
<td>621.8024</td>
<td>1241.6136</td>
<td>621.3104</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.0026</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of *MVNHFIAEFKR*

Found in *P38017*, Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hsp70 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two above that point

Or, Plot from 200 to 1500 Da Full range

Label all possible matches □ Label matches used for scoring □

MS/MS Fragmentation of MVNHFIAEFKR

M

Monoisotopic mass of neutral peptide Mx(calc): 1492.7110

Fixed modifications: MMET (C) (apply to specified residues or termini only)

Variable modifications:

- Oxidation (M), with neutral losses 9.01098 (shown in table), 64.9953
- Nε\(^{-}\)acetyl, with neutral loss 49.0652

Matches: 25/128 fragment ions using 65 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>M</th>
<th>Y</th>
<th>N</th>
<th>F</th>
<th>I</th>
<th>A</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0427</td>
<td>174.5250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1111</td>
<td>124.0592</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1302.6953</td>
<td>651.8513</td>
<td>1285.6888</td>
<td>643.3380</td>
<td>1284.6848</td>
<td>642.8460</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>361.1546</td>
<td>181.0806</td>
<td>344.1275</td>
<td>172.5674</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>498.2129</td>
<td>249.6101</td>
<td>481.1864</td>
<td>241.0968</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>645.2813</td>
<td>323.1443</td>
<td>628.2548</td>
<td>314.6310</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>758.3694</td>
<td>379.6963</td>
<td>741.3389</td>
<td>371.1721</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>829.6025</td>
<td>415.2049</td>
<td>812.3760</td>
<td>406.6916</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>938.4491</td>
<td>479.7262</td>
<td>941.4189</td>
<td>471.2129</td>
<td>940.8435</td>
<td>470.7209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1105.5135</td>
<td>553.2604</td>
<td>1088.4870</td>
<td>544.7471</td>
<td>1087.5030</td>
<td>544.2531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1275.6191</td>
<td>638.3132</td>
<td>1258.5925</td>
<td>628.7959</td>
<td>1257.8982</td>
<td>629.3079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ELEKVCNPIITK

Found in P63017, Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1600 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mz(m/z): 1537.7466

Fixed modifications: MTM (C) (apply to specified residues or termini only)

Variable modifications:
K8 : mal-COOH (R), with neutral loss 43.0156

Matches: 22/124 fragment ions using 90 most intense peaks (help)

| b | b'' | b' | b'' | b0 | b'' | Seq. | y | y'' | y' | y'' | y0 | y'' | y1 | y'' | y2 | y'' | y3 | y'' | y4 | y'' | y5 | y'' | y6 | y'' | y7 | y'' | y8 | y'' | y9 | y'' | y10 | y'' | y11 | y'' | y12 | y'' |
|-----|------|-----|-----|------|-----|-----|------|
| 1 | 120.0499 | 65.2285 | 112.0393 | 36.3233 | E | 12 |
| 2 | 243.1339 | 122.0706 | 225.1234 | 113.0653 | L | 13 |
| 3 | 372.1765 | 186.3919 | 334.1680 | 177.3886 | E | 12 |
| 4 | 542.2821 | 271.6447 | 325.2555 | 263.1314 | K | 11 |
| 5 | 641.3505 | 321.1789 | 624.2329 | 312.6656 | V | 10 |
| 6 | 790.3474 | 395.6774 | 773.2208 | 387.1641 | C | 9 |
| 7 | 904.3903 | 452.6988 | 887.3638 | 444.1855 | N | 8 |
| 8 | 1001.4431 | 501.2252 | 984.4165 | 492.7119 | P | 7 |
| 9 | 1114.5277 | 557.7672 | 1097.5005 | 549.2359 | I | 6 |
| 10 | 1227.6112 | 614.3092 | 1210.3846 | 605.7900 | I | 5 |
| 11 | 1328.6589 | 648.3831 | 1311.6323 | 656.2198 | T | 4 |
| 12 | K | 147.1128 | 74.0600 | 120.0865 | 65.4568 | 1 |
MS/MS Fragmentation of KAAIISAEGDSK

Found in P67778, Prohibitin OS=Mus musculus GN=Phb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>b</td>
<td>b*</td>
<td>b+</td>
<td>b++</td>
<td>b0</td>
<td>b0+</td>
<td>Seq.</td>
<td>y</td>
<td>y+</td>
<td>y++</td>
<td>y0</td>
<td>y0+</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>242.1498</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>A</td>
<td>1061.5473</td>
<td>531.2773</td>
<td>1044.5208</td>
<td>522.7640</td>
<td>1043.5368</td>
<td>522.7270</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>157.0972</td>
<td>296.1605</td>
<td>148.5839</td>
<td>A</td>
<td>900.5102</td>
<td>495.7587</td>
<td>973.4837</td>
<td>487.2455</td>
<td>972.4997</td>
<td>486.7355</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>539.3552</td>
<td>270.1812</td>
<td>522.3286</td>
<td>261.6679</td>
<td>I</td>
<td>896.3800</td>
<td>403.6982</td>
<td>789.3625</td>
<td>395.1849</td>
<td>788.3785</td>
<td>394.6929</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>626.3872</td>
<td>313.6972</td>
<td>609.3606</td>
<td>305.1840</td>
<td>S</td>
<td>693.3930</td>
<td>347.1561</td>
<td>676.2784</td>
<td>338.6429</td>
<td>675.2944</td>
<td>338.1508</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>697.4243</td>
<td>349.2158</td>
<td>680.3978</td>
<td>340.7025</td>
<td>S</td>
<td>606.2729</td>
<td>303.6401</td>
<td>589.2464</td>
<td>295.1268</td>
<td>588.2624</td>
<td>294.6348</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>826.4669</td>
<td>413.7371</td>
<td>809.4403</td>
<td>405.2238</td>
<td>E</td>
<td>535.2358</td>
<td>268.1216</td>
<td>518.2093</td>
<td>259.6083</td>
<td>517.2253</td>
<td>259.1163</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>883.4884</td>
<td>442.2478</td>
<td>866.4618</td>
<td>433.7345</td>
<td>G</td>
<td>496.1932</td>
<td>230.6003</td>
<td>389.1667</td>
<td>195.0870</td>
<td>388.1827</td>
<td>194.5950</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>998.3153</td>
<td>499.7613</td>
<td>981.4888</td>
<td>491.2480</td>
<td>G</td>
<td>349.1718</td>
<td>175.0895</td>
<td>322.1452</td>
<td>166.5763</td>
<td>331.1612</td>
<td>166.0842</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1085.5473</td>
<td>543.2773</td>
<td>1068.5208</td>
<td>534.7640</td>
<td>S</td>
<td>234.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
<td>108.5708</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(calc): 1274.6554
Fixed modifications: Methionine_C (C) (apply to specified residues or termini only)
Variable modifications: K1 - mal_002 (K), with neutral loss 43.0089
Ions Score: 22 Expect: 0.019
Matches: 12/120 fragment ions using 21 most intense peaks (help)
MS/MS Fragmentation of **FVVEKAEQQK**

Found in P07778, Prohibitin OS=Mus musculus GN=Phb PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from [] to [] Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1290.6466

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

Met : m+1 (K), with neutral loss 49.9698

Ions Score: 30 Expect: 0.0067

Matches: 20/50 fragment ions using 50 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>b^0</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y^0</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1441</td>
<td>124.0757</td>
<td>V 1100.5946</td>
<td>550.8009</td>
<td>1083.5841</td>
<td>542.2877</td>
<td>1082.5841</td>
<td>541.7957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>346.2125</td>
<td>173.6099</td>
<td>V 1001.5162</td>
<td>501.2667</td>
<td>984.4997</td>
<td>492.7535</td>
<td>983.5156</td>
<td>492.2615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>475.2551</td>
<td>238.1312</td>
<td>457.2445</td>
<td>229.1259</td>
<td>E 602.4578</td>
<td>451.7325</td>
<td>885.4312</td>
<td>443.2193</td>
<td>884.4742</td>
<td>442.7272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>645.3606</td>
<td>323.1840</td>
<td>628.3341</td>
<td>314.6707</td>
<td>627.3501</td>
<td>314.1787</td>
<td>K 775.4152</td>
<td>387.2112</td>
<td>756.3886</td>
<td>378.6980</td>
<td>755.4046</td>
<td>378.2600</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>716.3978</td>
<td>358.7025</td>
<td>699.3712</td>
<td>350.1892</td>
<td>689.8372</td>
<td>349.6972</td>
<td>A 603.3097</td>
<td>302.1385</td>
<td>586.2831</td>
<td>293.6452</td>
<td>585.2991</td>
<td>293.1532</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>845.4403</td>
<td>423.2238</td>
<td>828.4138</td>
<td>414.7105</td>
<td>827.4298</td>
<td>414.2185</td>
<td>E 532.2726</td>
<td>266.6399</td>
<td>515.2460</td>
<td>258.1266</td>
<td>514.2820</td>
<td>257.6346</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>973.4989</td>
<td>487.2531</td>
<td>956.4724</td>
<td>478.7398</td>
<td>955.4884</td>
<td>478.2478</td>
<td>Q 408.2500</td>
<td>202.1186</td>
<td>386.2034</td>
<td>193.6053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1101.5872</td>
<td>551.2824</td>
<td>1084.5310</td>
<td>542.7691</td>
<td>1083.5469</td>
<td>542.2771</td>
<td>Q 275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of HLTSQSVLDSKV MK

Found in P70245, 3 beta hydroxysteroid Delta(8),Delta(7)-isomerase OS=Mus musculus GN=Ebp PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 200 to 1600 Da [Full range]

Label all possible matches [Label matches used for scoring]

Monoisotopic mass of neutral peptide (M+H) + : 1770.9716

Fixed modifications: MMTSF (C) (apply to specified residues or termini only)

Variable modifications:

K12 : +15.99498 (K), with neutral loss 42.0159

Ion Score: 26 **Exponent:** 0.0088

Matches: 32/146 fragment ions using 115 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>b***</th>
<th>b*0</th>
<th>b**0</th>
<th>Seq.</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>y*0</th>
<th>y**0</th>
<th>y***0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0662</td>
<td>69.5367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>251.1503</td>
<td>125.0788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>352.1979</td>
<td>176.0626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1245.7651</td>
<td>718.3767</td>
<td>718.3767</td>
<td>1418.7196</td>
<td>709.8634</td>
<td>1417.7353</td>
</tr>
<tr>
<td>4</td>
<td>439.2300</td>
<td>220.1186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>1314.6984</td>
<td>657.8529</td>
<td>657.8529</td>
<td>1317.6719</td>
<td>659.3396</td>
<td>1316.6979</td>
</tr>
<tr>
<td>5</td>
<td>510.2671</td>
<td>255.1372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1237.6664</td>
<td>624.3358</td>
<td>624.3358</td>
<td>1239.6899</td>
<td>615.8236</td>
<td>1228.6538</td>
</tr>
<tr>
<td>6</td>
<td>638.3267</td>
<td>319.9565</td>
<td>621.2991</td>
<td>311.1532</td>
<td>620.3151</td>
<td>310.6162</td>
<td>Q</td>
<td>1176.6293</td>
<td>588.8183</td>
<td>1159.6027</td>
<td>580.3050</td>
<td>1158.6187</td>
<td>579.8139</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>725.3577</td>
<td>363.1825</td>
<td>709.3511</td>
<td>354.6699</td>
<td>706.3471</td>
<td>354.1772</td>
<td>S</td>
<td>1068.5767</td>
<td>524.7900</td>
<td>1031.5422</td>
<td>516.2757</td>
<td>1030.6501</td>
<td>515.7837</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>824.4261</td>
<td>412.2167</td>
<td>797.3995</td>
<td>404.2084</td>
<td>806.4125</td>
<td>405.7114</td>
<td>V</td>
<td>961.3387</td>
<td>481.2790</td>
<td>944.3121</td>
<td>472.7597</td>
<td>943.3281</td>
<td>472.2857</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>937.5102</td>
<td>469.2587</td>
<td>920.4836</td>
<td>460.7454</td>
<td>919.4956</td>
<td>460.2534</td>
<td>L</td>
<td>862.4703</td>
<td>431.7388</td>
<td>845.4437</td>
<td>423.2325</td>
<td>844.4597</td>
<td>422.7335</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1139.5691</td>
<td>570.2882</td>
<td>1122.5426</td>
<td>561.7749</td>
<td>1121.5586</td>
<td>561.2829</td>
<td>S</td>
<td>634.3953</td>
<td>317.6833</td>
<td>617.3327</td>
<td>309.1700</td>
<td>616.3487</td>
<td>308.6780</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1309.6747</td>
<td>653.3410</td>
<td>1292.6411</td>
<td>646.8277</td>
<td>1291.6641</td>
<td>646.3337</td>
<td>K</td>
<td>547.3272</td>
<td>274.1673</td>
<td>530.3007</td>
<td>265.6540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1539.7836</td>
<td>770.3954</td>
<td>1522.7570</td>
<td>761.8221</td>
<td>1521.7730</td>
<td>761.3801</td>
<td>M</td>
<td>278.1533</td>
<td>139.5803</td>
<td>261.1267</td>
<td>131.0670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0633</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **VLDDLKNIR**

Found in **P70694**, Estradiol 17 beta dehydrogenase 5 OS=Mus musculus GN=Akr1c6 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1200 Da Full range
Label all possible matches ⊗ Label matches used for scoring ⊗

Monoisotopic mass of neutral peptide Mr(calc): 1284.8676

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

<table>
<thead>
<tr>
<th>K7</th>
<th>maL.CO2 (K) with neutral loss 43.01068</th>
</tr>
</thead>
</table>

Tide Score: 72 **Expect:** 0.0006

Matches: 12/82 Fragment ions using 30 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b''</th>
<th>b</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y'''</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>213.1598</td>
<td>107.0835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1142.664</td>
<td>571.8118</td>
<td>1125.5899</td>
<td>563.2986</td>
<td>1124.6058</td>
<td>562.8066</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>328.1867</td>
<td>164.5970</td>
<td>310.1761</td>
<td>155.5917</td>
<td>D</td>
<td>1029.3223</td>
<td>515.2698</td>
<td>1012.5058</td>
<td>506.7565</td>
<td>1011.5218</td>
<td>506.2645</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>443.2136</td>
<td>222.1105</td>
<td>425.2031</td>
<td>213.1052</td>
<td>D</td>
<td>914.5054</td>
<td>457.7563</td>
<td>897.4789</td>
<td>449.2431</td>
<td>896.4948</td>
<td>448.7511</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>556.2977</td>
<td>278.6525</td>
<td>538.2871</td>
<td>269.6472</td>
<td>L</td>
<td>799.4785</td>
<td>400.2429</td>
<td>782.4519</td>
<td>391.7296</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>670.3406</td>
<td>335.6740</td>
<td>635.3141</td>
<td>327.1607</td>
<td>652.3301</td>
<td>326.6687</td>
<td>N</td>
<td>686.3041</td>
<td>343.7008</td>
<td>666.3678</td>
<td>335.1876</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>840.4462</td>
<td>420.7267</td>
<td>823.4196</td>
<td>412.2134</td>
<td>822.4356</td>
<td>411.7214</td>
<td>K</td>
<td>572.3515</td>
<td>286.6794</td>
<td>555.3249</td>
<td>278.1661</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>954.4891</td>
<td>477.7482</td>
<td>937.4625</td>
<td>469.2349</td>
<td>936.4785</td>
<td>468.7429</td>
<td>N</td>
<td>402.2439</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1067.5731</td>
<td>534.2902</td>
<td>1050.5466</td>
<td>525.7769</td>
<td>1049.5626</td>
<td>525.2849</td>
<td>I</td>
<td>288.2020</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0919</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

VLDDLKNIR
MS/MS Fragmentation of ILKKPGLK
Found in D323P8, Estradiol 17 beta-dehydrogenase 5 (Fragment) OS=Mus musculus GN=Akr1c6 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 900 Da Fullrange
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 981.6222
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K3 : m+1CO2 (K), with neutral loss 43.0589
Ions Score: 25 Expect: 0.028
Matches : 0/52 fragment ions using 16 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td></td>
<td></td>
<td>L</td>
<td>825.5557</td>
<td>413.2815</td>
<td>808.5291</td>
<td>404.7682</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>397.2809</td>
<td>199.1441</td>
<td>380.2544</td>
<td>190.6308</td>
<td>K</td>
<td>712.4716</td>
<td>356.7394</td>
<td>595.4450</td>
<td>348.2262</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>525.3759</td>
<td>263.1916</td>
<td>508.3493</td>
<td>254.6783</td>
<td>K</td>
<td>542.3661</td>
<td>271.6867</td>
<td>325.3395</td>
<td>263.1734</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>622.4287</td>
<td>311.7180</td>
<td>605.4021</td>
<td>303.2047</td>
<td>P</td>
<td>414.2711</td>
<td>207.6392</td>
<td>397.2445</td>
<td>199.1259</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>679.4501</td>
<td>340.2287</td>
<td>662.4236</td>
<td>331.7154</td>
<td>G</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5893</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>792.5342</td>
<td>366.7707</td>
<td>775.5076</td>
<td>388.2575</td>
<td>L</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of DAGLAKSIGVSNFNR

Found in D2Z3PS, Estradiol 17 beta dehydrogenase 3 (Fragment) OS=Mus musculus GN=Akr1c6 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or Plot from 200 to 1800 Dn Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz(calc): 1663.5560

Fixed modifications: HET (C) (apply to specified residues or termini only)

Variable modifications:

ES - m/z 0.002 (E), with neutral loss 18.0036

Tops Score: 293 Expect: 0.007

Matches : 22/150 fragment ions using 72 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b***</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y***</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>A</td>
<td>1475.7965</td>
<td>738.4019</td>
<td>1458.7700</td>
<td>729.8856</td>
</tr>
<tr>
<td>2</td>
<td>187.0713</td>
<td>94.0393</td>
<td>169.0098</td>
<td>85.0340</td>
<td>A</td>
<td>1475.7965</td>
<td>738.4019</td>
<td>1458.7700</td>
<td>729.8856</td>
</tr>
<tr>
<td>3</td>
<td>241.0229</td>
<td>122.5500</td>
<td>226.0822</td>
<td>113.5418</td>
<td>G</td>
<td>1404.7591</td>
<td>702.8833</td>
<td>1387.3328</td>
<td>694.3701</td>
</tr>
<tr>
<td>4</td>
<td>357.1769</td>
<td>179.0291</td>
<td>339.1663</td>
<td>170.0868</td>
<td>L</td>
<td>1347.7379</td>
<td>674.3726</td>
<td>1330.7114</td>
<td>665.8295</td>
</tr>
<tr>
<td>5</td>
<td>428.2140</td>
<td>214.6106</td>
<td>410.2034</td>
<td>205.6093</td>
<td>A</td>
<td>1224.6589</td>
<td>617.8306</td>
<td>1217.8273</td>
<td>609.3173</td>
</tr>
<tr>
<td>6</td>
<td>598.3195</td>
<td>299.6634</td>
<td>581.2930</td>
<td>291.1591</td>
<td>K</td>
<td>1152.6167</td>
<td>582.3120</td>
<td>1146.5902</td>
<td>573.7987</td>
</tr>
<tr>
<td>7</td>
<td>685.3515</td>
<td>343.1794</td>
<td>668.3250</td>
<td>334.6661</td>
<td>G</td>
<td>993.5112</td>
<td>497.2392</td>
<td>976.6417</td>
<td>488.7460</td>
</tr>
<tr>
<td>8</td>
<td>798.4350</td>
<td>399.7214</td>
<td>781.4906</td>
<td>381.2082</td>
<td>I</td>
<td>906.4792</td>
<td>453.7452</td>
<td>889.4526</td>
<td>445.2300</td>
</tr>
<tr>
<td>10</td>
<td>954.5225</td>
<td>477.7664</td>
<td>937.4989</td>
<td>469.2531</td>
<td>V</td>
<td>792.7373</td>
<td>368.6905</td>
<td>794.3701</td>
<td>359.6852</td>
</tr>
<tr>
<td>11</td>
<td>1041.5575</td>
<td>521.2824</td>
<td>1024.5310</td>
<td>512.7691</td>
<td>S</td>
<td>637.0567</td>
<td>319.1563</td>
<td>620.2787</td>
<td>310.6340</td>
</tr>
<tr>
<td>12</td>
<td>1155.6064</td>
<td>578.3039</td>
<td>1138.3739</td>
<td>569.7900</td>
<td>N</td>
<td>550.2733</td>
<td>275.4602</td>
<td>533.2467</td>
<td>267.1270</td>
</tr>
<tr>
<td>13</td>
<td>1302.6868</td>
<td>651.8381</td>
<td>1285.8623</td>
<td>643.3248</td>
<td>F</td>
<td>436.2302</td>
<td>218.8188</td>
<td>429.2037</td>
<td>210.1035</td>
</tr>
<tr>
<td>14</td>
<td>1416.7118</td>
<td>708.8395</td>
<td>1399.8552</td>
<td>700.3462</td>
<td>R</td>
<td>175.1190</td>
<td>85.0831</td>
<td>158.0892</td>
<td>79.5498</td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>175.1190</td>
<td>85.0831</td>
<td>158.0892</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **AVKEVLLNHK**

Found in **Q95421**, Cytochrome P450 2E1 OS=Mus musculus GN=Cyp2e1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, **Platform** from 150 to 1050 Da **Full range**

Label all possible matches ○ **Label matches used for scoring** ↳

Monoisotopic mass of neutral peptide: 1235.0074

Fixed modifications: MTMT (C) (apply to specified residues or termini only)

Variable modifications: **K** : \(\text{mei} _ \text{CO2} \) (with neutral loss 43.0050)

Ions Score: 20 **Expected**: 0.096

Matches: 7/86 fragment ions using 5 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>(b)</th>
<th>(b^{--})</th>
<th>(b^{+})</th>
<th>(b^{++})</th>
<th>(b^{0})</th>
<th>(b^{0^{++}})</th>
<th>Seq.</th>
<th>(y)</th>
<th>(y^{--})</th>
<th>(y^{+})</th>
<th>(y^{++})</th>
<th>(y^{0})</th>
<th>(y^{0^{++}})</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.3258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1121.6677</td>
<td>561.3375</td>
<td>1104.6412</td>
<td>552.8242</td>
<td>1103.6572</td>
<td>552.3322</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>341.2183</td>
<td>171.1128</td>
<td>262.1915</td>
<td>162.5995</td>
<td></td>
<td></td>
<td>K</td>
<td>1622.5993</td>
<td>511.8053</td>
<td>1005.5728</td>
<td>503.2900</td>
<td>1004.5887</td>
<td>502.7980</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>470.2809</td>
<td>235.6341</td>
<td>453.2344</td>
<td>227.1208</td>
<td>452.2504</td>
<td>226.6288</td>
<td>E</td>
<td>552.4938</td>
<td>426.7305</td>
<td>833.4572</td>
<td>418.2373</td>
<td>834.4832</td>
<td>417.7452</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>569.3292</td>
<td>285.1683</td>
<td>552.3028</td>
<td>276.6550</td>
<td>551.3188</td>
<td>276.1630</td>
<td>V</td>
<td>723.4512</td>
<td>362.2292</td>
<td>706.4246</td>
<td>353.7160</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>682.4134</td>
<td>341.7103</td>
<td>655.3859</td>
<td>333.1971</td>
<td>664.4028</td>
<td>322.7051</td>
<td>L</td>
<td>524.3828</td>
<td>312.6950</td>
<td>697.3562</td>
<td>304.1817</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>795.4975</td>
<td>398.2524</td>
<td>778.4709</td>
<td>389.7391</td>
<td>777.4869</td>
<td>389.2471</td>
<td>L</td>
<td>511.2987</td>
<td>256.1530</td>
<td>494.2722</td>
<td>247.6597</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>809.5404</td>
<td>455.2737</td>
<td>892.5136</td>
<td>446.7606</td>
<td>891.5295</td>
<td>446.2686</td>
<td>N</td>
<td>398.2146</td>
<td>199.6110</td>
<td>381.1891</td>
<td>191.0977</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1046.5993</td>
<td>523.8083</td>
<td>1029.5728</td>
<td>515.2900</td>
<td>1028.5887</td>
<td>514.7980</td>
<td>H</td>
<td>284.1717</td>
<td>142.5895</td>
<td>267.1452</td>
<td>134.0762</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>147.1120</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KYLIPK**

Found in Q3UT49, Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 750 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 846.4851

Fixed modifications: MMTH (C) (apply to specified residues or termini only)

Variable modifications:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Ions Score: 70 Expect: 0.032

Matches: 12/40 fragment ions using 37 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171</td>
<td>1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>334</td>
<td>1761</td>
<td>167.5917</td>
<td>317.1496</td>
<td>159.0784</td>
<td>Y</td>
<td>633.3970</td>
<td></td>
<td>317.2022</td>
<td>616.3705</td>
</tr>
<tr>
<td>3</td>
<td>447</td>
<td>2602</td>
<td>224.1337</td>
<td>430.2336</td>
<td>215.6205</td>
<td>L</td>
<td>470.3337</td>
<td></td>
<td>235.6705</td>
<td>453.3071</td>
</tr>
<tr>
<td>4</td>
<td>560</td>
<td>3443</td>
<td>280.6758</td>
<td>543.3177</td>
<td>272.1625</td>
<td>I</td>
<td>357.2496</td>
<td></td>
<td>179.1285</td>
<td>340.2231</td>
</tr>
<tr>
<td>5</td>
<td>657</td>
<td>3970</td>
<td>529.2022</td>
<td>640.3705</td>
<td>520.6889</td>
<td>P</td>
<td>244.1656</td>
<td></td>
<td>122.5864</td>
<td>227.1390</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>147.1128</td>
<td></td>
<td></td>
<td>K</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KSDYFMPFSTGK
Found in Q3T19, Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=2 SV=1

Monoisotopic mass of neutral peptide M(r)calc. = 1462.6444
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : mal-COO\(^{-}\) (K) with neutral loss 43.0259
Ions Score: 36 Expected: 0.00009
Matches : 14/126 fragment ions using 47 most intense peaks (help)

<table>
<thead>
<tr>
<th>g</th>
<th>b</th>
<th>y++</th>
<th>b+</th>
<th>y+++</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y8</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0053</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>258.1448</td>
<td>129.5761</td>
<td>241.1185</td>
<td>121.0628</td>
<td>240.1243</td>
<td>120.5708</td>
<td>S</td>
<td>1279.3464</td>
<td>640.2868</td>
<td>1262.5386</td>
<td>651.7735</td>
<td>1261.5558</td>
<td>631.2815</td>
</tr>
<tr>
<td>3</td>
<td>373.1718</td>
<td>187.0895</td>
<td>334.1452</td>
<td>241.2232</td>
<td>178.0842</td>
<td>D</td>
<td>1192.5543</td>
<td>596.7706</td>
<td>1175.5078</td>
<td>587.2573</td>
<td>1174.5238</td>
<td>587.7655</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>683.3655</td>
<td>342.1554</td>
<td>645.2286</td>
<td>655.2390</td>
<td>332.1991</td>
<td>333.1501</td>
<td>F</td>
<td>914.4441</td>
<td>457.7257</td>
<td>897.4175</td>
<td>449.2124</td>
<td>896.4325</td>
<td>488.7264</td>
</tr>
<tr>
<td>6</td>
<td>814.4440</td>
<td>407.6756</td>
<td>797.3175</td>
<td>796.3224</td>
<td>398.6704</td>
<td>M</td>
<td>767.7356</td>
<td>384.1915</td>
<td>750.3491</td>
<td>375.8702</td>
<td>749.3651</td>
<td>375.1626</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1088.4652</td>
<td>529.7368</td>
<td>1041.4386</td>
<td>521.2286</td>
<td>1040.4564</td>
<td>520.7309</td>
<td>F</td>
<td>559.2822</td>
<td>270.1448</td>
<td>522.2559</td>
<td>261.8316</td>
<td>521.2718</td>
<td>261.1396</td>
</tr>
<tr>
<td>9</td>
<td>1115.4972</td>
<td>573.2322</td>
<td>1128.4707</td>
<td>564.7390</td>
<td>1127.4866</td>
<td>564.2470</td>
<td>S</td>
<td>392.2149</td>
<td>196.6106</td>
<td>375.1874</td>
<td>188.0974</td>
<td>374.2034</td>
<td>187.6034</td>
</tr>
<tr>
<td>10</td>
<td>1245.5449</td>
<td>623.7761</td>
<td>1229.5183</td>
<td>615.2626</td>
<td>1228.5343</td>
<td>614.7708</td>
<td>T</td>
<td>365.1819</td>
<td>153.0946</td>
<td>288.1554</td>
<td>144.5183</td>
<td>287.1714</td>
<td>144.0893</td>
</tr>
<tr>
<td>11</td>
<td>1308.5664</td>
<td>652.2688</td>
<td>1386.5398</td>
<td>645.7733</td>
<td>1383.5558</td>
<td>643.2813</td>
<td>G</td>
<td>204.1343</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0573</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0683</td>
<td>65.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SDYFMPFSTGKR

MS/MS Fragmentation of SDYFMPFSTGKR
Found in Q3UT49, Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Nonisotopic mass of neutral peptide Mz(calc): 1520.6056
Fixed modifications: MMT8 (C) (apply to specified residues or termini only)
Variable modifications:
 Kil: mal CCG (R), with neutral loss 43.0608
Ions Score: 27 Expect: 0.01
Matches: 21/106 fragment ions using 66 most intense peaks (help)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b+</td>
</tr>
<tr>
<td>1</td>
<td>58.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>33.5180</td>
<td>S</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>203.0662</td>
<td>192.0368</td>
<td>183.0557</td>
<td>93.0315</td>
<td>D</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>366.1296</td>
<td>183.5984</td>
<td>248.1190</td>
<td>174.2923</td>
<td>Y</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>513.1980</td>
<td>257.1026</td>
<td>495.1874</td>
<td>248.0974</td>
<td>F</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>644.2386</td>
<td>322.6229</td>
<td>626.2279</td>
<td>313.6176</td>
<td>M</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>741.2812</td>
<td>371.1493</td>
<td>723.2807</td>
<td>362.1440</td>
<td>P</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>898.3297</td>
<td>444.6185</td>
<td>870.3191</td>
<td>435.6382</td>
<td>F</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>975.5917</td>
<td>488.1995</td>
<td>957.3811</td>
<td>479.1942</td>
<td>S</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1076.4594</td>
<td>538.7233</td>
<td>1058.4288</td>
<td>529.7180</td>
<td>T</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1133.4008</td>
<td>587.3346</td>
<td>1115.4503</td>
<td>558.2288</td>
<td>G</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1303.5664</td>
<td>652.2868</td>
<td>1286.5396</td>
<td>643.7735</td>
<td>K</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>175.1150</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LIGELAKEVR

Found in P97352, Protein S100-A13 OS=Mus musculus GN=S100a13 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or: Plot from 100 to 1150 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1212.6714

Fixed modifications: Methionine (C) (apply to specified residues or termini only)

Variable modifications:

- K7: *mal* CO2 (R), with neutral loss 42.0080

Ions Score: 80 Expect: 0.00007

Matches: 52/66 fragment ions using 20 most intense peaks ([help](#))

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b''''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>Seq</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td>1056.6048</td>
<td>528.8060</td>
<td>1039.5782</td>
<td>520.2923</td>
<td>1038.5942</td>
<td>519.8007</td>
</tr>
<tr>
<td>2</td>
<td>227.1754</td>
<td>114.0913</td>
<td>I</td>
<td></td>
<td>886.4993</td>
<td>443.7533</td>
<td>669.4727</td>
<td>425.2400</td>
<td>668.4837</td>
<td>424.7840</td>
</tr>
<tr>
<td>3</td>
<td>284.1989</td>
<td>142.6021</td>
<td>G</td>
<td>943.5207</td>
<td>472.2640</td>
<td>926.4942</td>
<td>463.7307</td>
<td>925.5102</td>
<td>463.2587</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>413.2202</td>
<td>207.1234</td>
<td>I</td>
<td>395.2209</td>
<td>198.1181</td>
<td>886.4993</td>
<td>443.7533</td>
<td>669.4727</td>
<td>425.2400</td>
<td>668.4837</td>
</tr>
<tr>
<td>5</td>
<td>526.3255</td>
<td>263.6654</td>
<td>L</td>
<td>737.4567</td>
<td>379.2320</td>
<td>740.4301</td>
<td>370.7187</td>
<td>739.4401</td>
<td>730.2267</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>597.3509</td>
<td>299.1840</td>
<td>A</td>
<td>644.3726</td>
<td>322.6899</td>
<td>627.3461</td>
<td>314.1767</td>
<td>626.3620</td>
<td>313.8817</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>676.4652</td>
<td>384.2367</td>
<td>E</td>
<td>573.3353</td>
<td>287.1714</td>
<td>556.3089</td>
<td>278.6581</td>
<td>555.3249</td>
<td>278.1661</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>896.5083</td>
<td>448.7580</td>
<td>F</td>
<td>403.2300</td>
<td>202.1186</td>
<td>386.2034</td>
<td>193.6053</td>
<td>385.2194</td>
<td>193.1133</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>998.5772</td>
<td>498.2922</td>
<td>V</td>
<td>274.1874</td>
<td>127.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QVAANAHQWLDNPEKWNK
MS/MS Fragmentation of DICKGGNAVVDGCSK

Found in P97494, Glutamate-decarboxylase like catalytic subunit OS=Mus musculus GN=Gkek PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from 200 to 1500 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(z+1): 1662.6650

Fixed modifications: M(+57) (apply to specified residues or termini only)

Variable modifications:

K(+49) m/z 15.00 (B), with neutral loss 42 u

Ions Score: 27 **Expect:** 0.04

Matches : 12/100 fragment ions using 26 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**++**</th>
<th>b**+**</th>
<th>b**+**</th>
<th>Seq.</th>
<th>y</th>
<th>y**+**</th>
<th>y**+**</th>
<th>y**+**</th>
<th>y**+**</th>
<th>y**+**</th>
<th>y**+**</th>
<th>y**+**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>229</td>
<td>115.0628</td>
<td>211.1077</td>
<td>105.0175</td>
<td>I</td>
<td>148.4634</td>
<td>742.8210</td>
<td>1467.6099</td>
<td>734.3086</td>
<td>1456.6239</td>
<td>733.8164</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>378</td>
<td>115.0628</td>
<td>360.1046</td>
<td>180.5050</td>
<td>C</td>
<td>1371.5574</td>
<td>686.2798</td>
<td>1354.5258</td>
<td>677.7066</td>
<td>1335.5418</td>
<td>677.2743</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>548</td>
<td>227.6140</td>
<td>531.1942</td>
<td>256.1007</td>
<td>K</td>
<td>1372.5543</td>
<td>681.8147</td>
<td>1265.5289</td>
<td>603.2771</td>
<td>1204.5149</td>
<td>602.7671</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>604</td>
<td>227.6140</td>
<td>589.2156</td>
<td>294.6115</td>
<td>G</td>
<td>1622.4999</td>
<td>526.7286</td>
<td>1015.4214</td>
<td>518.2151</td>
<td>1004.4394</td>
<td>517.7233</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>662</td>
<td>263.6555</td>
<td>645.2371</td>
<td>332.1222</td>
<td>G</td>
<td>985.4585</td>
<td>486.2179</td>
<td>978.4091</td>
<td>489.7046</td>
<td>977.4179</td>
<td>488.2169</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>773</td>
<td>263.6555</td>
<td>759.2800</td>
<td>380.1436</td>
<td>X</td>
<td>938.4070</td>
<td>469.7071</td>
<td>921.3805</td>
<td>461.1929</td>
<td>920.3964</td>
<td>460.7019</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>847</td>
<td>347.1735</td>
<td>830.3171</td>
<td>415.6622</td>
<td>A</td>
<td>824.3641</td>
<td>412.6857</td>
<td>807.3375</td>
<td>404.1724</td>
<td>806.3535</td>
<td>403.6804</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>948</td>
<td>412.7097</td>
<td>925.3836</td>
<td>465.1964</td>
<td>V</td>
<td>753.3370</td>
<td>377.1671</td>
<td>736.3004</td>
<td>368.8539</td>
<td>733.3164</td>
<td>368.1818</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1043</td>
<td>483.2429</td>
<td>1028.4540</td>
<td>514.7306</td>
<td>V</td>
<td>654.2386</td>
<td>327.6239</td>
<td>627.2520</td>
<td>319.1196</td>
<td>626.2480</td>
<td>318.6276</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1160</td>
<td>575.7574</td>
<td>1143.4089</td>
<td>572.2441</td>
<td>B</td>
<td>555.1961</td>
<td>278.0897</td>
<td>518.1656</td>
<td>269.5854</td>
<td>517.1796</td>
<td>269.0834</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1277</td>
<td>575.7574</td>
<td>1200.5024</td>
<td>600.7548</td>
<td>G</td>
<td>440.1632</td>
<td>220.3582</td>
<td>423.1397</td>
<td>212.0720</td>
<td>422.1526</td>
<td>211.3804</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1366</td>
<td>575.7574</td>
<td>1349.4983</td>
<td>675.2533</td>
<td>C</td>
<td>383.1417</td>
<td>192.0745</td>
<td>366.1152</td>
<td>183.5612</td>
<td>365.1312</td>
<td>183.0692</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1453</td>
<td>575.7574</td>
<td>1436.5313</td>
<td>718.7693</td>
<td>S</td>
<td>354.1448</td>
<td>117.5761</td>
<td>217.1183</td>
<td>109.0628</td>
<td>216.1343</td>
<td>108.5708</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1126</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **VPTDKYYGAQTVR**

Found in P07807, Fumarate hydratase, mitochondrial OS=Mus musculus GN=Fh PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1800 Da

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1582.7627

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

ES : [mal-ODG (E), with neutral loss 42.0308]

Ions Score: 51 Expect: 0.00051

Matches : 21/128 fragment ions using 24 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b⁺</th>
<th>b²</th>
<th>b+++</th>
<th>b⁰</th>
<th>b⁻⁻⁻</th>
<th>Seq</th>
<th>y</th>
<th>y⁺</th>
<th>y²</th>
<th>y⁺⁺</th>
<th>y⁰</th>
<th>y⁻⁻⁻</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>20.5415</td>
<td>V</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>197.1285</td>
<td>59.0079</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td>1440.7118</td>
<td>720.8595</td>
<td>1423.6825</td>
<td>712.3463</td>
<td>1422.7012</td>
<td>711.8542</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>298.1761</td>
<td>149.5917</td>
<td>280.1656</td>
<td>140.5864</td>
<td>T</td>
<td>1346.6590</td>
<td>672.3331</td>
<td>1326.6225</td>
<td>663.8199</td>
<td>1325.6484</td>
<td>663.3279</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>414.2631</td>
<td>207.1032</td>
<td>395.1327</td>
<td>198.0999</td>
<td>D</td>
<td>1342.6613</td>
<td>621.0805</td>
<td>1225.5848</td>
<td>613.2960</td>
<td>1224.6008</td>
<td>612.8040</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>583.3960</td>
<td>292.1578</td>
<td>566.2821</td>
<td>283.6447</td>
<td>565.2980</td>
<td>283.1527</td>
<td>K</td>
<td>1127.5844</td>
<td>564.2958</td>
<td>1110.5578</td>
<td>555.7826</td>
<td>1109.5738</td>
<td>555.2905</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>746.3179</td>
<td>373.6896</td>
<td>729.3454</td>
<td>365.1763</td>
<td>728.3614</td>
<td>364.6813</td>
<td>Y</td>
<td>957.6789</td>
<td>479.2431</td>
<td>940.4523</td>
<td>470.7298</td>
<td>939.4683</td>
<td>470.2278</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>969.4533</td>
<td>455.2131</td>
<td>892.4087</td>
<td>446.7080</td>
<td>891.4257</td>
<td>446.2160</td>
<td>Y</td>
<td>794.4155</td>
<td>397.7114</td>
<td>777.3890</td>
<td>389.1981</td>
<td>776.4050</td>
<td>388.7061</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>1057.4998</td>
<td>519.2506</td>
<td>1020.4673</td>
<td>510.7373</td>
<td>1019.4823</td>
<td>510.2453</td>
<td>A</td>
<td>574.3620</td>
<td>287.8690</td>
<td>557.3042</td>
<td>279.1557</td>
<td>556.3202</td>
<td>278.6637</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1165.5524</td>
<td>583.2978</td>
<td>1148.5259</td>
<td>574.7660</td>
<td>1147.5419</td>
<td>574.2746</td>
<td>Q</td>
<td>563.2936</td>
<td>252.1504</td>
<td>486.2671</td>
<td>243.6372</td>
<td>485.3851</td>
<td>243.1452</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1256.6001</td>
<td>633.8037</td>
<td>1249.5733</td>
<td>625.2904</td>
<td>1248.5895</td>
<td>624.7984</td>
<td>T</td>
<td>375.2320</td>
<td>188.1212</td>
<td>358.2065</td>
<td>179.6079</td>
<td>357.2245</td>
<td>179.1159</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1365.6683</td>
<td>683.3357</td>
<td>1348.6260</td>
<td>674.8248</td>
<td>1347.6579</td>
<td>674.3326</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td>277.6583</td>
<td>129.0840</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

VPTDKYYGAQTVR
MS/MS Fragmentation of KTILTTEEDR

Found in P97872, Dimethylaniline monoxygenase [N-oxide-forming] 3 OS= Mus musculus GN=Fmo3 PE=2 SV=4

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from: 150 to 1150 Da Full range

Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Me(calc): 1161.60577

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only)

Variable modifications:

K1 : methyl CO2 (K), with neutral loss 48.0155

Ions Score: 35 Expect: 0.0012

Matches: 16/92 fragment ions using 38 most intense peaks (hla)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b<sup>++</sup></th>
<th>b<sup>+++</sup></th>
<th>b<sup>0</sup></th>
<th>b<sup>+++</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>++</sup></th>
<th>y<sup>+++</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>+++</sup></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0803</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>272.1665</td>
<td>136.5830</td>
<td>255.1330</td>
<td>128.0706</td>
<td>127.5786</td>
<td>T</td>
<td>948.4997</td>
<td>474.7535</td>
<td>931.4731</td>
<td>466.2402</td>
<td>920.4891</td>
<td>465.7482</td>
</tr>
<tr>
<td>4</td>
<td>498.3260</td>
<td>249.6979</td>
<td>481.3021</td>
<td>241.1547</td>
<td>480.3180</td>
<td>T</td>
<td>724.3679</td>
<td>367.6876</td>
<td>717.3414</td>
<td>359.1743</td>
<td>716.3575</td>
<td>358.6823</td>
</tr>
<tr>
<td>5</td>
<td>599.3763</td>
<td>300.1918</td>
<td>582.3497</td>
<td>291.6781</td>
<td>581.3507</td>
<td>T</td>
<td>621.2838</td>
<td>311.1456</td>
<td>604.2573</td>
<td>302.6323</td>
<td>603.2739</td>
<td>202.1493</td>
</tr>
<tr>
<td>6</td>
<td>700.4240</td>
<td>350.7156</td>
<td>683.3974</td>
<td>342.2023</td>
<td>682.4134</td>
<td>T</td>
<td>520.2262</td>
<td>260.6217</td>
<td>503.2096</td>
<td>252.1084</td>
<td>502.2256</td>
<td>251.6164</td>
</tr>
<tr>
<td>7</td>
<td>829.4666</td>
<td>415.2369</td>
<td>812.4100</td>
<td>406.7236</td>
<td>811.4550</td>
<td>E</td>
<td>419.1885</td>
<td>210.0979</td>
<td>402.1619</td>
<td>201.5846</td>
<td>401.1779</td>
<td>201.0926</td>
</tr>
<tr>
<td>8</td>
<td>944.4935</td>
<td>472.7504</td>
<td>927.4670</td>
<td>464.2371</td>
<td>926.4829</td>
<td>D</td>
<td>290.1459</td>
<td>145.5756</td>
<td>273.1193</td>
<td>137.0635</td>
<td>272.1353</td>
<td>136.5713</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KLPSQSEMMAEINK
Found in P97872, Dimethylamine N-monooxygenase [N-oxide-forming] 3 OS=Mus musculus GN=Fn201 PE=2 SV=4

Click mouse within plot area to zoom in by factor of two about that point:
Or, [Plot form] 200 to 1400 [Dx] [Full range]
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1690.7906
Fixed modifications: MTMS (C) (apply to specified residues or termini only)
Variable modifications:
KL : [mal_202 (F)], with neutral loss 43.9590
Ions Scored: 20 Expect: 0.052
Matches : 50/144 fragment ions using 12 most intense peaks (help)

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b#</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y#</th>
<th>y0</th>
<th>y8+</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0865</td>
<td>77.5468</td>
<td>K</td>
<td>L</td>
<td>1477.7025</td>
<td>739.3549</td>
<td>1460.6780</td>
<td>730.8416</td>
<td>1459.6920</td>
<td>730.3496</td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.8021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>L</td>
<td>1586.6813</td>
<td>632.8129</td>
<td>1347.5919</td>
<td>674.2996</td>
<td>1346.6079</td>
<td>673.8076</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>381.2496</td>
<td>191.1285</td>
<td>364.2231</td>
<td>182.6152</td>
<td>P</td>
<td>1267.5675</td>
<td>634.2865</td>
<td>1250.5391</td>
<td>625.7722</td>
<td>1249.5551</td>
<td>625.2812</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>468.2817</td>
<td>234.6445</td>
<td>451.2511</td>
<td>226.1312</td>
<td>S</td>
<td>590.7053</td>
<td>289.6685</td>
<td>582.2572</td>
<td>289.5823</td>
<td>581.7652</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>596.3402</td>
<td>298.6738</td>
<td>579.3137</td>
<td>290.1605</td>
<td>Q</td>
<td>1262.4731</td>
<td>526.7412</td>
<td>1125.4485</td>
<td>518.2279</td>
<td>1024.4645</td>
<td>517.7359</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>683.3723</td>
<td>342.1899</td>
<td>666.2457</td>
<td>333.6765</td>
<td>S</td>
<td>965.4431</td>
<td>483.2252</td>
<td>948.4165</td>
<td>474.7119</td>
<td>947.4375</td>
<td>474.2199</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>843.4553</td>
<td>477.2313</td>
<td>926.4289</td>
<td>463.7160</td>
<td>M</td>
<td>705.3626</td>
<td>355.3186</td>
<td>688.3334</td>
<td>544.6704</td>
<td>687.3494</td>
<td>544.1783</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1074.4938</td>
<td>577.7516</td>
<td>1057.4693</td>
<td>529.2385</td>
<td>M</td>
<td>705.3626</td>
<td>355.3186</td>
<td>688.3334</td>
<td>544.6704</td>
<td>687.3494</td>
<td>544.1783</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1143.5329</td>
<td>573.3701</td>
<td>1128.5064</td>
<td>564.7568</td>
<td>A</td>
<td>374.3915</td>
<td>187.8235</td>
<td>357.2132</td>
<td>278.6581</td>
<td>278.6581</td>
<td>278.6581</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1274.5756</td>
<td>637.7914</td>
<td>1257.5497</td>
<td>629.2781</td>
<td>F</td>
<td>593.3824</td>
<td>252.1448</td>
<td>486.2558</td>
<td>243.6316</td>
<td>485.2178</td>
<td>243.1385</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1387.6596</td>
<td>694.3334</td>
<td>1370.6331</td>
<td>685.8202</td>
<td>I</td>
<td>374.2398</td>
<td>187.8235</td>
<td>357.2132</td>
<td>278.6581</td>
<td>278.6581</td>
<td>278.6581</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1501.7023</td>
<td>731.3549</td>
<td>1484.6760</td>
<td>742.8416</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>147.1128</td>
<td>74.9560</td>
<td>130.0863</td>
<td>65.5468</td>
<td>K</td>
<td>147.1128</td>
<td>74.9560</td>
<td>130.0863</td>
<td>65.5468</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KILDSVGIEADDDR
Found in P99207, 60S acidic ribosomal protein P2 OS=Mus musculus GN=Rplp2 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 200 to 1500 Da Full range.
Label all possible matches ✗ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide (Mr(calc)): 1680.7066
Fixed modifications: M(15) C (apply to specified residues or terminal only)
Variable modifications: K: m/z Δ20 (K), with neutral loss 41.0107

Scan range: 54 - 148

Matches: 15/148 fragment ions using 26 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y<sup>+</sup></th>
<th>y<sup>++</sup></th>
<th>b<sup>+</sup></th>
<th>y<sup>0</sup></th>
<th>Seq.</th>
<th>y</th>
<th>y<sup>++</sup></th>
<th>y<sup>0</sup></th>
<th>y<sup>0</sup><sup>++</sup></th>
<th>m/z</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>85.0600</td>
<td>154.0853</td>
<td>77.5468</td>
<td>K</td>
<td>1417.6805</td>
<td>709.3419</td>
<td>1400.6540</td>
<td>708.8306</td>
<td>1359.6700</td>
<td>700.3386</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>284.1909</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0833</td>
<td>L</td>
<td>1304.5963</td>
<td>652.8019</td>
<td>1237.5699</td>
<td>641.2886</td>
<td>1286.5859</td>
<td>643.7906</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>397.2099</td>
<td>199.1141</td>
<td>382.0251</td>
<td>190.0210</td>
<td>D</td>
<td>1191.5124</td>
<td>596.2598</td>
<td>1174.4859</td>
<td>587.7466</td>
<td>1173.5018</td>
<td>587.2546</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>512.3079</td>
<td>256.6576</td>
<td>495.2813</td>
<td>248.1443</td>
<td>494.2973</td>
<td>247.6253</td>
<td>S</td>
<td>1076.4855</td>
<td>538.7464</td>
<td>1059.4589</td>
<td>530.2331</td>
<td>1059.4719</td>
</tr>
<tr>
<td>5</td>
<td>608.3399</td>
<td>300.1736</td>
<td>582.1213</td>
<td>291.6603</td>
<td>591.1323</td>
<td>291.1683</td>
<td>V</td>
<td>989.4534</td>
<td>497.2304</td>
<td>972.4269</td>
<td>486.7171</td>
<td>971.4479</td>
</tr>
<tr>
<td>6</td>
<td>755.4298</td>
<td>370.1815</td>
<td>730.0353</td>
<td>360.0725</td>
<td>341.1945</td>
<td>340.7025</td>
<td>G</td>
<td>989.3850</td>
<td>445.6961</td>
<td>873.3585</td>
<td>437.1829</td>
<td>872.3745</td>
</tr>
<tr>
<td>7</td>
<td>868.5138</td>
<td>434.7606</td>
<td>834.4873</td>
<td>426.4273</td>
<td>850.5933</td>
<td>425.7553</td>
<td>I</td>
<td>833.3666</td>
<td>417.1854</td>
<td>816.3708</td>
<td>408.6721</td>
<td>815.3590</td>
</tr>
<tr>
<td>8</td>
<td>997.3564</td>
<td>499.2819</td>
<td>980.3279</td>
<td>490.7686</td>
<td>979.5499</td>
<td>490.4226</td>
<td>E</td>
<td>726.2793</td>
<td>360.8434</td>
<td>703.2529</td>
<td>352.1301</td>
<td>702.2689</td>
</tr>
<tr>
<td>9</td>
<td>1088.5396</td>
<td>534.8004</td>
<td>1051.5670</td>
<td>526.2871</td>
<td>1030.5830</td>
<td>525.7951</td>
<td>A</td>
<td>591.2269</td>
<td>296.1221</td>
<td>574.2103</td>
<td>287.0888</td>
<td>573.2263</td>
</tr>
<tr>
<td>10</td>
<td>1181.6203</td>
<td>592.3139</td>
<td>1165.5993</td>
<td>583.8096</td>
<td>1165.6099</td>
<td>583.3086</td>
<td>D</td>
<td>520.1998</td>
<td>260.6035</td>
<td>503.1732</td>
<td>252.0293</td>
<td>502.1892</td>
</tr>
<tr>
<td>11</td>
<td>1298.6474</td>
<td>649.8274</td>
<td>1281.6209</td>
<td>641.3141</td>
<td>1280.6349</td>
<td>640.8221</td>
<td>D</td>
<td>405.1723</td>
<td>203.0901</td>
<td>388.1463</td>
<td>194.5768</td>
<td>387.1623</td>
</tr>
<tr>
<td>12</td>
<td>1415.6744</td>
<td>707.3408</td>
<td>1390.6478</td>
<td>698.8276</td>
<td>1385.6588</td>
<td>698.3353</td>
<td>D</td>
<td>290.1459</td>
<td>145.5766</td>
<td>273.1193</td>
<td>137.0653</td>
<td>272.1353</td>
</tr>
<tr>
<td>13</td>
<td>1532.7014</td>
<td>765.3574</td>
<td>1508.6746</td>
<td>756.8442</td>
<td>1503.6856</td>
<td>756.3429</td>
<td>R</td>
<td>175.1108</td>
<td>88.0653</td>
<td>158.0821</td>
<td>79.5498</td>
<td>157.0978</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KILDSVGIEADDDRLNK
Found in P99027, 60S acidic ribosomal protein P2 OS=Mus musculus GN=Rplb2 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point:
Or, Plot from 100 to 1000 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Me(calcd): 1993.9926
Fixed modifications: NMT (C) (apply to specified residues or termini only)
Variable modifications:
K: m+1 CO2 (E), with neutral loss 44.012
Ion Score: 23 Expect: 0.008
Matches: 21/278 fragment ions using 61 most intense peaks (kcal/mol)

<table>
<thead>
<tr>
<th>k</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0860</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>197.3869</td>
<td>199.1441</td>
<td>380.2344</td>
<td>190.6308</td>
<td>L</td>
<td>1659.8184</td>
<td>830.2888</td>
<td>1642.7919</td>
<td>821.8099</td>
</tr>
<tr>
<td>4</td>
<td>352.0379</td>
<td>765.8764</td>
<td>495.2831</td>
<td>268.1413</td>
<td>494.2973</td>
<td>247.6523</td>
<td>1546.7144</td>
<td>773.8078</td>
<td>1529.7078</td>
</tr>
<tr>
<td>5</td>
<td>580.3399</td>
<td>300.1736</td>
<td>582.3134</td>
<td>291.6603</td>
<td>581.3293</td>
<td>291.1683</td>
<td>1431.7074</td>
<td>716.3573</td>
<td>1414.6809</td>
</tr>
<tr>
<td>7</td>
<td>753.4298</td>
<td>378.2183</td>
<td>738.4032</td>
<td>369.7053</td>
<td>737.4192</td>
<td>368.2132</td>
<td>1256.6908</td>
<td>623.3071</td>
<td>1228.5804</td>
</tr>
<tr>
<td>8</td>
<td>860.5138</td>
<td>384.7066</td>
<td>851.4873</td>
<td>422.2473</td>
<td>850.5033</td>
<td>423.7553</td>
<td>1188.8332</td>
<td>594.7961</td>
<td>1171.5390</td>
</tr>
<tr>
<td>9</td>
<td>957.5584</td>
<td>400.2819</td>
<td>940.5295</td>
<td>490.7566</td>
<td>979.5195</td>
<td>490.2766</td>
<td>E</td>
<td>1075.5914</td>
<td>538.2554</td>
</tr>
<tr>
<td>10</td>
<td>1068.5990</td>
<td>534.0004</td>
<td>1051.5670</td>
<td>526.2871</td>
<td>1030.5389</td>
<td>522.7591</td>
<td>A</td>
<td>1464.638</td>
<td>733.7331</td>
</tr>
<tr>
<td>11</td>
<td>1182.6265</td>
<td>592.3139</td>
<td>1166.5939</td>
<td>583.8066</td>
<td>1165.6099</td>
<td>583.5086</td>
<td>D</td>
<td>875.4247</td>
<td>458.2145</td>
</tr>
<tr>
<td>12</td>
<td>1298.6674</td>
<td>649.8274</td>
<td>1281.6209</td>
<td>641.3414</td>
<td>1280.6369</td>
<td>640.8221</td>
<td>D</td>
<td>760.3948</td>
<td>380.7010</td>
</tr>
<tr>
<td>13</td>
<td>1413.6744</td>
<td>707.3403</td>
<td>1396.6478</td>
<td>698.8276</td>
<td>1395.6638</td>
<td>698.3355</td>
<td>D</td>
<td>645.8678</td>
<td>323.1876</td>
</tr>
<tr>
<td>14</td>
<td>1569.7755</td>
<td>755.3914</td>
<td>1552.7480</td>
<td>776.8781</td>
<td>1551.7640</td>
<td>776.3661</td>
<td>R</td>
<td>530.3409</td>
<td>265.6741</td>
</tr>
<tr>
<td>15</td>
<td>1692.8996</td>
<td>814.9334</td>
<td>1665.8330</td>
<td>833.4201</td>
<td>1664.8490</td>
<td>832.9281</td>
<td>L</td>
<td>374.2598</td>
<td>187.6235</td>
</tr>
<tr>
<td>16</td>
<td>1796.9023</td>
<td>858.9549</td>
<td>1779.8759</td>
<td>890.4416</td>
<td>1778.8919</td>
<td>889.9496</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
</tr>
<tr>
<td>17</td>
<td>1820.9486</td>
<td>894.9549</td>
<td>1779.8759</td>
<td>890.4416</td>
<td>1778.8919</td>
<td>889.9496</td>
<td>K</td>
<td>147.1128</td>
<td>74.0905</td>
</tr>
</tbody>
</table>
MS:MS Fragmentation of DHCVAHKLFK

Found in P99028, Cytochrome b-c1 complex subunit 6, mitochondrial OS=Mus musculus GN=Uqcrh PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1300 Da [Full range]

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1925.6000

Fixed modifications: MetO (C) (apply to specified residues or termini only)

Variable modifications:

- K7 : mal-COO\(^{-}\) (R), with neutral loss 44.0090

Ions Score: 27 Expect: 0.019

Matches: 40/78 fragment ions using 21 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>1170.5911</td>
<td>585.7992</td>
<td>1153.5645</td>
<td>577.2859</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>223.0921</td>
<td>127.0502</td>
<td>225.0826</td>
<td>118.0449</td>
<td>H</td>
<td>1035.5322</td>
<td>517.2697</td>
<td>1016.5076</td>
<td>508.7564</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>402.0900</td>
<td>201.5487</td>
<td>384.0795</td>
<td>192.5434</td>
<td>C</td>
<td>884.5353</td>
<td>442.7713</td>
<td>867.5087</td>
<td>434.2380</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>501.1585</td>
<td>251.0829</td>
<td>483.1479</td>
<td>242.0776</td>
<td>V</td>
<td>788.4668</td>
<td>393.2371</td>
<td>768.4403</td>
<td>384.7238</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>572.1956</td>
<td>286.6014</td>
<td>554.1850</td>
<td>277.5961</td>
<td>A</td>
<td>714.4297</td>
<td>357.7185</td>
<td>697.4052</td>
<td>349.2052</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>709.2545</td>
<td>355.1309</td>
<td>691.2439</td>
<td>346.1256</td>
<td>H</td>
<td>407.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>105.6230</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>879.3600</td>
<td>440.1836</td>
<td>862.3333</td>
<td>431.6704</td>
<td>K</td>
<td>577.3708</td>
<td>289.1890</td>
<td>560.3443</td>
<td>280.6758</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>992.4441</td>
<td>496.7257</td>
<td>975.4175</td>
<td>488.2124</td>
<td>L</td>
<td>407.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>105.6230</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1139.5125</td>
<td>570.2599</td>
<td>1122.4859</td>
<td>561.7466</td>
<td>F</td>
<td>294.1812</td>
<td>147.9542</td>
<td>277.1547</td>
<td>139.0810</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EIADKFINEVVVK

Found in Q3U367, 4-trimethylamobutyraldehyde dehydrogenase OS=Mus musculus GN=Aldh9a1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, plot from ___ Da to ___ Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1459.7664
Fixed modifications: NMTS (C) (apply to specified residues or termnini only)
Variable modifications:
KS : N-term, O-acetyl, with neutral loss 43.0599
MSn Source: 300 Emitter: 0.015
Matches: 7/110 frequent ions using 13 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b++</th>
<th>y (Seq)</th>
<th>y++</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y+</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0499</td>
<td>112.0393</td>
<td>56.5233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>243.1339</td>
<td>225.1234</td>
<td>113.0653</td>
<td>I</td>
<td>1317.7443</td>
<td>659.3743</td>
<td>1300.7147</td>
<td>650.8610</td>
<td>1299.7307</td>
<td>650.3690</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>314.1710</td>
<td>296.1605</td>
<td>148.5859</td>
<td>A</td>
<td>1204.6572</td>
<td>602.8322</td>
<td>1187.6597</td>
<td>594.3190</td>
<td>1186.6467</td>
<td>593.8270</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>429.1980</td>
<td>411.1874</td>
<td>206.0974</td>
<td>D</td>
<td>1133.6201</td>
<td>567.3157</td>
<td>1116.5936</td>
<td>558.8004</td>
<td>1115.6065</td>
<td>558.3084</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>599.3033</td>
<td>581.2930</td>
<td>291.1203</td>
<td>E</td>
<td>1018.5932</td>
<td>509.8002</td>
<td>1001.5666</td>
<td>501.2869</td>
<td>1000.3826</td>
<td>500.7949</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>746.3719</td>
<td>728.3614</td>
<td>364.8843</td>
<td>F</td>
<td>848.4876</td>
<td>424.7472</td>
<td>831.4611</td>
<td>416.2342</td>
<td>830.4771</td>
<td>415.7422</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>859.4560</td>
<td>841.4454</td>
<td>421.2264</td>
<td>I</td>
<td>701.4192</td>
<td>351.2132</td>
<td>684.3027</td>
<td>342.7000</td>
<td>683.4087</td>
<td>342.2080</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>973.4989</td>
<td>955.4848</td>
<td>478.2447</td>
<td>N</td>
<td>588.3352</td>
<td>294.6712</td>
<td>571.3086</td>
<td>286.1519</td>
<td>570.3246</td>
<td>285.6659</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1102.5415</td>
<td>1084.5310</td>
<td>543.2611</td>
<td>O</td>
<td>474.2922</td>
<td>237.6498</td>
<td>457.2657</td>
<td>229.1365</td>
<td>456.2817</td>
<td>228.6445</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1201.6099</td>
<td>1184.5834</td>
<td>592.7953</td>
<td>P</td>
<td>345.2496</td>
<td>173.1285</td>
<td>328.2231</td>
<td>164.6152</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1300.6783</td>
<td>1283.6518</td>
<td>642.3295</td>
<td>Q</td>
<td>246.1812</td>
<td>133.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS fragmentation of AQGKPVSQGEKSQSPYER
Found in QUPF0.0. Protein transport protein Sec31a OS=Mus musculus GN=Sec31a PE=1 SV=2
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 300 to 1900 Dn Full range
Label all possible matches Label matches used for scoring

AQGKPVSQGEKSQSPYER
IKEHKESLDVTNPR

MS/MS Fragmentation of IKEHKESLDVTNPR
Found in Q3UT49, Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
OxPlot from 100 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Molecular mass of neutral peptide Mz (amu): 2019.0124
Fixed modifications: M(12) C (apply to specified residues or termini only)
Variable modifications:
EN: H, C(12), (R), (S), with neutral loss 60.0500
Ions Score: 57 Expect: 0.0010
Matches: 21/120 Fragment ions using 65 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>b***</th>
<th>Seq</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200.1030</td>
<td>100.5511</td>
<td>183.0764</td>
<td>92.0418</td>
<td>Q</td>
<td>1905.9837</td>
<td>953.4505</td>
<td>1888.8672</td>
<td>944.4502</td>
<td>1587.8381</td>
<td>944.4502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>257.1244</td>
<td>128.6069</td>
<td>240.0976</td>
<td>120.5526</td>
<td>G</td>
<td>1777.8131</td>
<td>889.4212</td>
<td>1760.8086</td>
<td>880.4212</td>
<td>1759.8246</td>
<td>880.4212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>524.2827</td>
<td>262.6450</td>
<td>507.3562</td>
<td>254.1311</td>
<td>K</td>
<td>1550.7081</td>
<td>775.4557</td>
<td>1533.6816</td>
<td>767.4444</td>
<td>1532.6976</td>
<td>766.8234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>623.3515</td>
<td>312.1792</td>
<td>606.3245</td>
<td>303.6659</td>
<td>P</td>
<td>1453.6574</td>
<td>727.3313</td>
<td>1436.6285</td>
<td>718.8181</td>
<td>1435.6448</td>
<td>718.3260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>710.3832</td>
<td>355.1857</td>
<td>693.3766</td>
<td>347.1819</td>
<td>V</td>
<td>1354.5870</td>
<td>677.7971</td>
<td>1337.5694</td>
<td>669.2838</td>
<td>1336.5764</td>
<td>668.7918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>767.4846</td>
<td>384.2060</td>
<td>750.3781</td>
<td>375.6927</td>
<td>G</td>
<td>1287.5349</td>
<td>614.3811</td>
<td>1260.5284</td>
<td>605.7676</td>
<td>1249.5444</td>
<td>605.7676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>953.6322</td>
<td>468.2322</td>
<td>878.3847</td>
<td>459.7220</td>
<td>Q</td>
<td>1210.5332</td>
<td>603.7704</td>
<td>1193.5069</td>
<td>595.7271</td>
<td>1192.5229</td>
<td>596.7651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024.5850</td>
<td>512.7585</td>
<td>1007.4793</td>
<td>504.2453</td>
<td>E</td>
<td>1082.4749</td>
<td>541.7411</td>
<td>1065.4483</td>
<td>533.2278</td>
<td>1064.4643</td>
<td>532.7338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1111.6379</td>
<td>556.2726</td>
<td>1094.3113</td>
<td>547.7393</td>
<td>S</td>
<td>936.4059</td>
<td>468.7063</td>
<td>935.4247</td>
<td>468.2145</td>
<td>935.4247</td>
<td>468.2145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1198.5999</td>
<td>599.7886</td>
<td>1181.3433</td>
<td>591.2733</td>
<td>S</td>
<td>866.4003</td>
<td>433.7038</td>
<td>849.3757</td>
<td>432.1902</td>
<td>848.3807</td>
<td>432.6985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1226.6254</td>
<td>663.8179</td>
<td>1206.6019</td>
<td>655.8066</td>
<td>Q</td>
<td>779.3802</td>
<td>390.1878</td>
<td>762.3417</td>
<td>381.6745</td>
<td>761.3377</td>
<td>381.1825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1413.6697</td>
<td>707.3393</td>
<td>1396.6339</td>
<td>689.3206</td>
<td>S</td>
<td>631.3067</td>
<td>326.1585</td>
<td>614.2931</td>
<td>317.6452</td>
<td>613.2991</td>
<td>317.1332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1510.7192</td>
<td>755.6063</td>
<td>1493.6867</td>
<td>737.4707</td>
<td>G</td>
<td>564.2776</td>
<td>282.6425</td>
<td>547.2511</td>
<td>274.1292</td>
<td>546.2671</td>
<td>275.6972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1802.8191</td>
<td>901.9132</td>
<td>1785.8926</td>
<td>893.9909</td>
<td>T</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>175.1990</td>
<td>88.0631</td>
<td>158.0829</td>
<td>79.5498</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
ANVWKKNFQQR
MS/MS Fragmentation of VKQLPLVKPYLR

Found in Q5XR6, Clatrin heavy chain 1 OS=Mus musculus GN=Clte PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1380.9154
Fixed modifications: M=15 (+) (apply to specified residues or termini only)
Variable modifications:
K: methionine oxidation (+15.9946 Da), with neutral loss 43.959 Da

Ions Score: 26 Expect: 0.0005
Matches : 10/86 fragment ions using 18 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td>K</td>
<td>1396.8675</td>
<td>698.9174</td>
<td>1379.8409</td>
</tr>
<tr>
<td>3</td>
<td>398.2398</td>
<td>199.6235</td>
<td>381.2132</td>
<td>191.1103</td>
<td>Q</td>
<td>1226.7620</td>
<td>613.8846</td>
<td>1209.7354</td>
</tr>
<tr>
<td>4</td>
<td>511.3339</td>
<td>255.6165</td>
<td>484.2973</td>
<td>247.6323</td>
<td>L</td>
<td>1088.7034</td>
<td>540.8533</td>
<td>1081.6768</td>
</tr>
<tr>
<td>5</td>
<td>608.3766</td>
<td>304.6920</td>
<td>591.3501</td>
<td>296.1787</td>
<td>P</td>
<td>985.6193</td>
<td>493.3133</td>
<td>968.3928</td>
</tr>
<tr>
<td>6</td>
<td>721.4607</td>
<td>361.2340</td>
<td>704.4341</td>
<td>352.7207</td>
<td>L</td>
<td>888.5686</td>
<td>444.7859</td>
<td>871.5400</td>
</tr>
<tr>
<td>7</td>
<td>820.5291</td>
<td>410.7682</td>
<td>803.5026</td>
<td>402.2549</td>
<td>V</td>
<td>775.4525</td>
<td>388.2449</td>
<td>758.4559</td>
</tr>
<tr>
<td>8</td>
<td>948.6241</td>
<td>474.8157</td>
<td>931.5975</td>
<td>466.3024</td>
<td>K</td>
<td>676.4141</td>
<td>338.7107</td>
<td>659.3875</td>
</tr>
<tr>
<td>9</td>
<td>1045.6768</td>
<td>523.3421</td>
<td>1028.6503</td>
<td>514.8283</td>
<td>P</td>
<td>548.3191</td>
<td>274.6632</td>
<td>531.2926</td>
</tr>
<tr>
<td>10</td>
<td>1208.7402</td>
<td>604.8737</td>
<td>1191.7136</td>
<td>596.3604</td>
<td>Y</td>
<td>451.2663</td>
<td>226.1368</td>
<td>434.2398</td>
</tr>
<tr>
<td>11</td>
<td>1321.8242</td>
<td>661.4157</td>
<td>1304.7977</td>
<td>652.9025</td>
<td>L</td>
<td>288.2030</td>
<td>144.6091</td>
<td>271.1765</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>172.1199</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.3498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AVNYFSKVK

Found in Q5SRX6. Clathrin heavy chain 1 OS=Mus musculus GN=Cltc PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(m/e): 1140.5015

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:
K9 : ma1_C02 (K), with neutral loss 48.0390

Score: 20 Impact: 0.085

Matches: 10/76 fragment ions using 18 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.9444</td>
<td>26.5258</td>
<td>A</td>
<td>1026.5619</td>
<td>513.7846</td>
<td>1009.5353</td>
<td>595.2713</td>
<td>1008.5513</td>
<td>504.7793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>V</td>
<td>927.4934</td>
<td>464.2504</td>
<td>910.4569</td>
<td>455.7371</td>
<td>909.4829</td>
<td>455.2451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>285.1557</td>
<td>143.0815</td>
<td>268.1239</td>
<td>134.5682</td>
<td>N</td>
<td>813.4305</td>
<td>407.2289</td>
<td>398.7130</td>
<td>795.4400</td>
<td>398.2328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>448.2191</td>
<td>224.6132</td>
<td>451.1925</td>
<td>216.0999</td>
<td>Y</td>
<td>595.3872</td>
<td>325.6972</td>
<td>317.1840</td>
<td>632.3756</td>
<td>316.6919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>592.2875</td>
<td>298.1474</td>
<td>578.2699</td>
<td>239.6341</td>
<td>F</td>
<td>650.3872</td>
<td>325.6972</td>
<td>317.1840</td>
<td>632.3756</td>
<td>316.6919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>810.4145</td>
<td>405.7109</td>
<td>793.3879</td>
<td>397.1976</td>
<td>792.4039</td>
<td>396.7056</td>
<td>K</td>
<td>416.2867</td>
<td>208.6470</td>
<td>399.2502</td>
<td>200.1337</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>999.4829</td>
<td>455.2451</td>
<td>892.4563</td>
<td>446.7318</td>
<td>391.4723</td>
<td>446.2398</td>
<td>V</td>
<td>288.1918</td>
<td>144.5995</td>
<td>271.1552</td>
<td>136.0803</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>189.1224</td>
<td>95.0653</td>
<td>172.0968</td>
<td>86.5520</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **KYDAFLASESLIK**

Found in **D3VXT2**, Ribosomal protein O5=Nas musculus G0=Rpl10a-ps2 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

[Plot from] 206 to 1500 **[Da Full range]**

Label all possible matches ○ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(ma/c): 1509.7226

Fixed modifications: MMRE (C) (apply to specified residues or termini only)

Variable modifications:

- K1: mal-COOH (K), with neutral loss 46.0150

Ions Searched: D0 Target:

Matches: 16/104 fragment ions using 60 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b′</th>
<th>y′</th>
<th>Seq.</th>
<th>y</th>
<th>y′</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>334.1761</td>
<td>187.9517</td>
<td>317.1496</td>
<td>129.0784</td>
<td>Y</td>
<td>1356.7046</td>
<td>678.3539</td>
<td>1339.6780</td>
<td>670.3426</td>
<td>1338.6940</td>
<td>669.8596</td>
</tr>
<tr>
<td>3</td>
<td>449.2031</td>
<td>225.1024</td>
<td>432.1761</td>
<td>216.5919</td>
<td>431.1823</td>
<td>216.0999</td>
<td>D</td>
<td>1192.6412</td>
<td>597.3243</td>
<td>1176.6147</td>
<td>588.8110</td>
</tr>
<tr>
<td>4</td>
<td>520.2402</td>
<td>260.6257</td>
<td>503.2136</td>
<td>252.1105</td>
<td>502.2296</td>
<td>251.6185</td>
<td>A</td>
<td>1078.6143</td>
<td>539.8108</td>
<td>1061.5877</td>
<td>531.2975</td>
</tr>
<tr>
<td>5</td>
<td>601.2980</td>
<td>300.1490</td>
<td>584.2721</td>
<td>282.6441</td>
<td>549.2980</td>
<td>272.1527</td>
<td>F</td>
<td>1007.5772</td>
<td>504.2322</td>
<td>990.5306</td>
<td>492.7789</td>
</tr>
<tr>
<td>6</td>
<td>780.3927</td>
<td>390.7000</td>
<td>763.3661</td>
<td>382.1867</td>
<td>762.3881</td>
<td>381.6947</td>
<td>L</td>
<td>860.5088</td>
<td>430.7380</td>
<td>843.4822</td>
<td>422.2447</td>
</tr>
<tr>
<td>8</td>
<td>918.4818</td>
<td>469.7345</td>
<td>901.4553</td>
<td>461.2213</td>
<td>900.4752</td>
<td>460.7293</td>
<td>S</td>
<td>676.3876</td>
<td>318.9747</td>
<td>659.3610</td>
<td>310.1842</td>
</tr>
<tr>
<td>9</td>
<td>1067.5044</td>
<td>531.2558</td>
<td>1050.4779</td>
<td>522.7426</td>
<td>1049.4938</td>
<td>522.2506</td>
<td>E</td>
<td>589.3556</td>
<td>285.1814</td>
<td>572.3290</td>
<td>286.6861</td>
</tr>
<tr>
<td>10</td>
<td>1154.5364</td>
<td>577.7719</td>
<td>1137.5099</td>
<td>569.2586</td>
<td>1136.5259</td>
<td>568.6766</td>
<td>S</td>
<td>460.3230</td>
<td>230.6601</td>
<td>443.2864</td>
<td>222.1468</td>
</tr>
<tr>
<td>11</td>
<td>1287.6205</td>
<td>634.3159</td>
<td>1270.5939</td>
<td>622.8006</td>
<td>1269.6099</td>
<td>622.3086</td>
<td>L</td>
<td>373.2859</td>
<td>187.1441</td>
<td>356.2544</td>
<td>178.6308</td>
</tr>
<tr>
<td>12</td>
<td>1380.7046</td>
<td>690.8559</td>
<td>1363.6780</td>
<td>682.3426</td>
<td>1362.6940</td>
<td>681.8506</td>
<td>I</td>
<td>268.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.9888</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VGVGKVIR

Found in Q62446, Peptidyl-prolyl cis-trans isomerase FKBP3 OS=Mus musculus GN=Fkbp3 PE=1 SV=2

Monoisotopic mass of neutral peptide Mr(calc): 912.5383
Fixed modifications: NH3 (C) (apply to specified residues or termini only)
Variable modifications:
K5 : ma_G (R), with neutral loss 43.9888

Ions Score: 37 Expect: 0.0076
Matches : 5/48 fragment ions using 7 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b+</th>
<th>b+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y+</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>157.0972</td>
<td>79.0522</td>
<td>G</td>
<td>770.4883</td>
<td>385.7478</td>
<td>753.4618</td>
<td>377.2345</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>256.1656</td>
<td>128.5864</td>
<td>V</td>
<td>713.4668</td>
<td>357.2371</td>
<td>696.4403</td>
<td>348.7238</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>313.1870</td>
<td>157.0972</td>
<td>G</td>
<td>614.3984</td>
<td>307.7028</td>
<td>597.3719</td>
<td>299.1896</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>483.2926</td>
<td>242.1499</td>
<td>466.2660</td>
<td>233.6366</td>
<td>K</td>
<td>557.3770</td>
<td>279.1921</td>
<td>540.3504</td>
<td>270.6788</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>582.3610</td>
<td>291.0841</td>
<td>565.3544</td>
<td>283.1709</td>
<td>V</td>
<td>357.2714</td>
<td>194.1394</td>
<td>370.2449</td>
<td>185.6204</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>695.4450</td>
<td>348.2262</td>
<td>678.4185</td>
<td>339.7129</td>
<td>I</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
<td>136.0919</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
</tr>
</tbody>
</table>
LPVDKTTSCCFGGK

Monoisotopic mass of neutral peptide Mz(x16) : 1812.6658
Fixed modifications: M+H (apply to specified residues or terminal only)
Variable modifications: K : methyl (K), with neutral loss 16.0050
Ions Score: 1.52 Expect: 0.14
Matches: 10/109 fragment ions using 24 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**+</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1476.5990</td>
<td>738.8031</td>
<td>1459.5724</td>
<td>730.2895</td>
</tr>
<tr>
<td>2</td>
<td>211.1441</td>
<td>105.0775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1476.5990</td>
<td>738.8031</td>
<td>1459.5724</td>
<td>730.2895</td>
</tr>
<tr>
<td>3</td>
<td>310.2125</td>
<td>155.6099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1379.5462</td>
<td>690.2768</td>
<td>1362.5197</td>
<td>681.7655</td>
</tr>
<tr>
<td>4</td>
<td>425.2395</td>
<td>212.1234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>1280.4778</td>
<td>640.7425</td>
<td>1263.4513</td>
<td>632.2293</td>
</tr>
<tr>
<td>5</td>
<td>593.3450</td>
<td>298.1761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>1165.4509</td>
<td>583.2291</td>
<td>1148.4245</td>
<td>574.7158</td>
</tr>
<tr>
<td>6</td>
<td>696.2927</td>
<td>348.7000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>992.3563</td>
<td>498.1763</td>
<td>978.3188</td>
<td>489.6630</td>
</tr>
<tr>
<td>7</td>
<td>797.4463</td>
<td>399.2238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>894.2977</td>
<td>447.6525</td>
<td>877.2711</td>
<td>439.1392</td>
</tr>
<tr>
<td>8</td>
<td>884.4724</td>
<td>442.7398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>793.2500</td>
<td>397.1286</td>
<td>776.2234</td>
<td>388.6154</td>
</tr>
<tr>
<td>9</td>
<td>1003.4593</td>
<td>517.2383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>706.3180</td>
<td>353.6126</td>
<td>689.1916</td>
<td>345.0983</td>
</tr>
<tr>
<td>10</td>
<td>1182.4662</td>
<td>591.7367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1165.4509</td>
<td>583.2291</td>
<td>1148.4245</td>
<td>574.7158</td>
</tr>
<tr>
<td>11</td>
<td>1359.3346</td>
<td>685.2709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>582.3211</td>
<td>287.1914</td>
<td>564.1845</td>
<td>270.6005</td>
</tr>
<tr>
<td>12</td>
<td>1386.5561</td>
<td>693.7817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
</tr>
<tr>
<td>13</td>
<td>1443.5773</td>
<td>722.2924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>284.1348</td>
<td>102.5708</td>
<td>187.1077</td>
<td>94.0575</td>
</tr>
<tr>
<td>14</td>
<td>1471.1128</td>
<td>74.0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
</tr>
</tbody>
</table>
MQSLSYSLFPFDHSVKK

MS/MS Fragmentation of HQGSLYSLFPFDHSVKK
Found in Q64374, Regucalcin OS=Mus musculus GN=Rgn PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from to Da
Label all possible matches ✔ Label matches used for scoring ✔

Monoisotopic mass of neutral peptide M(n,calc): 1327.9120
Fixed modifications: MET (C) (apply to specified residues or termini only)
Variable modifications:
K85 : alk,0.000 (B), with neutral loss 58.038
Ions Score: 22 Expect: 0.040
Matches : 44/100 fragment ions using 72 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b0</th>
<th>b0'</th>
<th>b0''</th>
<th>b9</th>
<th>Seq.</th>
<th>y</th>
<th>y0</th>
<th>y0''</th>
<th>y0'''</th>
<th>y0''''</th>
<th>y''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0652</td>
<td>69.5357</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>266.1348</td>
<td>133.5690</td>
<td>249.9992</td>
<td>125.0527</td>
<td></td>
<td>Q</td>
<td>1747.9014</td>
<td>874.4543</td>
<td>1730.8748</td>
<td>865.9410</td>
<td>1729.8908</td>
<td>865.4490</td>
</tr>
<tr>
<td>3</td>
<td>323.1462</td>
<td>162.0758</td>
<td>306.1197</td>
<td>153.5635</td>
<td></td>
<td>G</td>
<td>1619.9428</td>
<td>810.4250</td>
<td>1602.8162</td>
<td>801.9118</td>
<td>1601.8322</td>
<td>801.4197</td>
</tr>
<tr>
<td>4</td>
<td>410.1783</td>
<td>205.5928</td>
<td>392.1517</td>
<td>197.0795</td>
<td>392.1677</td>
<td>392.1875</td>
<td>S</td>
<td>1562.8213</td>
<td>781.9143</td>
<td>1541.7948</td>
<td>773.4010</td>
<td>1534.8108</td>
</tr>
<tr>
<td>5</td>
<td>523.2623</td>
<td>262.1248</td>
<td>506.2358</td>
<td>253.6213</td>
<td>505.2318</td>
<td>505.1295</td>
<td>L</td>
<td>1475.7893</td>
<td>738.3983</td>
<td>1458.7627</td>
<td>729.8830</td>
<td>1457.7787</td>
</tr>
<tr>
<td>6</td>
<td>686.3257</td>
<td>343.6665</td>
<td>669.3091</td>
<td>335.1532</td>
<td>668.3151</td>
<td>668.3112</td>
<td>Y</td>
<td>1362.7032</td>
<td>681.3593</td>
<td>1345.6787</td>
<td>673.3430</td>
<td>1344.6947</td>
</tr>
<tr>
<td>8</td>
<td>868.4417</td>
<td>443.7245</td>
<td>850.4192</td>
<td>433.2112</td>
<td>869.3812</td>
<td>868.4112</td>
<td>L</td>
<td>1112.6099</td>
<td>555.6086</td>
<td>1095.5833</td>
<td>549.2053</td>
<td>1094.5993</td>
</tr>
<tr>
<td>9</td>
<td>1063.5102</td>
<td>517.2587</td>
<td>1016.4936</td>
<td>508.7424</td>
<td>1015.6996</td>
<td>508.2384</td>
<td>F</td>
<td>999.5258</td>
<td>508.2384</td>
<td>982.4993</td>
<td>491.7533</td>
<td>981.5152</td>
</tr>
<tr>
<td>10</td>
<td>1130.5629</td>
<td>565.7851</td>
<td>1113.5364</td>
<td>557.2178</td>
<td>1112.5524</td>
<td>556.7798</td>
<td>P</td>
<td>852.4574</td>
<td>426.7323</td>
<td>835.4308</td>
<td>418.2191</td>
<td>834.4468</td>
</tr>
<tr>
<td>12</td>
<td>1326.6488</td>
<td>691.8280</td>
<td>1305.6222</td>
<td>681.3148</td>
<td>1304.6382</td>
<td>682.8227</td>
<td>H</td>
<td>640.3777</td>
<td>320.6925</td>
<td>623.3511</td>
<td>312.1792</td>
<td>622.2671</td>
</tr>
<tr>
<td>13</td>
<td>1469.6086</td>
<td>735.3440</td>
<td>1452.5643</td>
<td>726.8308</td>
<td>1451.6702</td>
<td>726.3998</td>
<td>S</td>
<td>593.3185</td>
<td>252.1630</td>
<td>486.2922</td>
<td>243.6498</td>
<td>485.3882</td>
</tr>
<tr>
<td>14</td>
<td>1568.7492</td>
<td>784.8782</td>
<td>1551.7227</td>
<td>776.3650</td>
<td>1550.7383</td>
<td>775.8730</td>
<td>V</td>
<td>416.2867</td>
<td>208.6470</td>
<td>399.2602</td>
<td>200.1337</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1738.8547</td>
<td>859.9310</td>
<td>1721.8282</td>
<td>861.4117</td>
<td>1720.8442</td>
<td>860.9257</td>
<td>K</td>
<td>317.2185</td>
<td>159.1128</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>147.1125</td>
<td>74.0600</td>
<td>130.0863</td>
<td>62.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HQGSLYSLFPFDHSVKK
MS/MS Fragmentation of LQTVKLPVDK

Found in O64374. Racuclain OS=Mus musculus GN=Ren PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1200 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1225.6318
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
KM: ma1_COO (K), with neutral loss 43.0089
Ions Score: 30 Expect: 0.0098
Matches: 6/100 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b0</th>
<th>b0'</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y0'</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>242.1499</td>
<td>121.5786</td>
<td>225.1234</td>
<td>113.0653</td>
<td>Q</td>
<td></td>
<td></td>
<td>1052.5986</td>
<td>526.8030</td>
<td>1051.6146</td>
<td>526.3109</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>343.1976</td>
<td>172.1024</td>
<td>326.1710</td>
<td>163.3892</td>
<td>325.1870</td>
<td>163.0972</td>
<td>T</td>
<td>462.7737</td>
<td>923.5560</td>
<td>462.2817</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>442.2660</td>
<td>221.1366</td>
<td>425.2395</td>
<td>213.1234</td>
<td>424.2544</td>
<td>212.6314</td>
<td>V</td>
<td>840.5189</td>
<td>822.5084</td>
<td>411.7578</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>612.3715</td>
<td>306.6894</td>
<td>595.3450</td>
<td>298.1761</td>
<td>594.3610</td>
<td>297.6841</td>
<td>K</td>
<td>741.4505</td>
<td>723.4400</td>
<td>362.2236</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>725.4556</td>
<td>363.2314</td>
<td>708.4291</td>
<td>354.7182</td>
<td>707.4450</td>
<td>354.2282</td>
<td>K</td>
<td>571.3450</td>
<td>285.1761</td>
<td>554.3184</td>
<td>277.6629</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>822.5084</td>
<td>411.7578</td>
<td>805.4818</td>
<td>403.2445</td>
<td>804.4978</td>
<td>402.7525</td>
<td>P</td>
<td>458.2609</td>
<td>441.2344</td>
<td>221.1208</td>
<td>440.2504</td>
<td>220.6288</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>921.5768</td>
<td>461.2920</td>
<td>904.5502</td>
<td>452.7788</td>
<td>903.5662</td>
<td>452.2867</td>
<td>V</td>
<td>361.2082</td>
<td>181.1077</td>
<td>344.1816</td>
<td>172.9944</td>
<td>343.1976</td>
<td>172.1024</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1036.6037</td>
<td>518.8055</td>
<td>1019.5772</td>
<td>510.2922</td>
<td>1018.5932</td>
<td>509.8002</td>
<td>D</td>
<td>262.1397</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
<td>122.5682</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of SQGKVLQATVVAVGSGGK

SQGKVLQATVVAVGSGGK

MONOISOTOPE MASS OF NEUTRAL PEPTIDE (Da) : 1779.9476

Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications: X:
: X : M + 15 (K), with neutral loss 42.01064

Inte score: 70 Expect: 9.6e-06

Matches : 25/106 fragment ions using 60 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>Seq.</th>
<th>y+</th>
<th>y''+</th>
<th>y'''+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>83</td>
<td>84</td>
<td>70</td>
<td>287</td>
<td>35</td>
<td>S</td>
<td>10</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>216</td>
<td>108</td>
<td>552</td>
<td>199</td>
<td>071</td>
<td>100</td>
<td>039</td>
<td>96</td>
<td>97</td>
<td>144</td>
</tr>
<tr>
<td>3</td>
<td>273</td>
<td>119</td>
<td>013</td>
<td>137</td>
<td>063</td>
<td>256</td>
<td>028</td>
<td>35</td>
<td>050</td>
<td>265</td>
</tr>
<tr>
<td>4</td>
<td>443</td>
<td>222</td>
<td>115</td>
<td>426</td>
<td>198</td>
<td>312</td>
<td>207</td>
<td>213</td>
<td>119</td>
<td>255</td>
</tr>
<tr>
<td>5</td>
<td>542</td>
<td>282</td>
<td>135</td>
<td>525</td>
<td>267</td>
<td>263</td>
<td>1370</td>
<td>524</td>
<td>257</td>
<td>262</td>
</tr>
<tr>
<td>6</td>
<td>655</td>
<td>374</td>
<td>219</td>
<td>638</td>
<td>350</td>
<td>319</td>
<td>690</td>
<td>319</td>
<td>1870</td>
<td>134</td>
</tr>
<tr>
<td>7</td>
<td>783</td>
<td>459</td>
<td>321</td>
<td>766</td>
<td>404</td>
<td>383</td>
<td>528</td>
<td>323</td>
<td>1063</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>854</td>
<td>470</td>
<td>341</td>
<td>837</td>
<td>445</td>
<td>419</td>
<td>226</td>
<td>418</td>
<td>349</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>955</td>
<td>520</td>
<td>476</td>
<td>938</td>
<td>492</td>
<td>469</td>
<td>750</td>
<td>937</td>
<td>1102</td>
<td>526</td>
</tr>
<tr>
<td>10</td>
<td>1054</td>
<td>589</td>
<td>527</td>
<td>1037</td>
<td>536</td>
<td>519</td>
<td>2849</td>
<td>1036</td>
<td>576</td>
<td>561</td>
</tr>
<tr>
<td>11</td>
<td>1153</td>
<td>657</td>
<td>573</td>
<td>1136</td>
<td>610</td>
<td>568</td>
<td>819</td>
<td>1135</td>
<td>647</td>
<td>568</td>
</tr>
<tr>
<td>12</td>
<td>1274</td>
<td>692</td>
<td>612</td>
<td>1207</td>
<td>681</td>
<td>604</td>
<td>377</td>
<td>1206</td>
<td>684</td>
<td>603</td>
</tr>
<tr>
<td>13</td>
<td>1323</td>
<td>763</td>
<td>662</td>
<td>1306</td>
<td>765</td>
<td>653</td>
<td>871</td>
<td>1305</td>
<td>752</td>
<td>653</td>
</tr>
<tr>
<td>14</td>
<td>1380</td>
<td>842</td>
<td>690</td>
<td>1363</td>
<td>750</td>
<td>682</td>
<td>382</td>
<td>1362</td>
<td>774</td>
<td>681</td>
</tr>
<tr>
<td>15</td>
<td>1467</td>
<td>816</td>
<td>734</td>
<td>1450</td>
<td>790</td>
<td>725</td>
<td>896</td>
<td>1449</td>
<td>806</td>
<td>725</td>
</tr>
<tr>
<td>16</td>
<td>1524</td>
<td>830</td>
<td>762</td>
<td>1507</td>
<td>815</td>
<td>754</td>
<td>404</td>
<td>1506</td>
<td>827</td>
<td>753</td>
</tr>
<tr>
<td>17</td>
<td>1581</td>
<td>859</td>
<td>791</td>
<td>1564</td>
<td>830</td>
<td>782</td>
<td>920</td>
<td>1563</td>
<td>849</td>
<td>782</td>
</tr>
<tr>
<td>18</td>
<td>1645</td>
<td>898</td>
<td>828</td>
<td>1628</td>
<td>917</td>
<td>820</td>
<td>871</td>
<td>1627</td>
<td>934</td>
<td>820</td>
</tr>
</tbody>
</table>

SQGKVLQATVVAVGSGGK
QGLLQPEKPIVLKVPR
MS/MS Fragmentation of KIGCGNFGELR
Found in Q6P2B2, Casein kinase II isoenzyme gamma-1 OS=Mus musculus GN=Csnk1g1 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(mono) : 1224.5404
Fixed modifications: HETR2 (ubiquitous) (apply to specified residues or termini only)
Variable modifications:
K1 : mal-CO2 (K), with neutral loss 42.0068
Ions Saved: 51 Expect: 0.001
Matches : 12/100 fragment ions using 21 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b0</th>
<th>b*</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>85.6090</td>
<td>154.9985</td>
<td>74.5468</td>
<td>K</td>
<td>1111.5023</td>
<td>1111.5023-556.2538</td>
<td>1094.4758</td>
<td>547.7415</td>
<td>1093.3801</td>
<td>547.2495</td>
</tr>
<tr>
<td>2</td>
<td>284.1969</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>I</td>
<td>1111.5023</td>
<td>1111.5023-556.2538</td>
<td>1094.4758</td>
<td>547.7415</td>
<td>1093.3801</td>
<td>547.2495</td>
</tr>
<tr>
<td>3</td>
<td>341.2183</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>G</td>
<td>998.4182</td>
<td>998.4182-499.7128</td>
<td>981.3917</td>
<td>491.1995</td>
<td>980.4077</td>
<td>490.7079</td>
</tr>
<tr>
<td>4</td>
<td>490.2152</td>
<td>245.6113</td>
<td>473.1887</td>
<td>237.0980</td>
<td>C</td>
<td>941.2968</td>
<td>941.2968-471.2020</td>
<td>924.3702</td>
<td>462.0888</td>
<td>923.3862</td>
<td>462.1967</td>
</tr>
<tr>
<td>5</td>
<td>547.2367</td>
<td>274.1220</td>
<td>530.2102</td>
<td>265.0807</td>
<td>G</td>
<td>792.3999</td>
<td>792.3999-396.7036</td>
<td>775.3723</td>
<td>388.1909</td>
<td>774.3893</td>
<td>387.6983</td>
</tr>
<tr>
<td>6</td>
<td>661.2796</td>
<td>331.1433</td>
<td>644.2351</td>
<td>322.6302</td>
<td>N</td>
<td>735.2784</td>
<td>735.2784-368.1928</td>
<td>718.3519</td>
<td>359.6796</td>
<td>717.3678</td>
<td>359.1876</td>
</tr>
<tr>
<td>7</td>
<td>808.3480</td>
<td>404.6777</td>
<td>791.3215</td>
<td>396.1644</td>
<td>F</td>
<td>621.3335</td>
<td>621.3335-311.1714</td>
<td>604.3089</td>
<td>302.6581</td>
<td>603.3249</td>
<td>303.1661</td>
</tr>
<tr>
<td>8</td>
<td>865.2695</td>
<td>433.1844</td>
<td>848.3430</td>
<td>424.8751</td>
<td>G</td>
<td>474.2671</td>
<td>474.2671-237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>456.2565</td>
<td>228.6319</td>
</tr>
<tr>
<td>10</td>
<td>1107.4923</td>
<td>554.2517</td>
<td>1090.4566</td>
<td>545.7384</td>
<td>L</td>
<td>288.2030</td>
<td>288.2030-144.8051</td>
<td>271.1785</td>
<td>136.9019</td>
<td>270.1837</td>
<td>136.1817</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KIGCGNFGELR
MS/MS Fragmentation of LADKVNSSWQK

Found in Q80ZV3, Proline synthase co-transcribed bacterial homolog protein OS=Mus musculus GN=Prosc PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>183.1283</td>
<td>93.0679</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1204.5957</td>
<td>602.8015</td>
<td>1187.8691</td>
<td>594.2882</td>
<td>1186.8581</td>
</tr>
<tr>
<td>3</td>
<td>300.1554</td>
<td>150.5813</td>
<td>282.1448</td>
<td>141.5761</td>
<td></td>
<td>D</td>
<td>1133.5586</td>
<td>567.2829</td>
<td>1116.5120</td>
<td>558.7696</td>
<td>1115.5481</td>
</tr>
<tr>
<td>4</td>
<td>470.2609</td>
<td>235.6341</td>
<td>453.3244</td>
<td>227.1208</td>
<td>452.2504</td>
<td>226.6288</td>
<td>K</td>
<td>1018.5216</td>
<td>509.7694</td>
<td>1001.5051</td>
<td>501.2562</td>
</tr>
<tr>
<td>5</td>
<td>569.3298</td>
<td>285.1683</td>
<td>552.3023</td>
<td>278.6550</td>
<td>551.3188</td>
<td>276.1630</td>
<td>V</td>
<td>848.4261</td>
<td>424.7167</td>
<td>831.3993</td>
<td>416.2034</td>
</tr>
<tr>
<td>7</td>
<td>770.4043</td>
<td>385.7058</td>
<td>753.3777</td>
<td>377.1925</td>
<td>752.3937</td>
<td>376.7005</td>
<td>S</td>
<td>635.3148</td>
<td>318.1610</td>
<td>618.2882</td>
<td>309.6477</td>
</tr>
<tr>
<td>8</td>
<td>857.4536</td>
<td>429.2218</td>
<td>840.4098</td>
<td>420.7085</td>
<td>839.4259</td>
<td>420.2715</td>
<td>S</td>
<td>548.2827</td>
<td>274.6450</td>
<td>531.2562</td>
<td>266.1317</td>
</tr>
<tr>
<td>9</td>
<td>1043.5156</td>
<td>522.2615</td>
<td>1026.4891</td>
<td>513.7482</td>
<td>1025.5051</td>
<td>513.2562</td>
<td>W</td>
<td>461.2567</td>
<td>231.1290</td>
<td>444.2241</td>
<td>222.6157</td>
</tr>
<tr>
<td>10</td>
<td>1171.5742</td>
<td>586.2907</td>
<td>1154.5477</td>
<td>577.7775</td>
<td>1153.5866</td>
<td>577.2853</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mz (calc): 1060.6620

Fixed modifications: NH2 (C) (apply to specified residues or termini only)

Variable modifications:

K: m/z 15.995 (E), with neutral loss 44.0039

Ions Score: 58 Expect: 8.0e-005

Matches: 18/104 fragment ions using 22 most intense peaks (help)
LVAVSKTPADMIEAYGHGQR
MS/MS Fragmentation of SYVLK AQTEGAR

Found in Q0BH00. Aldehyde dehydrogenase family 8 member A1 OS=Mus musculus GN=Aldh8a1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or [Plot from] 250 to 1250 Da [Full range]
Label all possible matches ○ Label matches used for scoring *

Monoisotopic mass of neutral peptide Mr(calc): 1407.6994
Fixed modifications: NH3 (C) (apply to specified residues or termini only)
Variable modifications:
K5 : ma1_Cys (K), with neutral loss 48.0101
Ions Score: 31 Expect: 0.02
Matches : 19/118 fragment ions using 34 most intense peaks (help)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>35.5180</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>251.1026</td>
<td>126.0550</td>
<td>233.0021</td>
<td>117.0497</td>
<td>Y</td>
<td>1277.6848</td>
<td>630.3461</td>
<td>1260.6583</td>
<td>630.8328</td>
<td>1259.6743</td>
<td>630.3408</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>350.1710</td>
<td>175.5892</td>
<td>332.1605</td>
<td>166.5839</td>
<td>V</td>
<td>1114.6215</td>
<td>557.8144</td>
<td>1097.5950</td>
<td>549.3011</td>
<td>1098.6109</td>
<td>548.8091</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>463.2551</td>
<td>232.1312</td>
<td>445.2445</td>
<td>223.1259</td>
<td>L</td>
<td>1015.5531</td>
<td>508.2802</td>
<td>998.5265</td>
<td>549.7660</td>
<td>997.5425</td>
<td>549.2749</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>633.3606</td>
<td>317.1840</td>
<td>616.3341</td>
<td>308.6707</td>
<td>K</td>
<td>902.4690</td>
<td>451.7381</td>
<td>881.4425</td>
<td>443.2249</td>
<td>884.4385</td>
<td>442.7329</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>704.3978</td>
<td>352.7025</td>
<td>687.3712</td>
<td>344.1892</td>
<td>A</td>
<td>732.3635</td>
<td>366.6862</td>
<td>715.3394</td>
<td>358.1721</td>
<td>714.3529</td>
<td>357.6801</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>832.4563</td>
<td>416.7318</td>
<td>818.4398</td>
<td>408.2185</td>
<td>Q</td>
<td>661.3264</td>
<td>331.1668</td>
<td>644.2998</td>
<td>322.6536</td>
<td>643.3158</td>
<td>322.1615</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>933.5040</td>
<td>467.2556</td>
<td>916.4775</td>
<td>458.7424</td>
<td>T</td>
<td>532.2678</td>
<td>267.1375</td>
<td>516.2413</td>
<td>258.6243</td>
<td>515.2572</td>
<td>258.1323</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1063.5466</td>
<td>531.7769</td>
<td>1043.5201</td>
<td>523.2637</td>
<td>F</td>
<td>432.2201</td>
<td>216.6137</td>
<td>415.1936</td>
<td>208.1004</td>
<td>414.2090</td>
<td>207.6084</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1119.5861</td>
<td>560.2877</td>
<td>1102.5415</td>
<td>551.7744</td>
<td>G</td>
<td>303.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1190.6052</td>
<td>595.8062</td>
<td>1173.5786</td>
<td>587.2030</td>
<td>A</td>
<td>246.1561</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0684</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AIKLTNVNDFVR

Found in Q8BH59. Calcium-binding mitochondrial carrier protein Aralar1 OS=Mus musculus GN=Slc25a12 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1200 Da Full range
Label all possible matches Label matches used for scoring

Homoxiostopic mass of neutral peptide [M+calc]: 1380.7361
Fixed modifications: N-tr(C) (apply to specified residues or termini only)
Variable modifications: K58: m+1 CO2 (K), with neutral loss 48.0107
Ions Score: 20 Expect: 0.040
Matches : 9/102 fragment ions using 10 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b−−</th>
<th>b−</th>
<th>b+</th>
<th>b0</th>
<th>b+−</th>
<th>Seq.</th>
<th>y</th>
<th>y−−</th>
<th>y−</th>
<th>y+−</th>
<th>y+</th>
<th>y0</th>
<th>y0−−</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1246.7154</td>
<td>623.8613</td>
<td>1229.6889</td>
<td>615.3481</td>
<td>1228.7048</td>
<td>614.8561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1283</td>
<td>93.0679</td>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1246.7154</td>
<td>623.8613</td>
<td>1229.6889</td>
<td>615.3481</td>
<td>1228.7048</td>
<td>614.8561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>355.2340</td>
<td>178.1206</td>
<td>338.2074</td>
<td>169.6074</td>
<td>K</td>
<td>1133.6313</td>
<td>557.3193</td>
<td>1116.6048</td>
<td>558.8060</td>
<td>1115.6208</td>
<td>558.3140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>468.3180</td>
<td>234.6627</td>
<td>451.2915</td>
<td>228.1494</td>
<td>L</td>
<td>963.5258</td>
<td>482.2665</td>
<td>946.4993</td>
<td>473.7533</td>
<td>945.5152</td>
<td>473.2813</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>569.3657</td>
<td>285.1866</td>
<td>552.3392</td>
<td>276.6732</td>
<td>551.3552</td>
<td>276.1812</td>
<td>T</td>
<td>850.4417</td>
<td>425.7245</td>
<td>833.4152</td>
<td>417.2112</td>
<td>832.4312</td>
<td>416.7192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>782.4771</td>
<td>391.7422</td>
<td>765.4501</td>
<td>383.2289</td>
<td>764.4665</td>
<td>382.7369</td>
<td>N</td>
<td>650.3257</td>
<td>325.5665</td>
<td>633.2991</td>
<td>317.1532</td>
<td>632.3151</td>
<td>316.6512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>897.5040</td>
<td>449.2556</td>
<td>880.4775</td>
<td>440.7424</td>
<td>879.4934</td>
<td>440.2504</td>
<td>D</td>
<td>536.2827</td>
<td>268.5450</td>
<td>519.2562</td>
<td>260.1317</td>
<td>518.2722</td>
<td>259.6397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1044.5724</td>
<td>522.7898</td>
<td>1027.5459</td>
<td>514.2766</td>
<td>1026.5619</td>
<td>513.7846</td>
<td>F</td>
<td>421.2558</td>
<td>211.1315</td>
<td>404.2292</td>
<td>202.6183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1143.6408</td>
<td>572.3241</td>
<td>1126.6143</td>
<td>563.8108</td>
<td>1125.6303</td>
<td>563.3188</td>
<td>V</td>
<td>274.1874</td>
<td>137.5973</td>
<td>257.1608</td>
<td>129.0840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TGKVSAAIDFR

Found in Q9QQX4, Calcium-binding mitochondrial carrier protein Aralar2
OS=Mus musculus GN=Sla25a13 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, plot from 100 to 1200 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1178.5933
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K3 : m+1 CO2 (K), with neutral loss 49.9999
Ions Score: 62 Expect: 4.5e-006
Matches : 13/100 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td></td>
<td>84.0444</td>
<td>42.5258</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td>141.0659</td>
<td>71.0396</td>
<td></td>
<td>G</td>
<td>1034.5629</td>
<td>517.7851</td>
<td>1017.5264</td>
<td>509.2718</td>
<td>1016.5524</td>
<td>508.7798</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>329.1801</td>
<td>165.0946</td>
<td>312.1554</td>
<td>156.5813</td>
<td>311.1714</td>
<td>156.0893</td>
<td>K</td>
<td>977.5415</td>
<td>489.2744</td>
<td>960.5149</td>
<td>480.7611</td>
<td>959.5309</td>
<td>480.2691</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>515.2824</td>
<td>258.1448</td>
<td>498.2558</td>
<td>249.6316</td>
<td>497.2718</td>
<td>249.1396</td>
<td>S</td>
<td>708.3675</td>
<td>354.6874</td>
<td>691.3410</td>
<td>346.1741</td>
<td>690.3570</td>
<td>345.6821</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>586.3195</td>
<td>293.6684</td>
<td>569.2930</td>
<td>285.1501</td>
<td>568.3089</td>
<td>284.6581</td>
<td>A</td>
<td>621.3355</td>
<td>311.1714</td>
<td>604.3080</td>
<td>302.6581</td>
<td>603.3249</td>
<td>302.1661</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>699.4036</td>
<td>350.2054</td>
<td>682.3770</td>
<td>341.6921</td>
<td>681.3930</td>
<td>341.2001</td>
<td>I</td>
<td>550.2681</td>
<td>275.6528</td>
<td>533.2718</td>
<td>267.1396</td>
<td>532.2878</td>
<td>266.6475</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>961.4989</td>
<td>481.2531</td>
<td>944.4724</td>
<td>472.7398</td>
<td>943.4884</td>
<td>472.2478</td>
<td>F</td>
<td>322.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KIYSTLAGNR

Found in Q90XX4. Calcium-binding mitochondrial carrier protein Aralar2 OS=Mus musculus GN=Slc25a13 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1300 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(cala): 1207.6197
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
KL : mal-CO2 (K), with neutral loss 40.0000

Ions Score: 16 Expect: 0.062
Matches: 4/92 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'</th>
<th>b</th>
<th>b'</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'</th>
<th>y''</th>
<th>y</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td>994.5316</td>
<td>497.7694</td>
<td>977.5051</td>
<td>489.2562</td>
<td>976.5211</td>
<td>488.7642</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>284.1569</td>
<td>142.6021</td>
<td>267.1703</td>
<td>134.0888</td>
<td>I</td>
<td></td>
<td></td>
<td>881.4476</td>
<td>441.2274</td>
<td>864.4210</td>
<td>432.7141</td>
<td>863.4370</td>
<td>432.2221</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>447.2592</td>
<td>224.1337</td>
<td>430.2336</td>
<td>215.6205</td>
<td>Y</td>
<td></td>
<td></td>
<td>718.3842</td>
<td>359.6958</td>
<td>701.3577</td>
<td>351.1825</td>
<td>700.3737</td>
<td>350.6905</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>534.2922</td>
<td>267.6498</td>
<td>517.2657</td>
<td>259.1365</td>
<td>516.2817</td>
<td>258.6445</td>
<td>S</td>
<td>617.3293</td>
<td>309.1683</td>
<td>614.3257</td>
<td>307.6665</td>
<td>613.3416</td>
<td>307.1745</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>635.3399</td>
<td>318.1736</td>
<td>618.3134</td>
<td>309.6603</td>
<td>617.3293</td>
<td>309.1683</td>
<td>T</td>
<td>631.3522</td>
<td>316.1797</td>
<td>614.3257</td>
<td>307.6665</td>
<td>613.3416</td>
<td>307.1745</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>748.4240</td>
<td>374.7156</td>
<td>731.3974</td>
<td>366.2023</td>
<td>730.4134</td>
<td>365.7103</td>
<td>L</td>
<td>530.3045</td>
<td>285.6559</td>
<td>513.2780</td>
<td>257.1426</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>819.4511</td>
<td>410.2342</td>
<td>802.4345</td>
<td>401.7209</td>
<td>801.4505</td>
<td>401.2289</td>
<td>A</td>
<td>417.2205</td>
<td>209.1139</td>
<td>400.1939</td>
<td>200.6006</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>876.4825</td>
<td>438.7449</td>
<td>859.4560</td>
<td>430.2316</td>
<td>858.4720</td>
<td>429.7396</td>
<td>G</td>
<td>346.1833</td>
<td>173.5953</td>
<td>329.1568</td>
<td>165.0820</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>990.5255</td>
<td>495.7664</td>
<td>973.4989</td>
<td>487.2531</td>
<td>972.5149</td>
<td>486.7611</td>
<td>N</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1353</td>
<td>136.5713</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GQQQVFKGLNDK
Found in Q8BMS1. Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1300 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M(calc): 1446.7103
Fixed modifications: Met(C) (apply to specified residues or termini only)
Variable modifications:
K7 : m+1, CO2 (K) with neutral loss 44.0205
Ions Scored: 26 Expect: 0.00
Matches : 12/100 fragment ions using 21 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y'''</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>186.0873</td>
<td>93.5437</td>
<td>169.0608</td>
<td>85.0340</td>
<td>Q</td>
<td>1346.7063</td>
<td>673.8568</td>
<td>1329.6797</td>
<td>665.3435</td>
<td>1328.6937</td>
<td>664.8515</td>
</tr>
<tr>
<td>3</td>
<td>341.1459</td>
<td>175.5766</td>
<td>297.1193</td>
<td>148.0653</td>
<td>Q</td>
<td>1218.6477</td>
<td>609.8273</td>
<td>1201.6212</td>
<td>601.3142</td>
<td>1200.6571</td>
<td>600.8222</td>
</tr>
<tr>
<td>4</td>
<td>442.2045</td>
<td>221.0059</td>
<td>425.1779</td>
<td>213.0926</td>
<td>Q</td>
<td>1090.5891</td>
<td>545.7982</td>
<td>1073.5626</td>
<td>537.2849</td>
<td>1072.5786</td>
<td>536.7929</td>
</tr>
<tr>
<td>5</td>
<td>541.2729</td>
<td>271.1401</td>
<td>534.2463</td>
<td>262.6268</td>
<td>V</td>
<td>962.5306</td>
<td>481.7689</td>
<td>945.5040</td>
<td>473.2556</td>
<td>944.5260</td>
<td>472.7636</td>
</tr>
<tr>
<td>6</td>
<td>688.3413</td>
<td>344.6743</td>
<td>671.3148</td>
<td>336.1610</td>
<td>F</td>
<td>865.4621</td>
<td>432.2347</td>
<td>846.4356</td>
<td>423.7214</td>
<td>845.4516</td>
<td>423.2204</td>
</tr>
<tr>
<td>7</td>
<td>858.4468</td>
<td>429.2711</td>
<td>841.4203</td>
<td>421.2138</td>
<td>K</td>
<td>716.3937</td>
<td>358.7003</td>
<td>699.3672</td>
<td>350.1872</td>
<td>698.3852</td>
<td>349.6892</td>
</tr>
<tr>
<td>8</td>
<td>913.4683</td>
<td>456.2378</td>
<td>898.4417</td>
<td>449.7245</td>
<td>G</td>
<td>546.2882</td>
<td>273.6477</td>
<td>529.2617</td>
<td>265.1345</td>
<td>528.2716</td>
<td>264.8423</td>
</tr>
<tr>
<td>9</td>
<td>1028.5324</td>
<td>514.7798</td>
<td>1011.5258</td>
<td>506.2063</td>
<td>L</td>
<td>489.2867</td>
<td>242.1370</td>
<td>472.2402</td>
<td>236.8237</td>
<td>471.2562</td>
<td>235.3137</td>
</tr>
<tr>
<td>10</td>
<td>1142.5953</td>
<td>571.8013</td>
<td>1125.5687</td>
<td>563.2880</td>
<td>N</td>
<td>376.1827</td>
<td>188.5950</td>
<td>359.1561</td>
<td>180.0817</td>
<td>358.1721</td>
<td>179.5897</td>
</tr>
<tr>
<td>11</td>
<td>1257.6222</td>
<td>629.3148</td>
<td>1240.5957</td>
<td>620.8015</td>
<td>D</td>
<td>262.1297</td>
<td>131.5735</td>
<td>245.1132</td>
<td>123.0602</td>
<td>244.1292</td>
<td>122.5682</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GFYIYQEGSKNK

Found in O8BMS1. Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1

Chick mouse within plot area to zoom in by factor of two about that point

Or, Plot from __________ to __________ Da [Full range]

Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(mole): 1518.6091

Fixed modifications: MMTS (C) (apply to specified residues or terminal only)

Variable modifications:

K: 57.020528 (K), with neutral loss 48.0648

Ions Score: 20 **Expect:** 0.049

Matches: 18/104 fragment ions using 41 most intense peaks **(kcal)**

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^++</th>
<th>b^+++</th>
<th>b^++</th>
<th>b^+++</th>
<th>Seq.</th>
<th>y</th>
<th>y^+</th>
<th>y^++</th>
<th>y^+++</th>
<th>y^++++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>205.0972</td>
<td>103.0522</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>368.1605</td>
<td>184.5839</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>481.2441</td>
<td>241.1259</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>644.3079</td>
<td>322.6576</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>772.3666</td>
<td>386.6699</td>
<td>755.3399</td>
<td>378.1736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>901.4090</td>
<td>451.2082</td>
<td>884.3828</td>
<td>442.6940</td>
<td>883.3982</td>
<td>442.2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>958.4305</td>
<td>479.7189</td>
<td>941.4040</td>
<td>471.2056</td>
<td>940.4195</td>
<td>470.7136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1045.4625</td>
<td>523.2349</td>
<td>1028.4360</td>
<td>514.7216</td>
<td>1027.4520</td>
<td>514.2396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1215.5681</td>
<td>608.2877</td>
<td>1198.5415</td>
<td>599.7744</td>
<td>1197.5577</td>
<td>599.2824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1329.6110</td>
<td>665.3091</td>
<td>1312.5844</td>
<td>656.7959</td>
<td>1311.6004</td>
<td>656.3039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FVDLYGAQKVVDR

Found in Q8BMS1, Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus GN=Hadha PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide (Mr(calc): 1594.7921)
Fixed modifications: MMTS (C) (apply to specified residues or terminal only)
Variable modifications:
KM : mél_002 (R), with neutral loss 40.009
Total Score: 27 Expect: 0.0078
Matches: 23/124 fragment ions using 112 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>247.1441</td>
<td>124.0757</td>
<td>V</td>
<td>1</td>
<td>1404.7482</td>
</tr>
<tr>
<td>3</td>
<td>362.1710</td>
<td>181.5892</td>
<td>D</td>
<td></td>
<td>1365.6797</td>
</tr>
<tr>
<td>4</td>
<td>475.3331</td>
<td>238.1312</td>
<td>L</td>
<td></td>
<td>1190.6528</td>
</tr>
<tr>
<td>5</td>
<td>638.3184</td>
<td>319.6029</td>
<td>Y</td>
<td></td>
<td>1077.6867</td>
</tr>
<tr>
<td>6</td>
<td>695.3399</td>
<td>348.1736</td>
<td>G</td>
<td></td>
<td>914.5654</td>
</tr>
<tr>
<td>7</td>
<td>766.3776</td>
<td>382.6021</td>
<td>A</td>
<td></td>
<td>857.4839</td>
</tr>
<tr>
<td>8</td>
<td>894.4356</td>
<td>447.7214</td>
<td>Q</td>
<td></td>
<td>766.4468</td>
</tr>
<tr>
<td>9</td>
<td>1064.5411</td>
<td>532.7742</td>
<td>K</td>
<td></td>
<td>658.3883</td>
</tr>
<tr>
<td>10</td>
<td>1163.6095</td>
<td>582.3084</td>
<td>V</td>
<td></td>
<td>488.2827</td>
</tr>
<tr>
<td>12</td>
<td>1377.7049</td>
<td>689.3561</td>
<td>D</td>
<td></td>
<td>290.1459</td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>157.1590</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TVDPTTAPSKTR
Found in Q8BP40, Lysophosphatidic acid phosphatase type 6 OS=Mus musculus GN=Acp6 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot form 100 to 1300 Da Full range

Monoisotopic mass of neutral peptide Mr(cale): 558.6478
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K10 : mal_SO2 (K), with neutral loss 46.0590
Ions Score: 44 Expect: 0.0011
Matches: 11/112 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>b0</th>
<th>b0++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>y9</th>
<th>y9++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5238</td>
<td>T</td>
<td>1214.6375</td>
<td>607.8224</td>
<td>1197.6110</td>
<td>599.3091</td>
<td>1196.6270</td>
<td>398.8171</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201.1234</td>
<td>101.0653</td>
<td>183.1128</td>
<td>92.0900</td>
<td>V</td>
<td>1214.6375</td>
<td>607.8224</td>
<td>1197.6110</td>
<td>599.3091</td>
<td>1196.6270</td>
<td>398.8171</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>316.1503</td>
<td>158.5788</td>
<td>298.1397</td>
<td>149.5755</td>
<td>D</td>
<td>1115.5691</td>
<td>558.2682</td>
<td>1009.5426</td>
<td>549.7749</td>
<td>1097.5586</td>
<td>549.2829</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>413.2031</td>
<td>207.1052</td>
<td>395.1923</td>
<td>198.0999</td>
<td>P</td>
<td>1009.5426</td>
<td>500.7747</td>
<td>983.5156</td>
<td>492.2615</td>
<td>983.5156</td>
<td>491.7694</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>514.2508</td>
<td>257.6290</td>
<td>496.2402</td>
<td>248.6237</td>
<td>I</td>
<td>905.4894</td>
<td>452.2483</td>
<td>885.4829</td>
<td>443.7351</td>
<td>852.4789</td>
<td>443.2431</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>615.2984</td>
<td>308.1529</td>
<td>597.2879</td>
<td>299.1476</td>
<td>I</td>
<td>892.4417</td>
<td>401.7245</td>
<td>785.4152</td>
<td>393.2112</td>
<td>784.4312</td>
<td>392.7192</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>920.4209</td>
<td>425.7138</td>
<td>852.4098</td>
<td>426.7085</td>
<td>S</td>
<td>533.3042</td>
<td>267.1557</td>
<td>516.2776</td>
<td>258.8425</td>
<td>515.2936</td>
<td>258.1504</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1040.5229</td>
<td>520.7666</td>
<td>1023.4909</td>
<td>512.2593</td>
<td>1022.5153</td>
<td>511.7613</td>
<td>K</td>
<td>446.2272</td>
<td>223.6397</td>
<td>429.2458</td>
<td>215.1264</td>
<td>428.2616</td>
<td>214.6344</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1141.5735</td>
<td>571.2904</td>
<td>1124.5470</td>
<td>562.7771</td>
<td>1123.5630</td>
<td>562.2851</td>
<td>T</td>
<td>276.1666</td>
<td>138.5870</td>
<td>259.1401</td>
<td>130.0737</td>
<td>256.1561</td>
<td>129.5817</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0624</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KLCELYAK

Found in Q8BW75. Amine oxidase [flavin-containing] B OS=Mus musculus GN=Maob PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b++</th>
<th>b0</th>
<th>b++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++</th>
<th>y0</th>
<th>y++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>433.1938</td>
<td>217.1005</td>
<td>416.1672</td>
<td>208.5873</td>
<td>C</td>
<td>772.3368</td>
<td>386.6720</td>
<td>755.3103</td>
<td>378.1588</td>
<td>754.3262</td>
<td>377.6668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675.3204</td>
<td>338.1639</td>
<td>658.2939</td>
<td>329.6506</td>
<td>657.3099</td>
<td>329.1586</td>
<td>L</td>
<td>494.2973</td>
<td>247.6523</td>
<td>477.2708</td>
<td>239.1390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>838.3838</td>
<td>419.6955</td>
<td>821.3572</td>
<td>411.6282</td>
<td>820.3732</td>
<td>410.6902</td>
<td>Y</td>
<td>381.2132</td>
<td>191.1105</td>
<td>364.1867</td>
<td>182.5970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>909.4209</td>
<td>455.2141</td>
<td>892.3943</td>
<td>444.7008</td>
<td>891.4103</td>
<td>446.2088</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NVKYVDLGGSYVGPTQNR

Found in E9PVLQ. Amino oxidase [flavin-containing] B Os Mussculosmusculus GN=Masb PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1900 Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr (calc): 2941.9912
Fixed modifications: MRZS (C) (apply to specified residues or termini only)
Variable modifications:
K1 : m+20 Da (K) with neutral loss 42.015
Inst Score: 80 Expect: 1.5e-67
Match: 49/1285 fragment ions using 71 most intense peaks

<table>
<thead>
<tr>
<th>z</th>
<th>b</th>
<th>b++</th>
<th>y</th>
<th>y++</th>
<th>y+++</th>
<th>Seq</th>
<th>y</th>
<th>y++</th>
<th>y+++</th>
<th>y++</th>
<th>y+++</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0502</td>
<td>58.0287</td>
<td>98.0237</td>
<td>49.5155</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>384.2241</td>
<td>192.6157</td>
<td>367.1976</td>
<td>184.1024</td>
<td></td>
<td>K</td>
<td>1795.8973</td>
<td>896.4523</td>
<td>1778.8708</td>
<td>889.9390</td>
<td>1777.8868</td>
<td>889.4470</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>547.2875</td>
<td>274.1474</td>
<td>530.2609</td>
<td>265.6341</td>
<td></td>
<td>Y</td>
<td>1625.7918</td>
<td>813.3995</td>
<td>1608.7653</td>
<td>804.8583</td>
<td>1607.7812</td>
<td>804.3943</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>646.3559</td>
<td>323.6816</td>
<td>629.3293</td>
<td>315.1683</td>
<td></td>
<td>V</td>
<td>1462.7285</td>
<td>731.8679</td>
<td>1445.7019</td>
<td>725.3546</td>
<td>1444.7179</td>
<td>722.8626</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>761.3928</td>
<td>381.1951</td>
<td>744.3562</td>
<td>372.6818</td>
<td></td>
<td>D</td>
<td>1363.6601</td>
<td>682.3337</td>
<td>1346.6335</td>
<td>673.8204</td>
<td>1345.6495</td>
<td>673.3284</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>874.4669</td>
<td>437.7371</td>
<td>857.4043</td>
<td>429.2238</td>
<td></td>
<td>L</td>
<td>1248.6821</td>
<td>624.8202</td>
<td>1231.6066</td>
<td>616.3066</td>
<td>1230.6226</td>
<td>615.8149</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>931.4854</td>
<td>466.2478</td>
<td>914.4019</td>
<td>457.7345</td>
<td></td>
<td>G</td>
<td>1125.5491</td>
<td>568.2782</td>
<td>1118.5223</td>
<td>559.7619</td>
<td>1117.5385</td>
<td>559.2729</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>988.5098</td>
<td>494.7585</td>
<td>971.4833</td>
<td>486.2453</td>
<td></td>
<td>G</td>
<td>1078.5376</td>
<td>539.6764</td>
<td>1061.5011</td>
<td>531.2542</td>
<td>1060.5170</td>
<td>530.7622</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1075.4519</td>
<td>538.2746</td>
<td>1058.5153</td>
<td>529.7613</td>
<td></td>
<td>S</td>
<td>1021.5061</td>
<td>511.2567</td>
<td>1004.4764</td>
<td>502.7434</td>
<td>1003.4956</td>
<td>502.2514</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1128.5682</td>
<td>561.8062</td>
<td>1102.5786</td>
<td>551.2901</td>
<td></td>
<td>V</td>
<td>934.4741</td>
<td>467.7407</td>
<td>917.4476</td>
<td>459.2274</td>
<td>916.4635</td>
<td>458.7354</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1337.6736</td>
<td>669.3404</td>
<td>1320.6740</td>
<td>660.8722</td>
<td></td>
<td>V</td>
<td>771.4108</td>
<td>386.2090</td>
<td>754.3842</td>
<td>377.6958</td>
<td>753.4002</td>
<td>377.2037</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1394.6951</td>
<td>697.5512</td>
<td>1377.6652</td>
<td>689.3379</td>
<td></td>
<td>G</td>
<td>672.3242</td>
<td>336.6748</td>
<td>655.3132</td>
<td>328.1615</td>
<td>654.3318</td>
<td>327.6969</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1441.7478</td>
<td>746.7752</td>
<td>1424.7212</td>
<td>737.8434</td>
<td></td>
<td>P</td>
<td>615.3200</td>
<td>308.1641</td>
<td>598.2944</td>
<td>301.6508</td>
<td>597.3103</td>
<td>301.1588</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1592.7955</td>
<td>796.6004</td>
<td>1575.7906</td>
<td>788.3881</td>
<td></td>
<td>T</td>
<td>518.2681</td>
<td>259.6777</td>
<td>501.2461</td>
<td>251.1244</td>
<td>500.2576</td>
<td>250.6324</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1708.8541</td>
<td>860.9307</td>
<td>1693.8275</td>
<td>852.4147</td>
<td></td>
<td>Q</td>
<td>417.2045</td>
<td>209.1139</td>
<td>400.1939</td>
<td>206.6066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1834.8970</td>
<td>917.9521</td>
<td>1818.8705</td>
<td>909.4389</td>
<td></td>
<td>N</td>
<td>289.1619</td>
<td>140.0646</td>
<td>272.1353</td>
<td>136.5713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>175.1195</td>
<td>88.0631</td>
<td>168.0929</td>
<td></td>
<td></td>
<td>75.6498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AYVDTPAEQMKAE
Found in QSGC7, bifunctional glutamate-proline-RNA ligase Os=Mus musculus GN=Eprn PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1700 Da
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide (Mr(calc.): 1506.7557
Fixed modifications: 8H73 (C) (apply to specified residues or termini only)
Variable modifications:
K12 : N/C-poly(2K) (X), with neutral loss 43.9805
Ion Source: 40 Expt: 0.000625
Matches: 19/162 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y+1</th>
<th>y0+1</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y+1</th>
<th>y0+1</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>235.1077</td>
<td>118.0575</td>
<td></td>
<td></td>
<td>Y</td>
<td>1694.7690</td>
<td>847.8882</td>
<td>1677.7425</td>
<td>839.3749</td>
<td>1676.7558</td>
<td>838.8829</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>334.1761</td>
<td>167.5017</td>
<td></td>
<td></td>
<td>V</td>
<td>1531.7057</td>
<td>776.2565</td>
<td>1514.6792</td>
<td>775.8432</td>
<td>1513.6951</td>
<td>757.2512</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>449.2031</td>
<td>225.1052</td>
<td></td>
<td></td>
<td>D</td>
<td>1452.6273</td>
<td>716.6223</td>
<td>1413.6107</td>
<td>708.3900</td>
<td>1414.6257</td>
<td>707.8170</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>564.2300</td>
<td>282.6186</td>
<td></td>
<td></td>
<td>D</td>
<td>1317.6103</td>
<td>659.3688</td>
<td>1300.5838</td>
<td>650.7955</td>
<td>1299.5998</td>
<td>650.3035</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>665.2777</td>
<td>333.1425</td>
<td></td>
<td></td>
<td>T</td>
<td>1202.5834</td>
<td>601.7953</td>
<td>1185.5569</td>
<td>598.3821</td>
<td>1184.5725</td>
<td>592.7691</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>762.3305</td>
<td>391.6689</td>
<td></td>
<td></td>
<td>P</td>
<td>1101.5237</td>
<td>551.2715</td>
<td>1084.5092</td>
<td>542.7352</td>
<td>1083.5252</td>
<td>542.2662</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>833.2676</td>
<td>417.1874</td>
<td></td>
<td></td>
<td>A</td>
<td>1004.4830</td>
<td>502.7451</td>
<td>987.4564</td>
<td>494.2318</td>
<td>986.4724</td>
<td>492.7398</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>902.4102</td>
<td>481.7087</td>
<td></td>
<td></td>
<td>E</td>
<td>983.4458</td>
<td>467.2266</td>
<td>961.4193</td>
<td>458.1135</td>
<td>951.4353</td>
<td>452.2215</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1050.4687</td>
<td>545.7380</td>
<td>1073.4422</td>
<td>537.2247</td>
<td>Q</td>
<td>864.4033</td>
<td>402.7033</td>
<td>787.3767</td>
<td>394.1920</td>
<td>786.3927</td>
<td>393.7000</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1221.5069</td>
<td>611.2583</td>
<td>1204.4827</td>
<td>602.7450</td>
<td>M</td>
<td>766.3447</td>
<td>388.6760</td>
<td>659.3181</td>
<td>330.1627</td>
<td>658.3341</td>
<td>329.6707</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1391.6148</td>
<td>696.3110</td>
<td>1374.5882</td>
<td>687.9797</td>
<td>K</td>
<td>545.3042</td>
<td>272.1557</td>
<td>528.2776</td>
<td>264.6424</td>
<td>527.2956</td>
<td>264.1050</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1462.6519</td>
<td>731.8296</td>
<td>1445.6253</td>
<td>723.3163</td>
<td>A</td>
<td>372.1997</td>
<td>188.1030</td>
<td>358.1721</td>
<td>179.5387</td>
<td>357.1881</td>
<td>179.0777</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1591.6945</td>
<td>796.3509</td>
<td>1573.6679</td>
<td>787.8376</td>
<td>E</td>
<td>394.1615</td>
<td>152.2844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1510</td>
<td>143.5791</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 15| | | | | R | 175.1190 | 88.0631 | 158.0824 | 79.3488 | 157.1026 | 78.8564 | 1
MS/MS Fragmentation of KPNQPYKWISYK
Found in Q8JRZ0. Long chain fatty-acid--CoA ligase 5 OS=Mus musculus GN=Acsl5 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Enter from 300 to 1500 Da to Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide M+ (calc): 1636.9249
Fixed modifications: MMTF (C) (apply to specified residues or termini only)
Variable modifications:
K7: Met_002 (K), with neutral loss 10.0000
Ions Score: 27 Expect: 0.0098
Matches: 19/110 fragment ions using 51 most intense peaks (calc)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b10+</th>
<th>Seq.</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y10+</th>
<th>y10+</th>
<th>y10+</th>
<th>y10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.1022</td>
<td>65.0548</td>
<td>112.0757</td>
<td>56.5415</td>
<td>K</td>
<td>1463.7474</td>
<td>713.3774</td>
<td>1448.7209</td>
<td>724.8641</td>
<td>1447.7369</td>
<td>724.3721</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>226.1350</td>
<td>113.5811</td>
<td>209.1251</td>
<td>105.0670</td>
<td>P</td>
<td>1368.6947</td>
<td>684.8510</td>
<td>1351.6681</td>
<td>676.3377</td>
<td>1350.6841</td>
<td>675.8457</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>340.1979</td>
<td>170.6026</td>
<td>323.1714</td>
<td>162.0893</td>
<td>N</td>
<td>1334.6517</td>
<td>667.8265</td>
<td>1257.6352</td>
<td>619.3162</td>
<td>1238.6417</td>
<td>618.8242</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>458.2363</td>
<td>234.6519</td>
<td>431.2300</td>
<td>226.1168</td>
<td>Q</td>
<td>1126.3922</td>
<td>563.8002</td>
<td>1109.3666</td>
<td>555.2859</td>
<td>1108.3826</td>
<td>554.7949</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>565.3093</td>
<td>282.1583</td>
<td>548.2827</td>
<td>274.6450</td>
<td>P</td>
<td>728.3726</td>
<td>364.6899</td>
<td>711.3461</td>
<td>356.1767</td>
<td>710.3529</td>
<td>356.2666</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>728.3726</td>
<td>364.6899</td>
<td>711.3461</td>
<td>356.1767</td>
<td>Y</td>
<td>899.4781</td>
<td>449.7427</td>
<td>881.4516</td>
<td>441.2948</td>
<td>866.4771</td>
<td>433.7422</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1084.5574</td>
<td>542.7824</td>
<td>1067.5209</td>
<td>534.2691</td>
<td>W</td>
<td>510.2922</td>
<td>255.6498</td>
<td>493.2675</td>
<td>247.1365</td>
<td>492.2817</td>
<td>246.6445</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1197.6415</td>
<td>599.3244</td>
<td>1180.6150</td>
<td>590.8111</td>
<td>I</td>
<td>387.2682</td>
<td>199.1077</td>
<td>380.1816</td>
<td>190.5944</td>
<td>379.1976</td>
<td>190.1024</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1284.6735</td>
<td>642.8404</td>
<td>1267.6470</td>
<td>634.3271</td>
<td>S</td>
<td>810.1761</td>
<td>415.5917</td>
<td>783.1496</td>
<td>407.0784</td>
<td>782.1668</td>
<td>406.5666</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1447.7369</td>
<td>724.3721</td>
<td>1430.7103</td>
<td>715.8388</td>
<td>Y</td>
<td>1429.7263</td>
<td>715.8366</td>
<td>1429.7263</td>
<td>715.8366</td>
<td>1429.7263</td>
<td>715.8366</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALQSIEKER

Found in Q91X88, Transmembrane protein 205 OS=Mus musculus GN=Tmem205 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 50 to 1200 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1138.5880
Fixed modifications: METS (C) (apply to specified residues or termini only)
Variable modifications:
K7 : m/z CO2 (K), with neutral loss 49.9899

Ions Score: 21 Expect: 0.044
Matches to 12/34 fragment ions using 16 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b''''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y'''</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>38.5238</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>1044.5684</td>
<td>522.7878</td>
<td>1027.5419</td>
<td>514.2746</td>
<td>1026.5578</td>
<td>513.7826</td>
</tr>
<tr>
<td>3</td>
<td>313.1870</td>
<td>157.0972</td>
<td>296.1605</td>
<td>148.5839</td>
<td></td>
<td>Q</td>
<td>931.4843</td>
<td>466.2458</td>
<td>914.4578</td>
<td>457.7325</td>
<td>913.4738</td>
<td>457.2405</td>
</tr>
<tr>
<td>4</td>
<td>400.2191</td>
<td>200.6132</td>
<td>383.1925</td>
<td>192.0999</td>
<td>382.2085</td>
<td>191.6079</td>
<td>S</td>
<td>893.4258</td>
<td>402.2165</td>
<td>786.3992</td>
<td>393.7052</td>
<td>785.4152</td>
</tr>
<tr>
<td>5</td>
<td>513.3031</td>
<td>257.1552</td>
<td>496.2766</td>
<td>248.6419</td>
<td>495.2926</td>
<td>248.1499</td>
<td>T</td>
<td>716.3937</td>
<td>358.7005</td>
<td>699.3672</td>
<td>350.1872</td>
<td>698.3832</td>
</tr>
<tr>
<td>6</td>
<td>642.3457</td>
<td>321.6765</td>
<td>625.3192</td>
<td>313.1632</td>
<td>624.3332</td>
<td>312.6712</td>
<td>E</td>
<td>603.3067</td>
<td>302.1585</td>
<td>586.2831</td>
<td>293.6452</td>
<td>585.2991</td>
</tr>
<tr>
<td>7</td>
<td>812.4512</td>
<td>406.7293</td>
<td>795.4247</td>
<td>398.2160</td>
<td>794.4407</td>
<td>397.7240</td>
<td>K</td>
<td>474.2671</td>
<td>237.6372</td>
<td>457.2405</td>
<td>229.1239</td>
<td>458.2565</td>
</tr>
<tr>
<td>8</td>
<td>941.4938</td>
<td>471.2506</td>
<td>924.4673</td>
<td>462.7373</td>
<td>923.4833</td>
<td>462.2453</td>
<td>E</td>
<td>304.1615</td>
<td>152.5844</td>
<td>287.1350</td>
<td>144.0711</td>
<td>286.1510</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FCYADKALLNR

Found in Q8CH10. Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial OS=Mus musculus GN=Aldh1al PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from \(200 \) to \(1400 \) Da Full range

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1444.6476

Fixed modifications: M(S) (C) (apply to specified residues or terminal only)

Variable modifications:

<table>
<thead>
<tr>
<th>K6</th>
<th>m/z</th>
<th>Precursor mass (calc)</th>
<th>Charge</th>
<th>m/z (exp)</th>
<th>Error (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/z 43.9690</td>
<td>1105.6000</td>
<td>1087.5895</td>
<td>1087.5895</td>
<td>1087.5895</td>
<td>1087.5895</td>
</tr>
</tbody>
</table>

Tune Score: 48 **Expt.** 0.0041

Matches: 19/90 fragment ions using 23 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>Mass1</th>
<th>Intensity1</th>
<th>Mass2</th>
<th>Intensity2</th>
<th>Seq.</th>
<th>y</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>297.0726</td>
<td>149.0399</td>
<td>C</td>
<td>1254.5969</td>
<td>627.8021</td>
<td>1237.5704</td>
<td>619.2888</td>
<td>1236.5864</td>
<td>618.7968</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>460.1339</td>
<td>230.5716</td>
<td>Y</td>
<td>1105.6000</td>
<td>553.3037</td>
<td>1088.5735</td>
<td>544.7904</td>
<td>1087.5895</td>
<td>544.2984</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>531.1730</td>
<td>266.0902</td>
<td>A</td>
<td>942.5567</td>
<td>471.7720</td>
<td>925.5102</td>
<td>463.2587</td>
<td>924.5261</td>
<td>462.7667</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>646.2000</td>
<td>323.6036</td>
<td>D</td>
<td>871.4996</td>
<td>456.2534</td>
<td>854.4730</td>
<td>427.7402</td>
<td>853.4890</td>
<td>427.2482</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>816.3055</td>
<td>408.6664</td>
<td>K</td>
<td>756.4726</td>
<td>378.7400</td>
<td>739.4461</td>
<td>370.2267</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>887.3426</td>
<td>444.1750</td>
<td>A</td>
<td>586.3671</td>
<td>293.6872</td>
<td>569.3406</td>
<td>285.1739</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1000.4267</td>
<td>500.7170</td>
<td>L</td>
<td>515.3390</td>
<td>258.1686</td>
<td>498.3035</td>
<td>249.6554</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1113.5108</td>
<td>557.2590</td>
<td>L</td>
<td>402.2459</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1227.5537</td>
<td>614.2805</td>
<td>N</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1353</td>
<td>136.5713</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of ALKPTVFPTVPR

Found in Q8JZ00, Long-chain-fatty-acid-CoA ligase 5 OS=Mus musculus GN=Acs5 PE=3 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 250 to 1250 Da Full range

Label all possible matches ☐ Label matches used for scoring ☐

![Fragmentation Diagram](image)

Monoisotopic mass of neutral peptide Mr(male): 3410.7871

Fixed modifications: NMT (C) (apply to specified residues or termini only)

Variable modifications:

- K: + 15.99491 (O), with neutral loss 48.0695

Ions Scored: 16 **Expect:** 0.062

Matches: 15/714 fragment ions using 30 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td>129.7674</td>
<td>648.8874</td>
<td>1278.7409</td>
<td>640.3741</td>
<td>1278.7569</td>
<td>639.8821</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185.1283</td>
<td>93.0679</td>
<td>L</td>
<td>129.7674</td>
<td>648.8874</td>
<td>1278.7409</td>
<td>640.3741</td>
<td>1278.7569</td>
<td>639.8821</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>355.2340</td>
<td>178.1206</td>
<td>338.2074</td>
<td>159.6074</td>
<td>K</td>
<td>1183.6834</td>
<td>592.3453</td>
<td>1166.6568</td>
<td>583.8320</td>
<td>1155.6728</td>
<td>583.3400</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>452.2867</td>
<td>226.6470</td>
<td>435.2602</td>
<td>218.1337</td>
<td>P</td>
<td>1013.5778</td>
<td>507.2926</td>
<td>998.5513</td>
<td>498.7793</td>
<td>995.3673</td>
<td>498.2873</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>553.3244</td>
<td>277.1709</td>
<td>536.3079</td>
<td>268.6576</td>
<td>M</td>
<td>355.3239</td>
<td>268.1656</td>
<td>268.1656</td>
<td>1</td>
<td>916.5251</td>
<td>458.7662</td>
<td>899.4085</td>
<td>450.5259</td>
<td>898.1545</td>
<td>449.7609</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>652.4028</td>
<td>326.7031</td>
<td>635.3763</td>
<td>318.1918</td>
<td>I</td>
<td>916.5251</td>
<td>458.7662</td>
<td>899.4085</td>
<td>450.5259</td>
<td>898.1545</td>
<td>449.7609</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>759.4713</td>
<td>390.2399</td>
<td>732.4477</td>
<td>391.7260</td>
<td>V</td>
<td>813.4774</td>
<td>408.2423</td>
<td>798.4209</td>
<td>399.7291</td>
<td>797.4668</td>
<td>399.2371</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>866.5490</td>
<td>448.7656</td>
<td>879.4975</td>
<td>440.2524</td>
<td>F</td>
<td>716.4690</td>
<td>358.7081</td>
<td>699.3824</td>
<td>350.1949</td>
<td>698.3984</td>
<td>349.7028</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>973.6277</td>
<td>499.2895</td>
<td>980.5451</td>
<td>490.7762</td>
<td>T</td>
<td>472.2879</td>
<td>256.5647</td>
<td>455.2603</td>
<td>228.1343</td>
<td>454.7727</td>
<td>227.6423</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1089.6401</td>
<td>548.8227</td>
<td>1079.6126</td>
<td>540.3104</td>
<td>E</td>
<td>371.2401</td>
<td>186.1227</td>
<td>354.2126</td>
<td>177.6104</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1193.6929</td>
<td>597.3501</td>
<td>1176.6663</td>
<td>588.3868</td>
<td>L</td>
<td>272.1717</td>
<td>136.5895</td>
<td>255.1452</td>
<td>128.0762</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1316.7456</td>
<td>649.3728</td>
<td>1299.7214</td>
<td>640.8078</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GLSLLLYGSIPKAAVR

MS/MS Fragmentation of GLSLLLYGSIPKAAVR
Found in Q8Z1L2. Protein Slk25sa1 OS=Mus musculus GN=Slk25sa1 PE=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, [Plot type] [Cartesian] [Bar] [Pie] [Full range]
Label all possible matches ○ Label matches used for scoring ●

Monoisotopic mass of neutral peptide (M+H): 1526.8440
Fixed modifications: TMT (C) [apply to specified residues or terminal only]
Variable modifications: Oxidation (M), with neutral loss 43.0108
Ion Score: 55 Expect: 0.00011
Matches: 20/140 fragment ions using 87 most intense peaks [help]

1	58.0287	29.5180	G	16						
2	171.1128	86.0600	L	1616.9170	808.9721	1599.9105	800.4891	1598.9265	799.9869	15
3	229.1448	129.5761	S	1503.8530	752.4281	1486.8264	743.9168	1485.8424	743.4248	14
4	345.1769	173.0921	S	1516.8209	708.9141	1509.7944	700.4006	1508.8104	699.9083	13
5	412.2009	229.6341	L	1339.7989	665.3981	1322.7764	656.8819	1319.7898	656.3928	12
6	571.3459	286.1761	L	1216.7548	658.8561	1199.8783	650.3428	1198.8943	599.8208	11
7	734.4083	367.7078	V	1192.6398	552.3140	1186.5943	543.8007	1185.6102	543.3087	10
8	781.4298	366.2185	G	946.5574	470.7824	929.5809	462.2691	922.5469	461.7771	9
9	878.4618	439.7345	S	883.5360	442.2716	866.5969	433.7534	855.5224	433.2063	8
10	991.5429	486.2766	I	796.5839	399.7256	779.4774	390.2423	7		
11	1088.5986	544.8030	P	683.4199	342.2136	666.3933	333.7003	6		
12	1258.7042	629.8357	K	583.3671	293.6872	569.3406	285.1759	5		
13	1329.7413	665.3743	A	416.2616	208.8344	399.2350	200.1212	4		
14	1400.7784	700.8928	1383.7518	692.3706	1382.7678	691.8876	1382.6978	3		
15	1499.8468	750.4270	V	274.1874	137.5973	257.1608	129.0640	2		
16	R	173.1190	88.0651	158.0824	79.5488	1				
MS/MS Fragmentation of RPNKPLFTGLVTQCQK
Found in Q8K128. NAD(P)H-depolymerase OS=Mus musculus GN=Apoa1bp PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, set from 200 to 1400 Da
Label all possible matches Label matches used for scoring

Phenotypic mass of neutral peptide [M]+ (calc): 1596.8658
Fixed modifications: MMT (C) (apply to specified residues or terminal only)
Variable modifications:
X = m/z 0.992 (N), with neutral loss 44.0580
Ion Source: ESI Impact: 1.3
Matches: 28/135 fragment ions using 16 most intense peaks (Q31.1a)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b+</th>
<th>b0+</th>
<th>Seq.</th>
<th>y</th>
<th>y**</th>
<th>y+</th>
<th>y0+</th>
<th>y2</th>
<th>y0+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157.1084</td>
<td>79.9578</td>
<td>140.0818</td>
<td>70.5446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>254.1613</td>
<td>127.5842</td>
<td>237.1346</td>
<td>119.0709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>365.2041</td>
<td>184.6057</td>
<td>351.1775</td>
<td>176.0924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>538.3096</td>
<td>269.6584</td>
<td>521.2831</td>
<td>261.1452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>653.3624</td>
<td>318.1818</td>
<td>618.3335</td>
<td>309.8715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>748.4464</td>
<td>374.7269</td>
<td>711.4198</td>
<td>396.2136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>966.5625</td>
<td>498.7849</td>
<td>979.5360</td>
<td>490.2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1063.5849</td>
<td>527.2926</td>
<td>1056.5574</td>
<td>518.7824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1166.6681</td>
<td>583.8477</td>
<td>1159.6415</td>
<td>575.3324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1265.7355</td>
<td>633.3719</td>
<td>1258.7099</td>
<td>624.8386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1366.8041</td>
<td>683.4085</td>
<td>1359.7756</td>
<td>675.3524</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1464.8247</td>
<td>747.9250</td>
<td>1457.8862</td>
<td>739.4117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>964.5938</td>
<td>492.2969</td>
<td>979.5360</td>
<td>490.2716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1771.9892</td>
<td>886.6527</td>
<td>1764.8717</td>
<td>877.9395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1404.9622</td>
<td>702.4811</td>
<td>1397.9333</td>
<td>700.3222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RPNKPLFTGLVTQCQK
MS/MS Fragmentation of AVKSAEEAAAETK

Found in Q8VC30, Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing) OS=Mus musculus GN=Dak PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1500 Da

Label all possible matches ☑ Label matches used for scoring ☑

Nonisotopic mass of parental peptide M (calc): 1081.6003
Fixed modifications: M7 (C) (apply to specified residues or termini only)
Variable modifications:
K : max 35% (X) with neutral loss 102.0506

Matches : 26/112 fragment ions using 82 most intense peaks [help]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b90</th>
<th>b10</th>
<th>b**</th>
<th>b90**</th>
<th>Seq</th>
<th>y</th>
<th>y90</th>
<th>y10</th>
<th>y**</th>
<th>y90**</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5258</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>85.6000</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>1217.6372</td>
<td>609.3222</td>
<td>1200.6107</td>
<td>600.8090</td>
<td>1199.6236</td>
<td>600.3170</td>
</tr>
<tr>
<td>3</td>
<td>241.2183</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5995</td>
<td>K</td>
<td>1118.5688</td>
<td>559.7800</td>
<td>1101.5422</td>
<td>551.2748</td>
<td>1100.5592</td>
<td>550.7826</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>428.2584</td>
<td>214.6288</td>
<td>411.2238</td>
<td>206.1155</td>
<td>410.2398</td>
<td>205.6235</td>
<td>S</td>
<td>949.4663</td>
<td>474.7353</td>
<td>931.4367</td>
<td>466.2220</td>
<td>930.4527</td>
</tr>
<tr>
<td>5</td>
<td>499.2875</td>
<td>250.1474</td>
<td>482.2609</td>
<td>241.6341</td>
<td>481.2769</td>
<td>241.1421</td>
<td>A</td>
<td>861.4312</td>
<td>431.2193</td>
<td>844.4047</td>
<td>422.7060</td>
<td>843.4207</td>
</tr>
<tr>
<td>6</td>
<td>628.3301</td>
<td>314.6068</td>
<td>611.3035</td>
<td>306.1554</td>
<td>610.3195</td>
<td>305.6634</td>
<td>E</td>
<td>799.3841</td>
<td>395.7077</td>
<td>773.3676</td>
<td>387.1874</td>
<td>772.3836</td>
</tr>
<tr>
<td>7</td>
<td>699.3672</td>
<td>350.1872</td>
<td>682.3406</td>
<td>341.6740</td>
<td>681.3566</td>
<td>341.1619</td>
<td>A</td>
<td>661.3515</td>
<td>331.1794</td>
<td>644.3250</td>
<td>322.6661</td>
<td>643.3410</td>
</tr>
<tr>
<td>8</td>
<td>779.4943</td>
<td>385.7058</td>
<td>753.3777</td>
<td>377.1925</td>
<td>752.3937</td>
<td>376.7005</td>
<td>A</td>
<td>599.3144</td>
<td>295.6608</td>
<td>573.2879</td>
<td>287.1476</td>
<td>572.3039</td>
</tr>
<tr>
<td>9</td>
<td>841.4114</td>
<td>421.2243</td>
<td>824.4149</td>
<td>412.7111</td>
<td>823.4308</td>
<td>412.2191</td>
<td>A</td>
<td>519.2778</td>
<td>260.1423</td>
<td>502.2568</td>
<td>251.0290</td>
<td>501.2667</td>
</tr>
<tr>
<td>10</td>
<td>970.4804</td>
<td>458.7546</td>
<td>953.4575</td>
<td>477.2324</td>
<td>952.4734</td>
<td>476.7404</td>
<td>F</td>
<td>448.3402</td>
<td>224.6237</td>
<td>431.2196</td>
<td>216.1105</td>
<td>430.2296</td>
</tr>
<tr>
<td>12</td>
<td>1142.5688</td>
<td>571.7880</td>
<td>1125.5422</td>
<td>563.2747</td>
<td>1124.5582</td>
<td>562.7829</td>
<td>T</td>
<td>248.1605</td>
<td>124.5839</td>
<td>231.1339</td>
<td>116.0705</td>
<td>230.1499</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>147.1123</td>
<td>74.0660</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QKQDAFALASQQK

Found in Q8VCH0, 3-koesterol-CoA thiolase B, peroxisomal OS=Mus musculus GN=Acan1b PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1500 Da Full range
Label all possible matches Label matches used for scoring

Nonisotopic mass of neutral peptide M: (calc): 1647.7100
Fixed modifications: MMT (C) (apply to specified residues or termini only)
Variable modifications:
K: mad_C02 (K), with neutral loss 48.0100
Ions Source: 23 Expect: 6.021
Matches: 21/112 fragment ions using 56 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b**</th>
<th>Seq</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0539</td>
<td>65.0366</td>
<td>112.0395</td>
<td>56.5233</td>
<td>Q</td>
<td>1376.7169</td>
<td>658.8621</td>
<td>1359.6903</td>
<td>680.3488</td>
<td>1538.7063</td>
<td>579.8565</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>299.1714</td>
<td>150.0893</td>
<td>282.1448</td>
<td>141.5761</td>
<td>K</td>
<td>1376.7169</td>
<td>658.8621</td>
<td>1359.6903</td>
<td>680.3488</td>
<td>1538.7063</td>
<td>579.8565</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>427.2300</td>
<td>214.1186</td>
<td>410.2034</td>
<td>205.6053</td>
<td>Q</td>
<td>1306.6113</td>
<td>603.8093</td>
<td>1189.5848</td>
<td>595.2960</td>
<td>1188.6068</td>
<td>594.8040</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>542.2569</td>
<td>271.6321</td>
<td>525.2304</td>
<td>263.1188</td>
<td>524.2463</td>
<td>262.6268</td>
<td>D</td>
<td>1078.5528</td>
<td>529.7800</td>
<td>1061.5262</td>
<td>521.2667</td>
<td>1060.5422</td>
</tr>
<tr>
<td>5</td>
<td>613.2940</td>
<td>307.1506</td>
<td>596.2673</td>
<td>298.6374</td>
<td>595.2835</td>
<td>298.6145</td>
<td>A</td>
<td>962.5258</td>
<td>482.2666</td>
<td>946.4993</td>
<td>473.7523</td>
<td>945.5152</td>
</tr>
<tr>
<td>6</td>
<td>760.3624</td>
<td>380.6849</td>
<td>743.3559</td>
<td>372.1716</td>
<td>742.3519</td>
<td>371.6796</td>
<td>F</td>
<td>892.4887</td>
<td>446.7480</td>
<td>875.4621</td>
<td>438.2347</td>
<td>874.4761</td>
</tr>
<tr>
<td>8</td>
<td>944.4836</td>
<td>472.7454</td>
<td>927.4571</td>
<td>464.2322</td>
<td>926.4730</td>
<td>463.7402</td>
<td>L</td>
<td>674.3832</td>
<td>337.6952</td>
<td>657.3566</td>
<td>329.1819</td>
<td>656.3726</td>
</tr>
<tr>
<td>10</td>
<td>1102.5528</td>
<td>551.7800</td>
<td>1085.5262</td>
<td>534.2667</td>
<td>1084.5422</td>
<td>542.7747</td>
<td>S</td>
<td>490.3620</td>
<td>245.6346</td>
<td>473.2354</td>
<td>237.1214</td>
<td>472.2514</td>
</tr>
<tr>
<td>11</td>
<td>1230.6113</td>
<td>615.8093</td>
<td>1213.5848</td>
<td>607.8040</td>
<td>1212.6008</td>
<td>608.8040</td>
<td>Q</td>
<td>403.2300</td>
<td>202.1136</td>
<td>386.2034</td>
<td>193.6035</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1358.6699</td>
<td>670.8336</td>
<td>1341.6424</td>
<td>661.3253</td>
<td>1340.6593</td>
<td>670.8233</td>
<td>Q</td>
<td>275.1714</td>
<td>138.0893</td>
<td>258.1448</td>
<td>129.5761</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1471.1128</td>
<td>74.0600</td>
<td>1453.0863</td>
<td>73.0863</td>
<td>74.0600</td>
<td>65.3468</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>1453.0863</td>
<td>73.0863</td>
<td>74.0600</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QDAFALASQKAAASAQSR
Found in QFYCH0, 3-ketoacyl-CoA thiolase B, pancreatic OS=Mus musculus GN=Acasa1 PS=2 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Options: Plot from: 0 to 1200 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of central peptide (M+H)+ 1562.5355
Fixed modifications: M+H+ (apply to specified residues or terminal only)
Variable modifications:
K3 = Met>79 (with neutral loss 43.9651)
Ions Score: 44 Expect: 0.00004
Matches : 24/200 fragment ions using 41 most intense peaks

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>b''</th>
<th>b'</th>
<th>b'''</th>
<th>y0</th>
<th>y''</th>
<th>y'''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y0</th>
<th>y''</th>
<th>y'''</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0391</td>
<td>56.5233</td>
<td>Q</td>
<td>D</td>
<td>1791.8994</td>
<td>896.4528</td>
<td>1774.8719</td>
<td>887.9396</td>
<td>1773.8878</td>
<td>887.4476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>244.0928</td>
<td>122.5559</td>
<td>227.0662</td>
<td>114.0386</td>
<td>226.0822</td>
<td>113.5448</td>
<td>225.0832</td>
<td>113.0024</td>
<td>224.0928</td>
<td>112.4582</td>
<td>223.0728</td>
<td>111.9276</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>315.1299</td>
<td>158.0686</td>
<td>298.1034</td>
<td>149.0533</td>
<td>297.1193</td>
<td>149.0633</td>
<td>296.1313</td>
<td>149.0433</td>
<td>295.1435</td>
<td>148.0145</td>
<td>294.0995</td>
<td>147.5653</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>462.1983</td>
<td>231.0028</td>
<td>445.1178</td>
<td>223.0895</td>
<td>444.1787</td>
<td>222.5975</td>
<td>443.2267</td>
<td>222.0227</td>
<td>442.2757</td>
<td>221.4687</td>
<td>441.3237</td>
<td>220.9217</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>533.2354</td>
<td>267.1214</td>
<td>516.2089</td>
<td>258.6081</td>
<td>515.2249</td>
<td>258.1161</td>
<td>514.2489</td>
<td>257.6729</td>
<td>513.2759</td>
<td>257.1189</td>
<td>512.3139</td>
<td>256.6559</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>646.3185</td>
<td>323.6834</td>
<td>629.2930</td>
<td>315.1501</td>
<td>628.3089</td>
<td>314.6581</td>
<td>627.3351</td>
<td>314.0741</td>
<td>626.3621</td>
<td>313.5891</td>
<td>625.3991</td>
<td>313.1051</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>717.3566</td>
<td>359.1819</td>
<td>700.3301</td>
<td>350.6687</td>
<td>699.3461</td>
<td>350.1767</td>
<td>698.3611</td>
<td>349.7821</td>
<td>697.3761</td>
<td>349.3881</td>
<td>696.3921</td>
<td>349.0041</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>804.3886</td>
<td>402.6960</td>
<td>787.3621</td>
<td>394.1947</td>
<td>786.3781</td>
<td>393.6927</td>
<td>785.3941</td>
<td>393.2087</td>
<td>784.4101</td>
<td>392.7147</td>
<td>783.4261</td>
<td>392.2307</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>932.4472</td>
<td>466.7272</td>
<td>915.4207</td>
<td>458.2140</td>
<td>914.4367</td>
<td>457.7220</td>
<td>913.4527</td>
<td>457.2380</td>
<td>912.4687</td>
<td>456.7540</td>
<td>911.4847</td>
<td>456.2700</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1060.5918</td>
<td>530.7555</td>
<td>1043.4791</td>
<td>522.2433</td>
<td>1042.4952</td>
<td>521.7513</td>
<td>1041.5113</td>
<td>521.2573</td>
<td>1040.5273</td>
<td>520.7733</td>
<td>1039.5433</td>
<td>520.2893</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1230.6113</td>
<td>615.0893</td>
<td>1213.5848</td>
<td>607.0760</td>
<td>1212.6008</td>
<td>606.0804</td>
<td>1211.6178</td>
<td>605.0944</td>
<td>1210.6338</td>
<td>604.1084</td>
<td>1209.6498</td>
<td>603.1224</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1301.6484</td>
<td>631.3729</td>
<td>1284.6219</td>
<td>624.1164</td>
<td>1283.6370</td>
<td>623.1226</td>
<td>1282.6530</td>
<td>622.1386</td>
<td>1281.6680</td>
<td>621.1546</td>
<td>1280.6840</td>
<td>620.1706</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1372.6856</td>
<td>668.6486</td>
<td>1355.6500</td>
<td>661.5331</td>
<td>1354.6650</td>
<td>660.5491</td>
<td>1353.6801</td>
<td>659.5651</td>
<td>1352.6951</td>
<td>658.5811</td>
<td>1351.7101</td>
<td>657.5971</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1469.7176</td>
<td>703.6362</td>
<td>1452.6902</td>
<td>696.4841</td>
<td>1451.7070</td>
<td>695.4991</td>
<td>1450.7241</td>
<td>694.5151</td>
<td>1449.7411</td>
<td>693.5311</td>
<td>1448.7571</td>
<td>692.5471</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1530.7547</td>
<td>735.8110</td>
<td>1513.7281</td>
<td>728.6671</td>
<td>1512.7440</td>
<td>727.6831</td>
<td>1511.7601</td>
<td>726.6991</td>
<td>1510.7761</td>
<td>725.7151</td>
<td>1509.7921</td>
<td>724.7311</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1658.8133</td>
<td>792.0103</td>
<td>1641.7867</td>
<td>784.8641</td>
<td>1639.8027</td>
<td>783.8801</td>
<td>1638.8187</td>
<td>782.8961</td>
<td>1637.8347</td>
<td>781.9121</td>
<td>1636.8501</td>
<td>780.9281</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1745.8453</td>
<td>873.4263</td>
<td>1728.8188</td>
<td>866.9130</td>
<td>1727.8348</td>
<td>865.4210</td>
<td>1726.8498</td>
<td>864.4370</td>
<td>1725.8648</td>
<td>863.4530</td>
<td>1724.8798</td>
<td>862.4700</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>175.1190</td>
<td>88.0651</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mass Spectrometry Data

MIMS Fragmentation of QKQDALASQQKAASQSR

- **Found in:** QSYCHO, 3-hydroxy-CoA thiolase B, paracoccidioides brasiliensis GS
- **MS/MS:** PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Q - Plot from 200 to 1000 Da

Label all possible matches - Label matches used for scoring

Protein Identification

Species: H. sapiens (human)

Peptide: QKQDALASQQKAASQSR

Protein: [Protein name]

Confidence: High

Score: 97

Expect: 0.0014

Monoisotopic mass of neutral peptide Mr(cals): 2210.0026

Fixed modifications: Met(C) (apply to specified residues or termini only)

Variable modifications:

- **K8** : m/z 0.02 (K), with neutral loss 43.0148

Ion Score: 97

Expect: 0.0014

Matches: 35/3529 fragment ions using 33 most intense peaks

Table:

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>b*</th>
<th>y*</th>
<th>Seq</th>
<th>y</th>
<th>y*</th>
<th>y0</th>
<th>y0*</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.0659</td>
<td>65.0366</td>
<td>112.0383</td>
<td>56.5233</td>
<td>Q</td>
<td>2048.0519</td>
<td>1024.5296</td>
<td>2031.0254</td>
<td>1016.0162</td>
<td>2030.0414</td>
</tr>
<tr>
<td>2</td>
<td>257.1608</td>
<td>210.8040</td>
<td>240.1343</td>
<td>120.7078</td>
<td>K</td>
<td>1918.9570</td>
<td>960.4821</td>
<td>1902.9304</td>
<td>951.9689</td>
<td>1901.9464</td>
</tr>
<tr>
<td>3</td>
<td>385.2184</td>
<td>193.1153</td>
<td>168.1928</td>
<td>84.6001</td>
<td>Q</td>
<td>382.2184</td>
<td>193.1153</td>
<td>168.1928</td>
<td>84.6001</td>
<td>Q</td>
</tr>
<tr>
<td>4</td>
<td>500.2463</td>
<td>250.1238</td>
<td>482.2539</td>
<td>241.1213</td>
<td>D</td>
<td>1791.8984</td>
<td>896.4528</td>
<td>1784.8719</td>
<td>887.3956</td>
<td>1775.8878</td>
</tr>
<tr>
<td>5</td>
<td>571.2235</td>
<td>286.1454</td>
<td>554.2569</td>
<td>277.1401</td>
<td>A</td>
<td>1666.8715</td>
<td>833.6594</td>
<td>1659.8449</td>
<td>830.4261</td>
<td>1658.8609</td>
</tr>
<tr>
<td>6</td>
<td>718.3519</td>
<td>359.6796</td>
<td>701.3253</td>
<td>351.1663</td>
<td>Q</td>
<td>700.3413</td>
<td>350.5674</td>
<td>F</td>
<td>1605.8443</td>
<td>803.4208</td>
</tr>
<tr>
<td>7</td>
<td>785.3890</td>
<td>395.1901</td>
<td>772.3624</td>
<td>386.1928</td>
<td>A</td>
<td>1438.7659</td>
<td>729.3886</td>
<td>1431.7934</td>
<td>721.3731</td>
<td>1430.7554</td>
</tr>
<tr>
<td>8</td>
<td>902.4730</td>
<td>451.7402</td>
<td>854.4645</td>
<td>443.2269</td>
<td>L</td>
<td>1387.7288</td>
<td>694.3680</td>
<td>1380.7023</td>
<td>685.2348</td>
<td>1379.7183</td>
</tr>
<tr>
<td>9</td>
<td>973.5162</td>
<td>487.5097</td>
<td>546.4818</td>
<td>478.7454</td>
<td>A</td>
<td>1274.6448</td>
<td>637.8200</td>
<td>1275.6182</td>
<td>629.3127</td>
<td>1275.6342</td>
</tr>
<tr>
<td>10</td>
<td>1066.5432</td>
<td>530.7747</td>
<td>514.5156</td>
<td>502.5615</td>
<td>S</td>
<td>1363.6076</td>
<td>652.5075</td>
<td>1361.6384</td>
<td>651.7482</td>
<td>1360.6697</td>
</tr>
<tr>
<td>11</td>
<td>1138.6098</td>
<td>594.8040</td>
<td>1171.7542</td>
<td>586.2907</td>
<td>Q</td>
<td>1118.5756</td>
<td>558.7914</td>
<td>1099.5491</td>
<td>550.2872</td>
<td>1098.5850</td>
</tr>
<tr>
<td>12</td>
<td>1516.6589</td>
<td>681.8335</td>
<td>1294.6302</td>
<td>659.3200</td>
<td>Q</td>
<td>1516.6589</td>
<td>681.8335</td>
<td>1294.6302</td>
<td>659.3200</td>
<td>Q</td>
</tr>
<tr>
<td>13</td>
<td>1846.7649</td>
<td>743.8581</td>
<td>1469.7385</td>
<td>735.3728</td>
<td>K</td>
<td>860.4585</td>
<td>420.7329</td>
<td>842.4319</td>
<td>422.1926</td>
<td>842.4479</td>
</tr>
<tr>
<td>14</td>
<td>1557.8020</td>
<td>779.4064</td>
<td>1540.7754</td>
<td>770.8914</td>
<td>A</td>
<td>690.3529</td>
<td>345.6801</td>
<td>673.3164</td>
<td>337.1668</td>
<td>672.3424</td>
</tr>
<tr>
<td>15</td>
<td>1628.8391</td>
<td>814.9252</td>
<td>1611.8120</td>
<td>806.4098</td>
<td>A</td>
<td>619.3158</td>
<td>310.1612</td>
<td>602.2833</td>
<td>301.6483</td>
<td>601.3032</td>
</tr>
<tr>
<td>16</td>
<td>1712.8717</td>
<td>854.4972</td>
<td>1698.8466</td>
<td>849.9259</td>
<td>F</td>
<td>1697.8606</td>
<td>849.4393</td>
<td>S</td>
<td>548.2787</td>
<td>274.6430</td>
</tr>
<tr>
<td>17</td>
<td>1786.9082</td>
<td>893.9578</td>
<td>1766.8871</td>
<td>888.4453</td>
<td>A</td>
<td>1461.2647</td>
<td>721.1770</td>
<td>1444.2201</td>
<td>722.6197</td>
<td>1443.2361</td>
</tr>
<tr>
<td>18</td>
<td>1914.9668</td>
<td>957.9870</td>
<td>1907.9403</td>
<td>949.4738</td>
<td>Q</td>
<td>959.0906</td>
<td>495.0847</td>
<td>949.9818</td>
<td>S</td>
<td>263.1516</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of GALQHAKAFLK
Found in Q8VCN5, Cystathionine gamma-lyase OS=Mus musculus GN=Cth PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(m/z): 1288.6897
Fixed modifications: MGST (C) (apply to specified residues or termini only)
Variable modifications:

Ion Score: 96 Expect: 0.0026
Matches: 14/74 fragment ions using 19 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5180</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>129.0659</td>
<td>65.0366</td>
<td></td>
<td>A</td>
<td>1168.6837</td>
<td>594.3455</td>
<td>1151.6572</td>
<td>576.3322</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>242.1499</td>
<td>121.5786</td>
<td></td>
<td>L</td>
<td>1097.6466</td>
<td>549.3269</td>
<td>1080.6200</td>
<td>540.8137</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>370.2082</td>
<td>185.6079</td>
<td>353.1819</td>
<td>177.0946</td>
<td>Q</td>
<td>984.5625</td>
<td>492.7849</td>
<td>967.5360</td>
<td>584.2715</td>
</tr>
<tr>
<td>5</td>
<td>507.2574</td>
<td>254.1373</td>
<td>490.2409</td>
<td>247.6341</td>
<td>H</td>
<td>856.5040</td>
<td>428.7536</td>
<td>859.4774</td>
<td>420.2423</td>
</tr>
<tr>
<td>6</td>
<td>578.3045</td>
<td>289.6559</td>
<td>561.2780</td>
<td>281.1426</td>
<td>A</td>
<td>719.4450</td>
<td>360.2262</td>
<td>702.4185</td>
<td>351.7129</td>
</tr>
<tr>
<td>7</td>
<td>748.4101</td>
<td>374.7087</td>
<td>731.3835</td>
<td>366.1954</td>
<td>K</td>
<td>649.4079</td>
<td>324.7076</td>
<td>611.3814</td>
<td>316.1943</td>
</tr>
<tr>
<td>8</td>
<td>819.4472</td>
<td>410.2272</td>
<td>802.4206</td>
<td>401.7139</td>
<td>A</td>
<td>478.3024</td>
<td>239.6548</td>
<td>461.2758</td>
<td>231.1416</td>
</tr>
<tr>
<td>9</td>
<td>966.5156</td>
<td>483.7611</td>
<td>949.4890</td>
<td>472.2482</td>
<td>F</td>
<td>407.2653</td>
<td>204.1363</td>
<td>390.2387</td>
<td>195.8230</td>
</tr>
<tr>
<td>10</td>
<td>1079.5996</td>
<td>540.3035</td>
<td>1062.5731</td>
<td>531.7902</td>
<td>L</td>
<td>260.1969</td>
<td>130.6021</td>
<td>243.1703</td>
<td>122.0888</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5468</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TKLLEAAITPQTK

Found in Q8VNC5, Cystathionine gamma-lyase OS=Mus musculus GN=Cth PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.
Or, Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M (calc.): 1669.3214
Fixed modifications: Met (C) (apply to specified residues or termini only)
Variable modifications:
K2 : m/z 1621.5909 (P), with neutral loss 43.0068
Ion Score: 47 Expect: 0.00028
Matches : 8/140 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b0**</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y'</th>
<th>y**</th>
<th>y0</th>
<th>y0**</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0550</td>
<td>51.5211</td>
<td>84.0444</td>
<td>42.5238</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>272.1605</td>
<td>136.8389</td>
<td>255.1339</td>
<td>128.0706</td>
<td>254.1499</td>
<td>127.5786</td>
<td>K</td>
<td>1354.7940</td>
<td>677.9007</td>
<td>1337.7675</td>
<td>669.3874</td>
<td>1336.7835</td>
<td>668.8954</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>385.2445</td>
<td>195.1225</td>
<td>385.8110</td>
<td>184.6126</td>
<td>367.2340</td>
<td>184.1206</td>
<td>L</td>
<td>1148.6825</td>
<td>592.8479</td>
<td>1167.6204</td>
<td>584.3346</td>
<td>1166.6780</td>
<td>533.8426</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>498.3286</td>
<td>249.6679</td>
<td>481.3021</td>
<td>241.1547</td>
<td>470.3180</td>
<td>240.6027</td>
<td>L</td>
<td>1071.6945</td>
<td>536.3059</td>
<td>1054.5779</td>
<td>527.7926</td>
<td>1053.5939</td>
<td>527.3606</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>627.3712</td>
<td>314.1892</td>
<td>610.3447</td>
<td>305.6760</td>
<td>599.3066</td>
<td>305.1840</td>
<td>E</td>
<td>958.5204</td>
<td>479.7638</td>
<td>941.4938</td>
<td>471.2056</td>
<td>940.5088</td>
<td>470.7585</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>769.4424</td>
<td>385.2264</td>
<td>753.4189</td>
<td>376.7131</td>
<td>751.4349</td>
<td>376.2211</td>
<td>A</td>
<td>758.4407</td>
<td>379.7240</td>
<td>741.4141</td>
<td>371.2107</td>
<td>740.4301</td>
<td>370.7187</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>892.5296</td>
<td>441.7684</td>
<td>865.5029</td>
<td>432.2551</td>
<td>864.5189</td>
<td>432.7631</td>
<td>I</td>
<td>687.4026</td>
<td>344.2054</td>
<td>670.3770</td>
<td>335.6921</td>
<td>669.3920</td>
<td>335.0001</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>983.5772</td>
<td>492.2922</td>
<td>966.5506</td>
<td>483.7700</td>
<td>965.5666</td>
<td>483.2869</td>
<td>T</td>
<td>374.2185</td>
<td>237.6634</td>
<td>357.2920</td>
<td>279.1501</td>
<td>356.3689</td>
<td>278.6581</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1089.6299</td>
<td>540.8186</td>
<td>1063.6034</td>
<td>532.3053</td>
<td>1062.6194</td>
<td>531.8133</td>
<td>P</td>
<td>473.2718</td>
<td>237.1396</td>
<td>456.2455</td>
<td>228.6263</td>
<td>455.2613</td>
<td>228.1343</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1108.6893</td>
<td>505.8479</td>
<td>1109.6620</td>
<td>506.3246</td>
<td>1109.6780</td>
<td>505.8426</td>
<td>Q</td>
<td>375.2191</td>
<td>188.6132</td>
<td>359.1925</td>
<td>180.0999</td>
<td>358.2065</td>
<td>179.6079</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1209.7362</td>
<td>655.3717</td>
<td>1202.7096</td>
<td>646.5858</td>
<td>1201.7256</td>
<td>646.3665</td>
<td>T</td>
<td>248.1695</td>
<td>124.5839</td>
<td>231.1339</td>
<td>116.0760</td>
<td>230.1499</td>
<td>115.5786</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>1471.1128</td>
<td>74.0600</td>
<td>130.0663</td>
<td>65.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LVLWDINKR

Found in **Q8YCR2**, 17-beta-hydroxysteroid dehydrogenase 13 OS=Mus musculus GN=Hsd17b13 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 100 to 1200 Da [Full range]

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1241.6788

Fixed modifications: MMIS (C) (apply to specified residues or termini only)

Variable modifications:

- R: mat_C02 (R), with neutral loss 43.0088

Ions Score: 27 **Expect:** 0.011

Matches: 6/68 fragment ions using 11 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b++*</th>
<th>b0</th>
<th>b++0</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y++*</th>
<th>y0</th>
<th>y++0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>L</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>213.3598</td>
<td>107.0835</td>
<td>V</td>
<td>1085.6102</td>
<td>543.3087</td>
<td>1068.5837</td>
<td>534.7955</td>
<td>1067.5996</td>
<td>534.3035</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>326.2438</td>
<td>163.6255</td>
<td>L</td>
<td>986.5418</td>
<td>493.7745</td>
<td>969.5152</td>
<td>485.2613</td>
<td>968.5312</td>
<td>484.7693</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>512.3231</td>
<td>256.6052</td>
<td>W</td>
<td>873.4377</td>
<td>457.2325</td>
<td>856.4312</td>
<td>428.7192</td>
<td>855.4472</td>
<td>428.2272</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>627.3501</td>
<td>314.1787</td>
<td>D</td>
<td>687.3784</td>
<td>344.1928</td>
<td>670.3519</td>
<td>335.6796</td>
<td>669.3678</td>
<td>335.1876</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>740.4341</td>
<td>370.7207</td>
<td>I</td>
<td>572.3515</td>
<td>286.6794</td>
<td>555.3249</td>
<td>278.1661</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>854.7711</td>
<td>427.7422</td>
<td>N</td>
<td>459.2674</td>
<td>230.1373</td>
<td>442.2409</td>
<td>221.6241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1024.5826</td>
<td>512.7949</td>
<td>K</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
<td>164.6026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of QFKTQQYYDILK
Found in Q8WCX8, Acyl-CoA synthetase family member 2, mitochondrial OS=Mus musculus GN=Acsf2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ○ Label matches used for scoring ○

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b'</th>
<th>b**'</th>
<th>b6</th>
<th>b6'</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**'</th>
<th>y'</th>
<th>y6</th>
<th>y6'</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129</td>
<td>65.9366</td>
<td>112.0393</td>
<td>36.3233</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>276</td>
<td>138.3708</td>
<td>259.1077</td>
<td>130.0375</td>
<td>F</td>
<td>1488.7735</td>
<td>744.3903</td>
<td>1471.7468</td>
<td>736.3770</td>
<td>1470.7627</td>
<td>735.3830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>462</td>
<td>223.6235</td>
<td>429.2152</td>
<td>215.1103</td>
<td>K</td>
<td>1341.7049</td>
<td>671.3561</td>
<td>1324.6783</td>
<td>662.8428</td>
<td>1323.6943</td>
<td>662.3508</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>547</td>
<td>274.1474</td>
<td>530.2669</td>
<td>265.6341</td>
<td>529.2769</td>
<td>265.1421</td>
<td>T</td>
<td>1171.5994</td>
<td>586.3033</td>
<td>1154.5728</td>
<td>577.7900</td>
<td>1153.5888</td>
<td>577.2980</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>338.1767</td>
<td>658.3195</td>
<td>329.6614</td>
<td>651.3355</td>
<td>329.1714</td>
<td>Q</td>
<td>1070.3517</td>
<td>735.7795</td>
<td>1053.5251</td>
<td>727.2662</td>
<td>1052.5411</td>
<td>732.7742</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>803</td>
<td>402.2060</td>
<td>788.3781</td>
<td>393.6927</td>
<td>783.3941</td>
<td>393.2007</td>
<td>Q</td>
<td>943.4931</td>
<td>571.7502</td>
<td>925.4666</td>
<td>463.2369</td>
<td>924.4825</td>
<td>462.7449</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>966</td>
<td>483.7576</td>
<td>949.4414</td>
<td>473.2245</td>
<td>948.4574</td>
<td>473.7923</td>
<td>Y</td>
<td>814.4345</td>
<td>407.7209</td>
<td>797.4680</td>
<td>399.2076</td>
<td>796.4240</td>
<td>596.7156</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1129</td>
<td>565.2693</td>
<td>1112.5047</td>
<td>556.7560</td>
<td>1111.5207</td>
<td>556.2649</td>
<td>Y</td>
<td>651.3712</td>
<td>326.1892</td>
<td>634.3447</td>
<td>317.6760</td>
<td>633.3606</td>
<td>517.1840</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1244</td>
<td>622.7826</td>
<td>1227.3317</td>
<td>614.2685</td>
<td>1226.5477</td>
<td>613.7775</td>
<td>D</td>
<td>488.3079</td>
<td>244.6576</td>
<td>471.2613</td>
<td>236.1443</td>
<td>470.2973</td>
<td>235.6523</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.0863</td>
<td>65.5406</td>
<td>130.0863</td>
<td>65.5406</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(calc): 1459.0244
Fixed modifications: MET(Hex) (apply to specified residues or terminus only)
Variable modifications: K3 : Me CO2 (K), with neutral loss 42.0106
Ions Score: 85 Expect: 0.0011
Matches : 9/130 Fragment ions using 12 most intense peaks (help)
VVLITSGGTKVPLEAR

MS/MS Fragmentation of VVLITSGGTKVPLEAR
Found in QV6DG5. Phosphopantothenate--cysteine ligase Os--Mus musculus GN=Ppcos PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from to 1000 Da Full range

Label all possible matches 5 Label matches used for scoring 4

Monoisotopic mass of neutral peptide M(m/z): 1724.6473
Fixed modifications: HEM (C) apply to specified residues or terminal only
Variable modifications:
K66: m/z 0,023 (K), with neutral loss 43.0168
Ions Searched: 50 Expect: 0.0019
Matches: 48/166 fragment ions using 118 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'^</th>
<th>b0</th>
<th>b0'</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>199.1441</td>
<td>100.0757</td>
<td></td>
<td>V</td>
<td>1582.9163</td>
<td>791.9618</td>
<td>1565.8597</td>
<td>783.4483</td>
<td>1364.9057</td>
<td>782.9657</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>232.2282</td>
<td>159.6177</td>
<td>L</td>
<td>1483.8479</td>
<td>742.4276</td>
<td>1466.8213</td>
<td>733.9143</td>
<td>1465.8372</td>
<td>733.4223</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>425.3122</td>
<td>213.1508</td>
<td>I</td>
<td>1370.7638</td>
<td>658.8855</td>
<td>1353.7373</td>
<td>677.3723</td>
<td>1352.7532</td>
<td>676.9803</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>526.3999</td>
<td>263.6836</td>
<td>T</td>
<td>1257.6797</td>
<td>629.3435</td>
<td>1240.6532</td>
<td>620.8302</td>
<td>1239.6692</td>
<td>620.3382</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>613.3819</td>
<td>307.1906</td>
<td>S</td>
<td>1156.6321</td>
<td>578.3187</td>
<td>1139.6023</td>
<td>570.3064</td>
<td>1138.6215</td>
<td>569.8144</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>661.6134</td>
<td>355.7103</td>
<td>G</td>
<td>1069.0000</td>
<td>535.3037</td>
<td>1052.7732</td>
<td>526.7994</td>
<td>1051.5825</td>
<td>526.2894</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>727.6249</td>
<td>396.2211</td>
<td>G</td>
<td>1012.5786</td>
<td>566.7929</td>
<td>999.5520</td>
<td>498.2796</td>
<td>994.5860</td>
<td>497.7876</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>828.4825</td>
<td>414.7449</td>
<td>G</td>
<td>1069.0000</td>
<td>535.3037</td>
<td>1052.7732</td>
<td>526.7994</td>
<td>1051.5825</td>
<td>526.2894</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>988.5881</td>
<td>499.7977</td>
<td>981.5615</td>
<td>491.2844</td>
<td>960.5775</td>
<td>490.7924</td>
<td>K</td>
<td>834.5094</td>
<td>427.7584</td>
<td>837.4829</td>
<td>419.2451</td>
<td>836.4989</td>
<td>418.7531</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>1097.6654</td>
<td>549.3319</td>
<td>1080.6958</td>
<td>540.8188</td>
<td>1079.6549</td>
<td>540.3246</td>
<td>V</td>
<td>684.4039</td>
<td>342.7056</td>
<td>667.3774</td>
<td>334.1923</td>
<td>666.3933</td>
<td>333.7003</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>1194.7935</td>
<td>597.8561</td>
<td>1177.8627</td>
<td>589.8529</td>
<td>1176.8987</td>
<td>586.8530</td>
<td>P</td>
<td>585.9350</td>
<td>293.1714</td>
<td>568.3069</td>
<td>284.6381</td>
<td>567.3249</td>
<td>284.1661</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>1267.7936</td>
<td>654.4003</td>
<td>1249.7666</td>
<td>645.8870</td>
<td>1248.8386</td>
<td>645.3950</td>
<td>L</td>
<td>488.2827</td>
<td>244.6505</td>
<td>471.2562</td>
<td>236.1317</td>
<td>470.7222</td>
<td>235.6397</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1436.8359</td>
<td>718.9216</td>
<td>1419.8954</td>
<td>710.4083</td>
<td>1418.8233</td>
<td>706.9163</td>
<td>E</td>
<td>375.1987</td>
<td>188.1030</td>
<td>358.1712</td>
<td>179.5897</td>
<td>357.1881</td>
<td>178.9777</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1507.8720</td>
<td>754.4401</td>
<td>1490.8465</td>
<td>745.9299</td>
<td>1489.8625</td>
<td>745.4349</td>
<td>A</td>
<td>246.1641</td>
<td>123.5817</td>
<td>229.1295</td>
<td>115.0584</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.2498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of EIQNLIKASAPESGLLSK

Found in Q91V64. Isocitrate lyase domain-containing protein 1 Os=Mus musculus ON=iso1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or: Plot from 300 to 1800 Da
Label all possible matches ○ Label matches used for scoring ■

Phenolcotropic mass of neutral peptide Mr(m/z): 1692.5298
Fixed modifications: METS (C) (apply to specified residues or term only)
Variable modifications:
K : m1, m2, m3 (K), with neutral loss 43.0269
Ions Score: 17 Export: 0.627
Matches: 10/126 fragment ions using 15 most intense peaks (da)

#	b	b'	b''	b'''	w0	w0''	Seq	y	y''	y'''	y*	y''*	y'''*	y0	y0''	y0'''	y0*	y0''*	y0'''*	#
1	1	130.4399	62.5286	112.0393	56.5233	E	1811.0273	906.0173	1794.0007	897.5040	1793.0167	897.0192	18							
2	243.1339	122.0706	225.1224	113.0653	I	353.3192	175.1596	353.3192	175.1596	353.3192	175.1596	18								
3	371.1925	186.0998	354.1600	177.5685	Q	1679.9432	849.4775	1680.9167	849.9620	1679.9237	840.4700	18								
4	485.2354	243.1214	468.2089	234.6081	G	676.9237	343.4618	676.9237	343.4618	676.9237	343.4618	18								
5	596.3195	299.0664	581.2950	291.1501	L	1435.8417	728.4295	1438.8122	729.1912	1437.3112	719.1022	14								
6	711.4036	356.2024	694.3770	347.6221	I	1342.7277	671.3683	1353.7311	665.3692	1324.7741	662.8772	13								
7	881.5010	441.2582	844.4825	432.7449	A	1039.5681	530.2877	1042.5413	521.7744	1041.3577	521.2824	12								
8	952.5462	476.7767	933.5197	468.2633	A	988.3130	494.7691	971.3044	485.2558	970.5204	485.6763	10								
9	1022.5782	520.2928	1012.5517	511.7785	S	1103.6534	553.8118	1093.6388	547.2980	1092.6068	546.8060	9								
10	1093.6388	553.8118	1093.6388	547.2980	1092.6068	546.8060	A	901.0899	451.2331	884.7472	442.7998	838.4884	442.2478	8						
12	1336.7167	668.8590	1319.6842	660.3457	1318.7001	659.8537	E	733.4090	367.2062	716.3825	358.6494	715.3985	358.2029	7						
13	1423.7472	712.3750	1406.7162	709.8167	G	804.3685	392.6869	787.3994	392.1736	786.3599	393.6816	6								
14	1480.7640	740.8857	1463.7377	732.3725	G	517.3344	259.1708	500.3079	250.6576	499.3290	250.1656	5								
15	1593.8485	797.4278	1576.8217	788.9145	L	480.3140	230.6061	443.2884	222.1468	442.3024	221.6548	4								
17	1799.9644	897.4838	1786.9276	888.9725	S	234.1448	117.5761	217.1183	109.6628	216.1345	108.3702	2								
18	K	147.1128	74.0600	140.0083	65.5468	1														
MS/MS Fragmentation of VKAHIMPAEFSSCPLNSDEAVNK

Found in Q8Y7Y6, Rasm. homolog GenBank accession P9m21 TVal

Click mouse within plot area to zoom in by factor of two about that point

Variable modifications:
- K: oxidation (15.204 Da), with neutral loss 32.013

Tandem Mass Spectrometry Data

<table>
<thead>
<tr>
<th>b</th>
<th>y</th>
<th>y’</th>
<th>y’’</th>
<th>y”’</th>
<th>b’’’</th>
<th>Seq.</th>
<th>y</th>
<th>y’</th>
<th>y’’</th>
<th>y”’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106.0757</td>
<td>50.5415</td>
<td>V</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.8942</td>
<td>223.1747</td>
<td>127.0010</td>
<td>K</td>
<td>2476.1305</td>
<td>1233.6589</td>
<td>2450.1049</td>
<td>1235.6589</td>
<td>2450.1200</td>
</tr>
<tr>
<td>3</td>
<td>341.2183</td>
<td>171.1118</td>
<td>324.1913</td>
<td>162.9995</td>
<td>A</td>
<td>2306.0250</td>
<td>1153.5161</td>
<td>2283.9985</td>
<td>1143.5029</td>
<td>2283.9144</td>
</tr>
<tr>
<td>4</td>
<td>471.2772</td>
<td>230.8423</td>
<td>461.3057</td>
<td>231.1290</td>
<td>H</td>
<td>3343.8978</td>
<td>1671.9567</td>
<td>2217.9013</td>
<td>1109.6846</td>
<td>2210.8773</td>
</tr>
<tr>
<td>5</td>
<td>559.3123</td>
<td>290.1843</td>
<td>574.3343</td>
<td>287.0710</td>
<td>I</td>
<td>1297.9290</td>
<td>1049.4083</td>
<td>1006.9204</td>
<td>1040.5454</td>
<td>1079.9184</td>
</tr>
<tr>
<td>6</td>
<td>722.4038</td>
<td>381.7045</td>
<td>705.3752</td>
<td>358.1013</td>
<td>M</td>
<td>2194.8440</td>
<td>992.9291</td>
<td>987.8184</td>
<td>984.4128</td>
<td>1098.5434</td>
</tr>
<tr>
<td>7</td>
<td>819.4546</td>
<td>419.2590</td>
<td>802.4380</td>
<td>401.7170</td>
<td>P</td>
<td>1833.8044</td>
<td>927.4095</td>
<td>1336.7774</td>
<td>916.8920</td>
<td>1335.7919</td>
</tr>
<tr>
<td>8</td>
<td>906.4610</td>
<td>443.3485</td>
<td>878.4385</td>
<td>437.2382</td>
<td>A</td>
<td>1736.7517</td>
<td>878.1892</td>
<td>739.7251</td>
<td>875.6667</td>
<td>738.1741</td>
</tr>
<tr>
<td>9</td>
<td>1018.5349</td>
<td>519.7288</td>
<td>1002.5077</td>
<td>503.7575</td>
<td>E</td>
<td>1965.7145</td>
<td>943.3809</td>
<td>986.6168</td>
<td>934.8410</td>
<td>985.5740</td>
</tr>
<tr>
<td>10</td>
<td>1166.6027</td>
<td>582.9505</td>
<td>1150.5761</td>
<td>571.7541</td>
<td>F</td>
<td>2156.8720</td>
<td>1079.4094</td>
<td>1039.6454</td>
<td>1079.2265</td>
<td>1338.5464</td>
</tr>
<tr>
<td>11</td>
<td>1311.6947</td>
<td>672.3120</td>
<td>1299.6602</td>
<td>661.8077</td>
<td>S</td>
<td>2231.5672</td>
<td>1133.5712</td>
<td>1064.5940</td>
<td>1132.5712</td>
<td>1063.5940</td>
</tr>
<tr>
<td>12</td>
<td>1456.6452</td>
<td>745.4355</td>
<td>1442.6027</td>
<td>736.8232</td>
<td>C</td>
<td>2311.5396</td>
<td>1183.7253</td>
<td>1133.5129</td>
<td>1183.5396</td>
<td>1133.5129</td>
</tr>
<tr>
<td>13</td>
<td>1686.7164</td>
<td>842.8498</td>
<td>1662.6793</td>
<td>831.3906</td>
<td>L</td>
<td>2512.6396</td>
<td>1258.1822</td>
<td>1161.5020</td>
<td>1257.1822</td>
<td>1161.5020</td>
</tr>
<tr>
<td>14</td>
<td>1816.7893</td>
<td>947.8453</td>
<td>1786.7436</td>
<td>936.2923</td>
<td>N</td>
<td>2632.8408</td>
<td>1358.7065</td>
<td>1261.5328</td>
<td>1357.7065</td>
<td>1261.5328</td>
</tr>
<tr>
<td>15</td>
<td>1906.8759</td>
<td>1039.9413</td>
<td>1882.8349</td>
<td>1028.3869</td>
<td>S</td>
<td>2752.9620</td>
<td>1431.6505</td>
<td>1334.4792</td>
<td>1431.6505</td>
<td>1334.4792</td>
</tr>
<tr>
<td>16</td>
<td>2042.9204</td>
<td>1108.4548</td>
<td>1998.8173</td>
<td>1099.4141</td>
<td>D</td>
<td>2903.9908</td>
<td>1531.6390</td>
<td>1434.4678</td>
<td>1531.6390</td>
<td>1434.4678</td>
</tr>
<tr>
<td>17</td>
<td>2144.9400</td>
<td>1172.9714</td>
<td>2127.9384</td>
<td>1164.4623</td>
<td>F</td>
<td>306.3239</td>
<td>160.0566</td>
<td>151.2377</td>
<td>160.0566</td>
<td>151.2377</td>
</tr>
<tr>
<td>18</td>
<td>2215.8081</td>
<td>1208.4947</td>
<td>2198.9535</td>
<td>1190.9489</td>
<td>A</td>
<td>351.2363</td>
<td>184.1343</td>
<td>175.3247</td>
<td>184.1343</td>
<td>175.3247</td>
</tr>
<tr>
<td>20</td>
<td>2429.8938</td>
<td>1311.9069</td>
<td>2313.9899</td>
<td>1286.0451</td>
<td>N</td>
<td>380.2241</td>
<td>200.6157</td>
<td>191.8061</td>
<td>200.6157</td>
<td>191.8061</td>
</tr>
<tr>
<td>21</td>
<td>2510.8676</td>
<td>1385.2318</td>
<td>2410.9704</td>
<td>1370.3193</td>
<td>K</td>
<td>391.1495</td>
<td>212.1495</td>
<td>203.3409</td>
<td>212.1495</td>
<td>203.3409</td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(calc): 2614.8185
Exact mass: 2614.8185
Charge: 1

Matches: 29/572 fragment ions using 55 most intense peaks

Tolerance: 5.0000 ppm
DNPKVVHAFDMEDLGDK
DNPKVVHAFDMEDLGDK

MS/MS Fragmentation of DNPKVVHAFDMEDLGDK
Found in Q91W80, CDGSH iron-sulfur domain-containing protein 1 (O. sativa, Mus musculus, GN=Cld1, PE=1, SV=1)
Click mouse within plot area to zoom in or by factor of two about that point.
Or, Plot from 300 to 1500 Da Full range
Label all possible matches * Label matches used for scoring *

Monoisotopic mass of neutral peptide Mr(calc): 2014.59446
Fixed modifications: MMTS (C) (apply to specified residues or terminal only)
Variable modifications:
RA: m/z 0.02 (K), with neutral loss 44.00686
Ion type: b + y
Matches: 8/155 fragment ions using 51 most intense peaks (100.0M)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>y</th>
<th>y'</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>49.5155</td>
<td>D</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>230.0771</td>
<td>115.5421</td>
<td>213.0658</td>
<td>107.0329</td>
<td>N</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>327.1099</td>
<td>164.0186</td>
<td>310.1041</td>
<td>155.5551</td>
<td>F</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>497.3344</td>
<td>249.1214</td>
<td>480.2089</td>
<td>240.6081</td>
<td>K</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>596.3619</td>
<td>298.1656</td>
<td>579.2773</td>
<td>290.1423</td>
<td>P</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>685.3762</td>
<td>342.1898</td>
<td>678.3457</td>
<td>339.8765</td>
<td>H</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>893.4583</td>
<td>445.2376</td>
<td>886.4471</td>
<td>443.2325</td>
<td>A</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1050.5347</td>
<td>525.7720</td>
<td>1033.5102</td>
<td>517.2857</td>
<td>T</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1165.5636</td>
<td>583.2855</td>
<td>1148.5723</td>
<td>574.7722</td>
<td>D</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1296.6041</td>
<td>648.8057</td>
<td>1279.5774</td>
<td>640.2923</td>
<td>M</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1423.6467</td>
<td>713.3270</td>
<td>1406.6202</td>
<td>704.3127</td>
<td>E</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1540.6737</td>
<td>770.8046</td>
<td>1523.6417</td>
<td>762.3272</td>
<td>D</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1653.7077</td>
<td>827.3835</td>
<td>1636.6713</td>
<td>818.8692</td>
<td>L</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1710.7519</td>
<td>853.8931</td>
<td>1696.7529</td>
<td>847.3830</td>
<td>G</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1823.8061</td>
<td>913.4677</td>
<td>1808.7979</td>
<td>904.8934</td>
<td>K</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.3468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNPKVVHAFDMEDLGDK
MS/MS Fragmentation of DTIKHIGYDDSAK
Found in Q91X83, S-adenosylmethionine synthase isoform type-1, OS=Mus musculus, GN=Mat1a, PE=2, SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1600 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide MW(calc): 1347.7264
Fixed modifications: 555S (C) (apply to specified residues or termini only)
Variable modifications:
K4 : methionine oxidation (M), with neutral loss 41.0107
Ions Score: 51 Expect: 0.0005
Matches : 56/156 fragment ions using 97 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b***</th>
<th>b**</th>
<th>b*</th>
<th>b0</th>
<th>b0**</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1166.0342</td>
<td>58.5207</td>
<td>98.0237</td>
<td>40.5155</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>217.0819</td>
<td>109.0446</td>
<td>199.0713</td>
<td>100.0393</td>
<td>T</td>
<td>1387.7069</td>
<td>695.3541</td>
<td>632.6743</td>
<td>686.8403</td>
<td>1371.6905</td>
<td>686.3485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>330.1600</td>
<td>165.5866</td>
<td>312.1554</td>
<td>156.5813</td>
<td>I</td>
<td>1288.6332</td>
<td>644.3302</td>
<td>636.3170</td>
<td>1270.6426</td>
<td>1270.6426</td>
<td>65.8250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>500.271S</td>
<td>250.6394</td>
<td>483.2449</td>
<td>242.1261</td>
<td>G</td>
<td>1175.5569</td>
<td>588.2822</td>
<td>1158.8426</td>
<td>579.7749</td>
<td>1157.5586</td>
<td>579.2829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>637.3804</td>
<td>318.1688</td>
<td>620.2039</td>
<td>310.1655</td>
<td>F</td>
<td>1095.6459</td>
<td>502.2254</td>
<td>988.4371</td>
<td>494.7222</td>
<td>987.4364</td>
<td>494.2302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>807.4539</td>
<td>404.2216</td>
<td>790.4094</td>
<td>395.7083</td>
<td>G</td>
<td>755.3226</td>
<td>378.1640</td>
<td>739.2941</td>
<td>369.6507</td>
<td>737.3101</td>
<td>369.1587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1083.5362</td>
<td>543.2667</td>
<td>1068.4999</td>
<td>534.7353</td>
<td>D</td>
<td>335.2338</td>
<td>268.1216</td>
<td>318.2093</td>
<td>259.6083</td>
<td>317.2233</td>
<td>259.1163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1287.5852</td>
<td>644.2962</td>
<td>1270.5586</td>
<td>625.7830</td>
<td>H</td>
<td>385.1819</td>
<td>153.0946</td>
<td>288.1534</td>
<td>144.5812</td>
<td>287.1714</td>
<td>144.0893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1388.6223</td>
<td>679.8148</td>
<td>1361.5957</td>
<td>671.3015</td>
<td>A</td>
<td>218.1499</td>
<td>109.5786</td>
<td>201.1234</td>
<td>101.0553</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.6863</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KPIYQKTACYGHFGR

Found in Q91X33, S-adenosylmethionine synthase isoform type-1 OS=Mus musculus GN=Mad1a PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Table: Mass Spectral Data

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y0++</th>
<th>Seq.</th>
<th>y+</th>
<th>y++</th>
<th>y+++</th>
<th>y0</th>
<th>y0++</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.9022</td>
<td>65.6548</td>
<td>65.6548</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>228.1350</td>
<td>115.5116</td>
<td>103.0769</td>
<td>P</td>
<td>1728.7985</td>
<td>864.4029</td>
<td>1711.7719</td>
<td>1710.7879</td>
<td>856.3896</td>
<td>1710.7879</td>
</tr>
<tr>
<td>3</td>
<td>339.2391</td>
<td>170.1232</td>
<td>161.6009</td>
<td>I</td>
<td>1631.7457</td>
<td>816.3765</td>
<td>1614.7192</td>
<td>807.8632</td>
<td>1613.7352</td>
<td>807.7312</td>
</tr>
<tr>
<td>4</td>
<td>402.9042</td>
<td>215.6548</td>
<td>203.1416</td>
<td>Y</td>
<td>1518.8617</td>
<td>759.4345</td>
<td>1501.6311</td>
<td>751.2212</td>
<td>1500.6511</td>
<td>750.8292</td>
</tr>
<tr>
<td>5</td>
<td>639.4810</td>
<td>315.6841</td>
<td>307.1709</td>
<td>Q</td>
<td>1335.5983</td>
<td>678.3028</td>
<td>1335.2711</td>
<td>669.7893</td>
<td>1337.2578</td>
<td>669.2072</td>
</tr>
<tr>
<td>6</td>
<td>699.4665</td>
<td>400.7309</td>
<td>392.2296</td>
<td>K</td>
<td>1227.5398</td>
<td>614.2793</td>
<td>1210.5132</td>
<td>603.7602</td>
<td>1209.5292</td>
<td>605.2682</td>
</tr>
<tr>
<td>7</td>
<td>901.5142</td>
<td>451.2607</td>
<td>884.4766</td>
<td>442.7473</td>
<td>883.3056</td>
<td>442.2554</td>
<td>1057.4542</td>
<td>529.2208</td>
<td>1040.4077</td>
<td>520.7075</td>
</tr>
<tr>
<td>8</td>
<td>972.5513</td>
<td>486.7793</td>
<td>478.2660</td>
<td>954.5407</td>
<td>477.7740</td>
<td>A</td>
<td>956.3066</td>
<td>478.6969</td>
<td>939.3600</td>
<td>470.1836</td>
</tr>
<tr>
<td>9</td>
<td>1121.5482</td>
<td>561.2771</td>
<td>552.7641</td>
<td>1103.5376</td>
<td>552.2725</td>
<td>C</td>
<td>885.3494</td>
<td>443.1784</td>
<td>868.3229</td>
<td>434.6651</td>
</tr>
<tr>
<td>10</td>
<td>1297.5350</td>
<td>642.8094</td>
<td>634.2961</td>
<td>1286.6010</td>
<td>633.3041</td>
<td>Y</td>
<td>926.2525</td>
<td>468.6979</td>
<td>919.2350</td>
<td>460.1666</td>
</tr>
<tr>
<td>11</td>
<td>1341.6230</td>
<td>671.2321</td>
<td>663.8069</td>
<td>1324.6624</td>
<td>662.3149</td>
<td>G</td>
<td>973.2892</td>
<td>427.1482</td>
<td>956.2827</td>
<td>428.6250</td>
</tr>
<tr>
<td>12</td>
<td>1478.6919</td>
<td>759.8496</td>
<td>741.6651</td>
<td>731.3362</td>
<td>730.8483</td>
<td>H</td>
<td>516.2677</td>
<td>259.6375</td>
<td>499.2412</td>
<td>250.1242</td>
</tr>
<tr>
<td>13</td>
<td>1625.7603</td>
<td>815.8383</td>
<td>807.8705</td>
<td>1607.7498</td>
<td>804.3783</td>
<td>F</td>
<td>878.2688</td>
<td>410.1081</td>
<td>862.1823</td>
<td>401.5948</td>
</tr>
<tr>
<td>15</td>
<td>1751.1199</td>
<td>886.0531</td>
<td>878.0924</td>
<td>1664.7712</td>
<td>873.8822</td>
<td>R</td>
<td>175.1199</td>
<td>886.0531</td>
<td>158.0924</td>
<td>78.5489</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **EVLEYNALGGGKYNR**

Found in Q98F5, Farnesyl pyrophosphate synthase Os=Mus musculus GN=Fedps PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point

![Plot of EVLEYNALGGGKYNR fragmentation](image)

Morol toxicopeptide

<table>
<thead>
<tr>
<th>z</th>
<th>b</th>
<th>b'</th>
<th>h</th>
<th>h'</th>
<th>Seq.</th>
<th>y</th>
<th>y'*</th>
<th>y**</th>
<th>y***</th>
<th>y'0</th>
<th>y'0***</th>
<th>y7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>139.0409</td>
<td>65.5268</td>
<td>112.0393</td>
<td>56.5233</td>
<td>E</td>
<td>1538.798</td>
<td>769.9017</td>
<td>1521.7695</td>
<td>761.3884</td>
<td>1520.7856</td>
<td>760.3864</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>229.1163</td>
<td>115.0628</td>
<td>211.0177</td>
<td>106.0275</td>
<td>V</td>
<td>1538.798</td>
<td>769.9017</td>
<td>1521.7695</td>
<td>761.3884</td>
<td>1520.7856</td>
<td>760.3864</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>242.2022</td>
<td>171.8048</td>
<td>224.1918</td>
<td>162.5995</td>
<td>L</td>
<td>1499.72</td>
<td>720.3757</td>
<td>1421.7012</td>
<td>711.8542</td>
<td>1421.7172</td>
<td>711.3622</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>471.2489</td>
<td>236.1261</td>
<td>453.2344</td>
<td>227.1208</td>
<td>F</td>
<td>1326.64</td>
<td>663.8255</td>
<td>1309.6171</td>
<td>655.3122</td>
<td>1308.6331</td>
<td>654.8202</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>634.3083</td>
<td>317.6578</td>
<td>616.2977</td>
<td>308.6525</td>
<td>Y</td>
<td>1187.60</td>
<td>599.3042</td>
<td>1180.5745</td>
<td>590.7909</td>
<td>1180.5745</td>
<td>590.7909</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>748.3512</td>
<td>374.6792</td>
<td>731.3426</td>
<td>366.6660</td>
<td>N</td>
<td>1234.53</td>
<td>657.7725</td>
<td>1231.5112</td>
<td>659.2592</td>
<td>1231.5112</td>
<td>659.2592</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>819.3883</td>
<td>410.1978</td>
<td>802.3618</td>
<td>401.6845</td>
<td>A</td>
<td>920.4948</td>
<td>460.7511</td>
<td>903.4683</td>
<td>452.3278</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>932.4724</td>
<td>466.7598</td>
<td>915.4458</td>
<td>458.2266</td>
<td>L</td>
<td>840.4577</td>
<td>423.3232</td>
<td>832.4312</td>
<td>416.7912</td>
<td>840.4577</td>
<td>423.3232</td>
<td>832.4312</td>
</tr>
<tr>
<td>9</td>
<td>989.4938</td>
<td>495.2506</td>
<td>972.4672</td>
<td>486.7373</td>
<td>G</td>
<td>786.2737</td>
<td>386.8080</td>
<td>719.2471</td>
<td>360.1772</td>
<td>786.2737</td>
<td>386.8080</td>
<td>719.2471</td>
</tr>
<tr>
<td>10</td>
<td>1026.6153</td>
<td>525.7613</td>
<td>1009.5488</td>
<td>515.2480</td>
<td>T</td>
<td>1028.5047</td>
<td>514.7360</td>
<td>1028.5047</td>
<td>514.7360</td>
<td>679.3522</td>
<td>340.1797</td>
<td>602.3257</td>
</tr>
<tr>
<td>11</td>
<td>1216.6208</td>
<td>608.8141</td>
<td>1199.5943</td>
<td>600.3008</td>
<td>K</td>
<td>622.3307</td>
<td>311.6890</td>
<td>602.3257</td>
<td>303.1257</td>
<td>622.3307</td>
<td>311.6890</td>
<td>602.3257</td>
</tr>
<tr>
<td>13</td>
<td>1493.7271</td>
<td>747.3672</td>
<td>1476.7005</td>
<td>738.8539</td>
<td>N</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1533</td>
<td>136.5713</td>
<td>289.1619</td>
<td>145.0846</td>
<td>272.1533</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>S</td>
<td>79.5480</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of NKLQQLPADFGR
Found in Q92Q8, Leucine-rich repeat-containing protein 59 OS=Mus musculus GN=Lrrc59 PE=2 SV=1

Monoisotopic mass of neutral peptide M[calc]: 1471.7419
Fixed modifications: HET8 (C) (apply to specified residues or termini only)
Variable modifications:
K2 : [mal CO2 (K), with neutral loss 43.0408]
Scores:
Match Score: 49 Expect: 0.0014

NKLQQLPADFGR

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b°</th>
<th>b+++</th>
<th>k°</th>
<th>k+++</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y°</th>
<th>y+++</th>
<th>y°°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.0502</td>
<td>58.0287</td>
<td>98.0237</td>
<td>49.5155</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>285.1557</td>
<td>143.0815</td>
<td>268.1202</td>
<td>134.5655</td>
<td>K</td>
<td>1314.7165</td>
<td>657.8619</td>
<td>1297.6099</td>
<td>649.3496</td>
<td>1296.7059</td>
<td>648.2566</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>398.2398</td>
<td>199.6235</td>
<td>281.2132</td>
<td>191.1101</td>
<td>L</td>
<td>1144.6109</td>
<td>572.8991</td>
<td>1127.5844</td>
<td>564.2895</td>
<td>1126.6004</td>
<td>563.8038</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>526.2984</td>
<td>263.6528</td>
<td>309.2728</td>
<td>255.1596</td>
<td>Q</td>
<td>1031.5269</td>
<td>516.2671</td>
<td>1014.5013</td>
<td>507.7583</td>
<td>1013.5163</td>
<td>507.2618</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>654.3570</td>
<td>327.6821</td>
<td>637.3304</td>
<td>519.1688</td>
<td>Q</td>
<td>903.4683</td>
<td>452.2378</td>
<td>886.4417</td>
<td>443.7245</td>
<td>885.4577</td>
<td>443.2523</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>767.4419</td>
<td>384.2241</td>
<td>750.4145</td>
<td>375.7109</td>
<td>L</td>
<td>775.4097</td>
<td>388.2085</td>
<td>758.3832</td>
<td>379.6952</td>
<td>757.3991</td>
<td>379.2032</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>864.4938</td>
<td>422.7509</td>
<td>847.4672</td>
<td>424.2373</td>
<td>P</td>
<td>662.3257</td>
<td>331.6665</td>
<td>645.2901</td>
<td>323.1532</td>
<td>644.3115</td>
<td>322.6612</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>935.5309</td>
<td>468.2691</td>
<td>918.5946</td>
<td>459.758</td>
<td>A</td>
<td>565.2729</td>
<td>283.1401</td>
<td>548.2463</td>
<td>274.8208</td>
<td>547.2623</td>
<td>274.1348</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1050.5579</td>
<td>525.7826</td>
<td>1033.5135</td>
<td>517.2693</td>
<td>D</td>
<td>494.2358</td>
<td>247.6215</td>
<td>477.2092</td>
<td>239.1082</td>
<td>476.2252</td>
<td>238.6162</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1197.6263</td>
<td>599.3168</td>
<td>1180.5997</td>
<td>590.8035</td>
<td>F</td>
<td>379.2088</td>
<td>190.1081</td>
<td>362.1823</td>
<td>181.5948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VAGDCLDEKQCK
Found in Q921Q6, Leucine-rich repeat-containing protein 19 OS=Mus musculus GN=Lrrc39 PE=6 SV=1

Click mouse within plot area to zoom in by factor of two about that point.
Or, Enter start to 1400 Dq Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(calc): 1485.98089
Fixed modifications: M+H (C) (apply to specified residue or termini only)
Variable modifications:
K9 : ma1:C02 (E), with neutral loss 48.0086
Ions Score: 58 Expect: 4e-005
Matches : 12/120 fragment ions using 12 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b''''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y''''</th>
<th>y''''''</th>
<th>y''''''''</th>
<th>y''''''''''</th>
<th>y''''''''''''</th>
<th>y''''''''''''''</th>
<th>y''''''''''''''''</th>
<th>y''''''''''''''''''</th>
<th>y''''''''''''''''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>59.3415</td>
<td>V</td>
<td>A</td>
<td>1346.5098</td>
<td>872.2586</td>
<td>1326.4833</td>
<td>663.7459</td>
<td>1325.4993</td>
<td>662.2533</td>
<td>1255.4462</td>
<td>658.2257</td>
<td>1254.4292</td>
<td>627.7347</td>
<td>1198.4247</td>
<td>599.7160</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>A</td>
<td>E</td>
<td>1106.4243</td>
<td>530.7158</td>
<td>1083.8921</td>
<td>542.2023</td>
<td>1082.4338</td>
<td>541.7105</td>
<td>924.4009</td>
<td>467.7041</td>
<td>923.4169</td>
<td>457.2127</td>
<td>821.3168</td>
<td>411.6520</td>
</tr>
<tr>
<td>3</td>
<td>228.1343</td>
<td>114.5708</td>
<td>G</td>
<td>L</td>
<td>888.3484</td>
<td>419.6755</td>
<td>821.3168</td>
<td>411.6520</td>
<td>802.3328</td>
<td>410.6700</td>
<td>723.3164</td>
<td>362.1618</td>
<td>706.2899</td>
<td>352.6486</td>
<td>705.3058</td>
<td>353.1566</td>
</tr>
<tr>
<td>4</td>
<td>343.1612</td>
<td>172.0842</td>
<td>D</td>
<td>E</td>
<td>474.1476</td>
<td>237.5774</td>
<td>457.2127</td>
<td>224.7074</td>
<td>456.2127</td>
<td>223.7074</td>
<td>387.2536</td>
<td>194.1154</td>
<td>386.2536</td>
<td>194.1154</td>
<td>311.3612</td>
<td>156.1542</td>
</tr>
<tr>
<td>5</td>
<td>492.1581</td>
<td>245.5837</td>
<td>C</td>
<td>K</td>
<td>951.4374</td>
<td>476.2127</td>
<td>924.4009</td>
<td>467.7041</td>
<td>923.4169</td>
<td>457.2127</td>
<td>821.3168</td>
<td>411.6520</td>
<td>802.3328</td>
<td>410.6700</td>
<td>723.3164</td>
<td>362.1618</td>
</tr>
<tr>
<td>8</td>
<td>849.3117</td>
<td>425.1395</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1019.4172</td>
<td>510.2123</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1147.4758</td>
<td>574.2413</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1296.4727</td>
<td>648.7400</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of AAQTSDESEKIHLDKEK
Found in Q60992, Transaldolase O5-Mus musculus ON-Taldo1 PE-1 SV-2

Click mouse within plot area to zoom in by factor of two about that point:

Or, [Zoom in] 200 to 1600 Da [Zoom out]
Label all possible matches [] Label matches used for scoring []

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y**</th>
<th>b**</th>
<th>b0</th>
<th>y0</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y*</th>
<th>y**+</th>
<th>y0</th>
<th>y0**+</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>36.3258</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>72.6441</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1642.7919</td>
<td>821.8996</td>
<td>1625.7633</td>
<td>813.3863</td>
<td>1624.7813</td>
<td>812.8943</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>271</td>
<td>136.6737</td>
<td>254.1135</td>
<td>127.5604</td>
<td></td>
<td>Q</td>
<td>1571.7348</td>
<td>786.3919</td>
<td>1554.7382</td>
<td>777.8474</td>
<td>1553.7342</td>
<td>777.3757</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>372</td>
<td>186.5975</td>
<td>355.1612</td>
<td>178.0642</td>
<td>354.1772</td>
<td>177.5922</td>
<td>T</td>
<td>1443.6912</td>
<td>722.3517</td>
<td>1425.6996</td>
<td>713.5867</td>
<td>1425.6854</td>
<td>713.3962</td>
</tr>
<tr>
<td>5</td>
<td>459</td>
<td>230.1125</td>
<td>442.1392</td>
<td>221.6003</td>
<td>441.2092</td>
<td>221.1083</td>
<td>S</td>
<td>1342.6468</td>
<td>671.8279</td>
<td>1325.5220</td>
<td>663.3146</td>
<td>1324.5237</td>
<td>662.8226</td>
</tr>
<tr>
<td>6</td>
<td>574</td>
<td>287.1270</td>
<td>557.2022</td>
<td>279.1379</td>
<td>556.2362</td>
<td>278.6217</td>
<td>D</td>
<td>1255.6165</td>
<td>628.3119</td>
<td>1238.5099</td>
<td>619.7986</td>
<td>1237.8259</td>
<td>619.3066</td>
</tr>
<tr>
<td>7</td>
<td>661</td>
<td>331.1430</td>
<td>644.2522</td>
<td>322.6297</td>
<td>643.2818</td>
<td>322.1377</td>
<td>S</td>
<td>1148.5895</td>
<td>570.7984</td>
<td>1123.5550</td>
<td>562.2823</td>
<td>1122.7990</td>
<td>561.7981</td>
</tr>
<tr>
<td>8</td>
<td>790</td>
<td>395.6645</td>
<td>773.2948</td>
<td>387.1510</td>
<td>772.3108</td>
<td>386.6590</td>
<td>E</td>
<td>1053.5575</td>
<td>527.2824</td>
<td>1036.5410</td>
<td>518.7691</td>
<td>1035.5469</td>
<td>518.2778</td>
</tr>
<tr>
<td>9</td>
<td>966</td>
<td>461.7171</td>
<td>943.4903</td>
<td>472.2085</td>
<td>942.4165</td>
<td>471.7118</td>
<td>K</td>
<td>924.5149</td>
<td>402.7611</td>
<td>907.4984</td>
<td>454.2478</td>
<td>906.5045</td>
<td>453.7575</td>
</tr>
<tr>
<td>10</td>
<td>1073</td>
<td>531.8991</td>
<td>1056.4844</td>
<td>528.7485</td>
<td>1055.5004</td>
<td>528.2538</td>
<td>I</td>
<td>734.4994</td>
<td>377.7083</td>
<td>737.3828</td>
<td>369.1951</td>
<td>736.3988</td>
<td>368.7903</td>
</tr>
<tr>
<td>11</td>
<td>1216</td>
<td>605.7868</td>
<td>1193.5433</td>
<td>597.2753</td>
<td>1192.5592</td>
<td>596.7635</td>
<td>H</td>
<td>641.3253</td>
<td>321.1663</td>
<td>624.2988</td>
<td>312.6530</td>
<td>623.3148</td>
<td>312.1610</td>
</tr>
<tr>
<td>12</td>
<td>1323</td>
<td>662.3306</td>
<td>1206.6724</td>
<td>653.8173</td>
<td>1205.6434</td>
<td>653.2323</td>
<td>L</td>
<td>504.6644</td>
<td>252.6368</td>
<td>487.2399</td>
<td>244.1266</td>
<td>486.2554</td>
<td>243.6316</td>
</tr>
<tr>
<td>13</td>
<td>1438</td>
<td>680.8809</td>
<td>1421.6543</td>
<td>711.3308</td>
<td>1420.6708</td>
<td>710.8338</td>
<td>D</td>
<td>391.1823</td>
<td>196.0548</td>
<td>374.1558</td>
<td>187.5811</td>
<td>373.1715</td>
<td>187.0923</td>
</tr>
<tr>
<td>14</td>
<td>1567</td>
<td>722.7235</td>
<td>1550.6909</td>
<td>775.8221</td>
<td>1549.7129</td>
<td>773.3601</td>
<td>E</td>
<td>276.1554</td>
<td>138.5813</td>
<td>259.1288</td>
<td>130.0681</td>
<td>258.3148</td>
<td>129.5761</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0060</td>
<td>130.0583</td>
<td>65.5468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VGDLSKPQEEALAK
Found in Q90708, SEC14-like protein 2 OS=Mus musculus GN=Sec14L2 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or. (Plot from) 200 to 1400 Da (Full range)
Label all possible matches ○ Label matches used for scoring ○

VGDLSPKQEEALAK

Monoisotopic mass of neutral peptide Mr(mole): 1566.7888
Fixed modifications: MetO (C) (apply to specified residues or termini only)
Variable modifications:
K' : +15.9949, with neutral loss 41.0558
Ions Score: 31 Expect: 0.013
Matches: 20/102 fragment ions using 36 most intense peaks (hnspx)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y~</th>
<th>ypp</th>
<th>Seq</th>
<th>y</th>
<th>y~</th>
<th>ypp</th>
<th>yppp</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>157.6972</td>
<td>79.0522</td>
<td>G</td>
<td>1427.7377</td>
<td>714.3725</td>
<td>1410.7111</td>
<td>705.8592</td>
<td>1409.7271</td>
<td>705.8372</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>272.1241</td>
<td>136.5857</td>
<td>D</td>
<td>1370.7162</td>
<td>683.8817</td>
<td>1353.8996</td>
<td>677.3483</td>
<td>1352.7036</td>
<td>676.8356</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>385.3063</td>
<td>192.1077</td>
<td>L</td>
<td>1257.6892</td>
<td>620.3433</td>
<td>1238.6627</td>
<td>619.8330</td>
<td>1237.6787</td>
<td>619.3430</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>472.3402</td>
<td>236.6237</td>
<td>S</td>
<td>1142.6052</td>
<td>571.8062</td>
<td>1125.5786</td>
<td>563.2930</td>
<td>1124.5946</td>
<td>562.8090</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>569.2930</td>
<td>285.1501</td>
<td>P</td>
<td>1055.8732</td>
<td>528.2902</td>
<td>1038.5466</td>
<td>519.7769</td>
<td>1037.5626</td>
<td>519.2849</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>739.2886</td>
<td>370.2029</td>
<td>K</td>
<td>958.5204</td>
<td>479.7638</td>
<td>941.4938</td>
<td>471.2506</td>
<td>940.5970</td>
<td>470.7958</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>867.4571</td>
<td>434.2322</td>
<td>Q</td>
<td>786.4149</td>
<td>394.7111</td>
<td>771.3683</td>
<td>386.1978</td>
<td>770.4043</td>
<td>385.7058</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>996.4997</td>
<td>498.7535</td>
<td>E</td>
<td>660.5636</td>
<td>330.6818</td>
<td>643.3297</td>
<td>322.1685</td>
<td>642.3457</td>
<td>321.6765</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1125.5422</td>
<td>563.2748</td>
<td>F</td>
<td>531.3137</td>
<td>266.1605</td>
<td>514.2871</td>
<td>257.6472</td>
<td>513.3031</td>
<td>257.1552</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1196.5784</td>
<td>598.7933</td>
<td>A</td>
<td>402.2711</td>
<td>201.6392</td>
<td>385.2445</td>
<td>193.1259</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1359.6683</td>
<td>655.3333</td>
<td>L</td>
<td>331.2340</td>
<td>166.1206</td>
<td>314.2074</td>
<td>157.6074</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1380.7065</td>
<td>690.8559</td>
<td>A</td>
<td>218.1499</td>
<td>109.5768</td>
<td>201.1234</td>
<td>101.0653</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1478.7498</td>
<td>734.3749</td>
<td>K</td>
<td>141.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.5486</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVLLKHS**P**DQLPVEYG**T**MTDPDGNPK
MS/MS Fragmentation of WIKQYTGVNAISK
Found in Q9HJS9, Actin-related protein 3 OS=Mus musculus GN=Actr3 PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide M(n,m) = 1862.8128
Fixed modifications: MTEF (C) (apply to specified residues or termini only)
Variable modifications:
K : m/z CO2 (M), with neutral loss 48.0890
Ion Score: 24 Expect: 0.017
Matches: 25/129 fragment ions using 97 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>Seq</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.0866</td>
<td>94.0469</td>
<td></td>
<td></td>
<td>W</td>
<td>1365.7580</td>
<td>662.3826</td>
<td>1345.7314</td>
<td>673.8694</td>
</tr>
<tr>
<td>2</td>
<td>396.1707</td>
<td>150.5890</td>
<td>I</td>
<td>1250.8739</td>
<td>623.8406</td>
<td>1233.6474</td>
<td>417.5273</td>
<td>1232.6634</td>
<td>416.8335</td>
</tr>
<tr>
<td>3</td>
<td>470.7762</td>
<td>235.3441</td>
<td>453.2346</td>
<td>227.1285</td>
<td>K</td>
<td>1080.5684</td>
<td>540.7878</td>
<td>1063.5419</td>
<td>532.2746</td>
</tr>
<tr>
<td>4</td>
<td>598.3348</td>
<td>299.6710</td>
<td>581.3082</td>
<td>291.1577</td>
<td>Q</td>
<td>952.5098</td>
<td>476.7658</td>
<td>935.4833</td>
<td>468.2453</td>
</tr>
<tr>
<td>5</td>
<td>761.3981</td>
<td>381.0207</td>
<td>744.3715</td>
<td>372.6894</td>
<td>Y</td>
<td>789.4455</td>
<td>393.2269</td>
<td>772.4199</td>
<td>386.7136</td>
</tr>
<tr>
<td>6</td>
<td>862.4459</td>
<td>431.7265</td>
<td>845.4192</td>
<td>422.7212</td>
<td>T</td>
<td>698.3988</td>
<td>344.7030</td>
<td>671.3732</td>
<td>356.1898</td>
</tr>
<tr>
<td>8</td>
<td>1018.5356</td>
<td>509.7715</td>
<td>1001.5091</td>
<td>501.2582</td>
<td>1000.5251</td>
<td>500.6622</td>
<td>V</td>
<td>582.3089</td>
<td>266.6831</td>
</tr>
<tr>
<td>9</td>
<td>1132.8936</td>
<td>586.7929</td>
<td>1112.5250</td>
<td>558.2790</td>
<td>1114.5680</td>
<td>557.7876</td>
<td>N</td>
<td>418.2650</td>
<td>209.6666</td>
</tr>
<tr>
<td>12</td>
<td>1403.7318</td>
<td>702.3692</td>
<td>1386.7022</td>
<td>693.8583</td>
<td>1385.7212</td>
<td>693.2642</td>
<td>S</td>
<td>147.1128</td>
<td>74.0600</td>
</tr>
</tbody>
</table>

WIKQYTGVNAISK
MS/MS Fragmentation of **IFYTTTPVKK**

Found in Q9KR3. Beta-lactamase-like protein 2 OS=Mus musculus GN=Lactb2 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1400 Da Full range

Label all possible matches Label matches used for scoring

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b*</th>
<th>b**</th>
<th>b0</th>
<th>b0**</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y*</th>
<th>y**</th>
<th>y^0</th>
<th>y^0''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td>I</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>261.1598</td>
<td>131.0835</td>
<td>F</td>
<td>I</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>424.2231</td>
<td>212.6152</td>
<td>Y</td>
<td>870.5450</td>
<td>490.2756</td>
<td>982.5103</td>
<td>481.7633</td>
<td>961.5353</td>
<td>481.2713</td>
<td>961.5353</td>
<td>481.2713</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>525.2708</td>
<td>263.1390</td>
<td>T</td>
<td>816.4925</td>
<td>408.7449</td>
<td>799.4580</td>
<td>400.2316</td>
<td>798.4720</td>
<td>399.7396</td>
<td>798.4720</td>
<td>399.7396</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>626.3184</td>
<td>313.6629</td>
<td>T</td>
<td>715.4314</td>
<td>358.2211</td>
<td>698.4038</td>
<td>349.7078</td>
<td>697.4243</td>
<td>349.2138</td>
<td>697.4243</td>
<td>349.2138</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>727.3661</td>
<td>364.1867</td>
<td>T</td>
<td>614.3872</td>
<td>307.6972</td>
<td>597.3606</td>
<td>299.1840</td>
<td>596.3766</td>
<td>298.6920</td>
<td>596.3766</td>
<td>298.6920</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>824.4189</td>
<td>412.7131</td>
<td>T</td>
<td>515.3395</td>
<td>257.1734</td>
<td>496.3130</td>
<td>248.6601</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>923.4873</td>
<td>462.2473</td>
<td>T</td>
<td>416.2867</td>
<td>208.8470</td>
<td>399.2602</td>
<td>200.1337</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1021.5823</td>
<td>526.2948</td>
<td>1034.5557</td>
<td>517.7815</td>
<td>1033.5717</td>
<td>517.2895</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>189.1234</td>
<td>95.0563</td>
<td>172.0686</td>
<td>86.5520</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic mass of neutral peptide Mr(calc): 1292.6809

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

KLQ : mez_CO2 (K), with neutral loss 49.9090

Ions Score: 27 Expect: 0.012

Matches : 6/78 fragment ions using 11 most intense peaks (help)
VAPMKGQVCVVTGASR

MS/MS Fragmentation of VAPMKGQVCVVTGASR
Found in Q9L04. Dehydrogenase-reductase SDR family member 1
OS=Mus musculus GN=Dhrs1 PE=2 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1900 Da

VAPMKGQVCVVTGASR

Monoisotopic mass of neutral peptide Mr(calc): 1765.3203
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K6 : m1_D2O (K), with neutral loss 42.0686
 Ion Score: 31 Expect: 0.00018
Matches: 21/148 fragment ions using 40 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''''</th>
<th>b''''''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y''''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.077</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1591.7753</td>
<td>763.3913</td>
<td>1574.7488</td>
<td>787.8780</td>
<td>1573.7645</td>
<td>758.3760</td>
</tr>
<tr>
<td>3</td>
<td>268.1536</td>
<td>134.5864</td>
<td></td>
<td></td>
<td>P</td>
<td>1520.7332</td>
<td>760.8727</td>
<td>1503.7117</td>
<td>752.3595</td>
<td>1502.7276</td>
<td>751.8763</td>
</tr>
<tr>
<td>4</td>
<td>399.2061</td>
<td>200.1067</td>
<td></td>
<td></td>
<td>M</td>
<td>3422.6834</td>
<td>712.3464</td>
<td>1495.6589</td>
<td>703.8331</td>
<td>1405.6740</td>
<td>703.3411</td>
</tr>
<tr>
<td>5</td>
<td>569.3116</td>
<td>285.1594</td>
<td>552.2859</td>
<td>276.6482</td>
<td>K</td>
<td>1292.6450</td>
<td>646.8261</td>
<td>1273.8184</td>
<td>638.3128</td>
<td>1274.6344</td>
<td>637.8208</td>
</tr>
<tr>
<td>6</td>
<td>626.3370</td>
<td>313.6702</td>
<td>609.3065</td>
<td>305.1569</td>
<td>G</td>
<td>1172.3394</td>
<td>561.7774</td>
<td>1195.5129</td>
<td>531.2601</td>
<td>1104.5289</td>
<td>552.7681</td>
</tr>
<tr>
<td>7</td>
<td>754.3916</td>
<td>377.6994</td>
<td>737.3651</td>
<td>359.1862</td>
<td>Q</td>
<td>1065.5180</td>
<td>513.2626</td>
<td>1048.4914</td>
<td>524.7493</td>
<td>1047.5074</td>
<td>524.2573</td>
</tr>
<tr>
<td>8</td>
<td>839.4660</td>
<td>427.2337</td>
<td>826.4335</td>
<td>418.7204</td>
<td>Y</td>
<td>927.4584</td>
<td>469.2333</td>
<td>920.4328</td>
<td>450.7201</td>
<td>919.4488</td>
<td>460.2280</td>
</tr>
<tr>
<td>9</td>
<td>1002.4589</td>
<td>501.7532</td>
<td>985.1364</td>
<td>493.2188</td>
<td>C</td>
<td>858.3910</td>
<td>419.6991</td>
<td>821.3944</td>
<td>411.1838</td>
<td>806.3804</td>
<td>410.6938</td>
</tr>
<tr>
<td>10</td>
<td>1101.5284</td>
<td>591.2603</td>
<td>1084.4098</td>
<td>542.7230</td>
<td>V</td>
<td>688.3941</td>
<td>345.2007</td>
<td>672.3573</td>
<td>336.6874</td>
<td>671.3832</td>
<td>338.1024</td>
</tr>
<tr>
<td>11</td>
<td>1200.5938</td>
<td>660.0063</td>
<td>1183.5792</td>
<td>592.2872</td>
<td>V</td>
<td>590.3257</td>
<td>295.9665</td>
<td>573.2991</td>
<td>287.1532</td>
<td>572.3131</td>
<td>286.6612</td>
</tr>
<tr>
<td>13</td>
<td>1358.6629</td>
<td>867.8351</td>
<td>1341.6364</td>
<td>671.3218</td>
<td>I</td>
<td>380.3966</td>
<td>195.6048</td>
<td>373.1810</td>
<td>187.0951</td>
<td>372.1990</td>
<td>186.4603</td>
</tr>
<tr>
<td>14</td>
<td>1412.7060</td>
<td>914.5337</td>
<td>1392.6793</td>
<td>706.8040</td>
<td>A</td>
<td>326.1881</td>
<td>167.0977</td>
<td>316.1851</td>
<td>156.5844</td>
<td>315.1775</td>
<td>156.0924</td>
</tr>
<tr>
<td>15</td>
<td>1516.7321</td>
<td>1024.8679</td>
<td>1499.7053</td>
<td>730.3584</td>
<td>S</td>
<td>262.1510</td>
<td>131.5791</td>
<td>243.1244</td>
<td>123.0659</td>
<td>244.1404</td>
<td>122.5738</td>
</tr>
<tr>
<td>16</td>
<td>R</td>
<td>175.1190</td>
<td>88.0651</td>
<td>158.0924</td>
<td>79.5498</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VAPMKGQVCVVTGASR

VAPMKGQVCVVTGASR
MS/MS Fragmentation of RFEELGVKFVK
Found in Q8CPU0, Lectolyzathiokina lyase OS=Mus musculus GN=Glom PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da [Full range]
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide M (amu): 1636.7664
Fixed modifications: MGST3 (C) (apply to specified residues or termini only)
Variable modifications:
K : +1, +2 (E), with neutral loss 43.0108
Ions Score: 21 Expect: 0.001
Matches: 28/100 fragment ions using 92 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^+</th>
<th>b^{++}</th>
<th>b^{+++}</th>
<th>Seq</th>
<th>y</th>
<th>y^+</th>
<th>y^{++}</th>
<th>y^{+++}</th>
<th>y^0</th>
<th>y^0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157.1084</td>
<td>79.0578</td>
<td>140.0818</td>
<td>70.5446</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>304.1768</td>
<td>152.5926</td>
<td>287.1503</td>
<td>144.0788</td>
<td>F</td>
<td>1237.6827</td>
<td>619.3540</td>
<td>1220.6562</td>
<td>610.8317</td>
<td>1219.6721</td>
<td>610.3397</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>433.2194</td>
<td>217.1123</td>
<td>416.1928</td>
<td>208.6001</td>
<td>208.1081</td>
<td>E</td>
<td>1090.6143</td>
<td>545.8108</td>
<td>1073.5877</td>
<td>537.2975</td>
<td>1072.6037</td>
<td>536.8055</td>
</tr>
<tr>
<td>4</td>
<td>562.2620</td>
<td>281.6346</td>
<td>545.2234</td>
<td>273.1214</td>
<td>272.6293</td>
<td>E</td>
<td>961.5717</td>
<td>481.2895</td>
<td>944.2491</td>
<td>472.7762</td>
<td>943.2811</td>
<td>472.2842</td>
</tr>
<tr>
<td>5</td>
<td>675.3461</td>
<td>338.1767</td>
<td>658.3195</td>
<td>329.6634</td>
<td>657.3353</td>
<td>L</td>
<td>832.5291</td>
<td>416.7682</td>
<td>815.5056</td>
<td>408.2549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>732.2675</td>
<td>366.6874</td>
<td>715.3410</td>
<td>358.1741</td>
<td></td>
<td>G</td>
<td>719.4450</td>
<td>360.2262</td>
<td>702.4185</td>
<td>351.7129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>821.4859</td>
<td>416.2216</td>
<td>814.4094</td>
<td>407.7083</td>
<td></td>
<td>V</td>
<td>662.4236</td>
<td>331.7154</td>
<td>645.3970</td>
<td>323.2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1001.5415</td>
<td>501.2741</td>
<td>984.5149</td>
<td>492.7611</td>
<td></td>
<td>K</td>
<td>563.3352</td>
<td>282.1812</td>
<td>546.3286</td>
<td>273.6679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1148.6059</td>
<td>574.8086</td>
<td>1131.5833</td>
<td>566.2953</td>
<td></td>
<td>F</td>
<td>392.2496</td>
<td>197.1283</td>
<td>376.2331</td>
<td>188.6152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1247.6783</td>
<td>624.3428</td>
<td>1230.6517</td>
<td>615.6295</td>
<td></td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>229.1547</td>
<td>115.0810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.3468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MG/MS Fragmentation of GFGHIGIAVPDVYSACKR

Found in 09CP100, Lactobacillus strains OseMin and Gm1 PE=1 SV=5

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 1500 Da Full range

Label all possible matches ✓ Label matches used for scoring □

Monoisotopic mass of neutral peptide (Mr): 3930.9499

Fixed modifications: MTG (C) (apply to specified residues or terminal only)

Variable modifications:
- M7 : m/z 0.02 (C), with neutral loss 41.0388

Ions Score: 15 **Expect:** 0.15

Matches: 27/144 fragment ions using 44 most intense peaks

<table>
<thead>
<tr>
<th>i</th>
<th>b</th>
<th>b²</th>
<th>b³</th>
<th>b⁴</th>
<th>Seq</th>
<th>y</th>
<th>y²</th>
<th>y³</th>
<th>y⁴</th>
<th>y⁵</th>
<th>y⁶</th>
<th>y⁷</th>
<th>y⁸</th>
<th>y⁹</th>
<th>y¹⁰</th>
<th>y¹¹</th>
<th>y¹²</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0387</td>
<td>29.5180</td>
<td>G</td>
<td></td>
<td></td>
<td>1920.9459</td>
<td>960.0766</td>
<td>1503.9193</td>
<td>952.4633</td>
<td>1902.9535</td>
<td>951.9711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>205.0972</td>
<td>103.0122</td>
<td>F</td>
<td></td>
<td></td>
<td>1773.8775</td>
<td>887.4424</td>
<td>1756.8309</td>
<td>978.8291</td>
<td>1755.8669</td>
<td>978.4371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>262.1186</td>
<td>131.5629</td>
<td>G</td>
<td></td>
<td></td>
<td>1716.8560</td>
<td>858.9510</td>
<td>1699.8295</td>
<td>850.4184</td>
<td>1698.8454</td>
<td>849.9264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>599.1775</td>
<td>299.0924</td>
<td>H</td>
<td></td>
<td></td>
<td>1579.7971</td>
<td>790.4022</td>
<td>1562.7705</td>
<td>781.8889</td>
<td>1561.7865</td>
<td>781.3969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>512.2616</td>
<td>256.6344</td>
<td>I</td>
<td></td>
<td></td>
<td>1466.7130</td>
<td>723.8602</td>
<td>1449.6866</td>
<td>715.4369</td>
<td>1448.7025</td>
<td>714.8549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>569.2831</td>
<td>284.1452</td>
<td>G</td>
<td></td>
<td></td>
<td>1409.6916</td>
<td>705.3494</td>
<td>1392.6650</td>
<td>696.8361</td>
<td>1391.6810</td>
<td>696.3441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>782.3671</td>
<td>391.6872</td>
<td>A</td>
<td></td>
<td></td>
<td>1390.6075</td>
<td>648.8074</td>
<td>1279.6310</td>
<td>640.2941</td>
<td>1278.5909</td>
<td>639.8021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>755.4942</td>
<td>377.2028</td>
<td>V</td>
<td></td>
<td></td>
<td>1225.5704</td>
<td>613.2880</td>
<td>1208.5458</td>
<td>604.7772</td>
<td>1207.5598</td>
<td>604.2836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>582.4572</td>
<td>291.7460</td>
<td>P</td>
<td></td>
<td></td>
<td>1112.5206</td>
<td>563.7540</td>
<td>1109.4754</td>
<td>555.2141</td>
<td>1108.4814</td>
<td>554.7495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>849.5254</td>
<td>424.2683</td>
<td>D</td>
<td></td>
<td></td>
<td>1064.5554</td>
<td>533.7798</td>
<td>1046.5418</td>
<td>523.7744</td>
<td>1043.4947</td>
<td>522.4232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>995.5625</td>
<td>497.8310</td>
<td>Y</td>
<td></td>
<td></td>
<td>1165.6308</td>
<td>582.3140</td>
<td>1147.6102</td>
<td>573.3087</td>
<td>1144.5223</td>
<td>571.7148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1854.6951</td>
<td>927.3475</td>
<td>S</td>
<td></td>
<td></td>
<td>1326.6841</td>
<td>665.8457</td>
<td>1308.6735</td>
<td>654.8404</td>
<td>1306.6016</td>
<td>653.4003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1413.7161</td>
<td>707.3617</td>
<td>A</td>
<td></td>
<td></td>
<td>1413.7161</td>
<td>698.3594</td>
<td>1395.7056</td>
<td>689.3564</td>
<td>1393.6288</td>
<td>688.9193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1484.7552</td>
<td>742.8803</td>
<td>D</td>
<td></td>
<td></td>
<td>1563.7501</td>
<td>817.3787</td>
<td>1545.7396</td>
<td>807.3734</td>
<td>1543.6771</td>
<td>806.9276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1803.8157</td>
<td>902.4315</td>
<td>C</td>
<td></td>
<td></td>
<td>1803.8157</td>
<td>893.9162</td>
<td>1785.8451</td>
<td>893.4262</td>
<td>1783.7653</td>
<td>892.9760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1751.8190</td>
<td>88.0631</td>
<td>R</td>
<td></td>
<td></td>
<td>1751.8190</td>
<td>88.0631</td>
<td>1733.7482</td>
<td>87.6126</td>
<td>1731.6969</td>
<td>87.1623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **FEELGVKFVK**

Found in **Q9CPU0**, Lactoylglutathione lyase OS=Mus musculus GN=Gl01 PE=1 SV=3

Click mouse within plot area to zoom in by factor of two about that point

Plot from 100 to 1300 Da

Label all possible matches □ Label matches used for scoring □

Monoisotopic mass of neutral peptide Mr(calc): 1290.6669

Fixed modifications: MMTS (C) (apply to specified residues or termini only)

Variable modifications:

K7 : mal-COO (K), with neutral loss 43.0090

Ions Score: 25 Expect: 0.002

Matches : 21/20 fragment ions using 72 most intense peaks (hinge)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b+</th>
<th>b+++</th>
<th>b0</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y+</th>
<th>y+++</th>
<th>y0</th>
<th>y+++</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>277.1183</td>
<td>139.0828</td>
<td>259.1077</td>
<td>130.0575</td>
<td></td>
<td>E</td>
<td>1090.6143</td>
<td>545.8108</td>
<td>1073.5877</td>
<td>537.2975</td>
<td>1072.6037</td>
<td>536.8055</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>406.1609</td>
<td>203.5841</td>
<td>388.1503</td>
<td>194.5788</td>
<td></td>
<td>E</td>
<td>961.5717</td>
<td>481.2805</td>
<td>944.5451</td>
<td>472.7762</td>
<td>943.5611</td>
<td>472.2842</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>519.2449</td>
<td>260.1261</td>
<td>501.2344</td>
<td>251.1208</td>
<td></td>
<td>L</td>
<td>832.3291</td>
<td>416.7682</td>
<td>815.5026</td>
<td>408.2549</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>576.2664</td>
<td>288.6368</td>
<td>558.2558</td>
<td>279.6316</td>
<td></td>
<td>G</td>
<td>719.5459</td>
<td>360.2262</td>
<td>702.4185</td>
<td>351.7129</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>675.3348</td>
<td>338.1710</td>
<td>657.3243</td>
<td>329.1658</td>
<td></td>
<td>V</td>
<td>662.4236</td>
<td>331.7154</td>
<td>645.3970</td>
<td>323.2022</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>992.5088</td>
<td>496.7580</td>
<td>975.4822</td>
<td>488.2447</td>
<td>974.4982</td>
<td>487.7527</td>
<td>F</td>
<td>393.2496</td>
<td>197.1285</td>
<td>376.2231</td>
<td>188.6152</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1091.5772</td>
<td>546.2922</td>
<td>1074.5506</td>
<td>537.7790</td>
<td>1073.5666</td>
<td>537.2869</td>
<td>V</td>
<td>246.1812</td>
<td>123.5942</td>
<td>220.1547</td>
<td>115.0810</td>
<td>147.1128</td>
<td>74.0600</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of FAEIIEKNLK

Found in QCPY7, Cytosol aminopeptidase. OS=Mus musculus. GN=Lap3. PE=1. SV=3.

Click mouse within plot area to zoom in by factor of two about that point.

Or, Ret from: 0 to 1200 Da. Full range.

Label all possible matches. Label matches used for scoring.

Monoisotopic mass of neutral peptide Mr(calc): 1289.6887
Fixed modifications: NMTS (C) (apply to specified residues or termini only)
Variable modifications:
K7: m+1 CO2 (K), with neutral loss 43.0107
Charge state: 3+
Ion Score: 83. Expected: 0.0027
Matches: 16/84 fragment ions using 32 most intense peaks.

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.5415</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>219.1128</td>
<td>110.0600</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>1099.6358</td>
<td>550.3215</td>
<td>1082.6092</td>
<td>541.8082</td>
<td>1081.6252</td>
<td>541.3162</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>348.1554</td>
<td>174.5813</td>
<td>330.1448</td>
<td>165.5781</td>
<td>E</td>
<td>1028.5986</td>
<td>514.8030</td>
<td>1011.5721</td>
<td>506.2897</td>
<td>1010.5881</td>
<td>505.7977</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>461.2395</td>
<td>231.1234</td>
<td>443.2289</td>
<td>222.1181</td>
<td>I</td>
<td>899.5560</td>
<td>450.2817</td>
<td>882.3295</td>
<td>441.7684</td>
<td>881.5455</td>
<td>441.2764</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>574.3235</td>
<td>287.6654</td>
<td>556.3130</td>
<td>278.6601</td>
<td>I</td>
<td>786.4729</td>
<td>393.7396</td>
<td>769.4454</td>
<td>385.2264</td>
<td>768.4614</td>
<td>384.7343</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>703.3661</td>
<td>352.1857</td>
<td>685.3556</td>
<td>343.1814</td>
<td>E</td>
<td>673.3879</td>
<td>337.1976</td>
<td>656.3614</td>
<td>328.6843</td>
<td>655.3774</td>
<td>328.1923</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>873.4716</td>
<td>437.2335</td>
<td>856.4451</td>
<td>428.7262</td>
<td>855.4611</td>
<td>428.2342</td>
<td>K</td>
<td>544.3153</td>
<td>272.8763</td>
<td>527.3188</td>
<td>264.1630</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>987.5146</td>
<td>494.2609</td>
<td>970.4880</td>
<td>485.7476</td>
<td>969.5040</td>
<td>485.2556</td>
<td>N</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1100.5686</td>
<td>550.8030</td>
<td>1083.5721</td>
<td>542.2897</td>
<td>1082.5881</td>
<td>541.7977</td>
<td>L</td>
<td>260.1669</td>
<td>130.0863</td>
<td>243.4703</td>
<td>122.0688</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of IAGQVAAANKK
Found in Q9CYX8, 4OS ribosomal protein S19 OS=Mus musculus GN=Rps19 PE=1 SV=3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 150 to 1150 Da Full range
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1166.6249
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K10 : mal-CO2 (K), with neutral loss 62.01528
Ions Score: 52 Expect: 0.00011
Matches : 19/74 fragment ions using 20 most intense peaks

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>b</td>
<td>b''</td>
<td>b''</td>
<td>b''</td>
<td>Seq</td>
<td>y</td>
<td>y''</td>
<td>y''</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td>I</td>
<td>A</td>
<td>960.5582</td>
<td>500.2827</td>
<td>982.5316</td>
</tr>
<tr>
<td>2</td>
<td>185.1285</td>
<td>93.0679</td>
<td></td>
<td>A</td>
<td>G</td>
<td>928.5211</td>
<td>464.7642</td>
<td>911.4945</td>
</tr>
<tr>
<td>3</td>
<td>242.1499</td>
<td>121.5786</td>
<td></td>
<td>Q</td>
<td>871.4996</td>
<td>416.2324</td>
<td>854.4730</td>
<td>427.7402</td>
</tr>
<tr>
<td>4</td>
<td>376.2983</td>
<td>185.6079</td>
<td>335.1819</td>
<td>177.0946</td>
<td>Q</td>
<td>743.4410</td>
<td>372.2351</td>
<td>726.4145</td>
</tr>
<tr>
<td>5</td>
<td>469.2769</td>
<td>235.1421</td>
<td>452.2504</td>
<td>226.62589</td>
<td>V</td>
<td>644.3726</td>
<td>322.8809</td>
<td>627.3461</td>
</tr>
<tr>
<td>6</td>
<td>540.3140</td>
<td>270.6607</td>
<td>523.2875</td>
<td>262.1474</td>
<td>A</td>
<td>573.3595</td>
<td>287.1714</td>
<td>556.3089</td>
</tr>
<tr>
<td>7</td>
<td>611.3511</td>
<td>306.1792</td>
<td>594.3246</td>
<td>297.0659</td>
<td>A</td>
<td>502.2944</td>
<td>251.0528</td>
<td>485.2718</td>
</tr>
<tr>
<td>8</td>
<td>682.3883</td>
<td>341.6978</td>
<td>665.3617</td>
<td>333.1845</td>
<td>A</td>
<td>431.2613</td>
<td>216.1143</td>
<td>414.2347</td>
</tr>
<tr>
<td>9</td>
<td>796.4312</td>
<td>398.7192</td>
<td>779.4046</td>
<td>390.2060</td>
<td>N</td>
<td>317.2183</td>
<td>159.1128</td>
<td>300.1918</td>
</tr>
<tr>
<td>10</td>
<td>866.5367</td>
<td>483.7720</td>
<td>949.5102</td>
<td>475.2587</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0836</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of TQAYPDQKPGTSGLR
Found in Q9D0F9, Phosphoglucomutases-1
OS=Mus musculus GN=Pgm1 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from: 200 to 1700 Da Full range
Label all possible matches Label matches used for scoring

Mannitol enriched mass of neutral peptide Mv(valine): 1702.8115
Fixed modifications: MOW (C) (apply to specified residues or termini only)
Variable modifications: K8 = ma_con (X), with neutral loss 42.0093
Ions Score: 64 Expect: 4e-008
Matches: 46/160 fragment ions using 14 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b**</th>
<th>b***</th>
<th>b****</th>
<th>Seq</th>
<th>y</th>
<th>y**</th>
<th>y***</th>
<th>y****</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0558</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5238</td>
<td>Q</td>
<td>1559.7812</td>
<td>780.3943</td>
<td>1542.7547</td>
<td>771.8810</td>
<td>1514.7707</td>
</tr>
<tr>
<td>2</td>
<td>230.1135</td>
<td>115.5604</td>
<td>213.0870</td>
<td>107.0247</td>
<td>212.1030</td>
<td>106.5551</td>
<td>Q</td>
<td>1431.7227</td>
<td>716.3650</td>
<td>1414.6961</td>
</tr>
<tr>
<td>3</td>
<td>301.1506</td>
<td>151.0790</td>
<td>284.1241</td>
<td>142.5657</td>
<td>283.1401</td>
<td>142.0572</td>
<td>A</td>
<td>1369.6856</td>
<td>689.8164</td>
<td>1343.6390</td>
</tr>
<tr>
<td>4</td>
<td>464.2140</td>
<td>232.6106</td>
<td>447.1874</td>
<td>224.0974</td>
<td>446.2034</td>
<td>223.6053</td>
<td>Y</td>
<td>1197.6222</td>
<td>599.3148</td>
<td>1180.5957</td>
</tr>
<tr>
<td>5</td>
<td>561.2667</td>
<td>280.1170</td>
<td>544.2402</td>
<td>272.6237</td>
<td>543.2562</td>
<td>272.1317</td>
<td>P</td>
<td>1089.3695</td>
<td>550.7884</td>
<td>1083.5429</td>
</tr>
<tr>
<td>6</td>
<td>676.2937</td>
<td>338.6503</td>
<td>659.2671</td>
<td>330.1372</td>
<td>658.2831</td>
<td>329.6452</td>
<td>D</td>
<td>955.5425</td>
<td>495.2749</td>
<td>948.5180</td>
</tr>
<tr>
<td>7</td>
<td>804.3523</td>
<td>402.6798</td>
<td>787.3257</td>
<td>394.1665</td>
<td>785.3417</td>
<td>393.6745</td>
<td>Q</td>
<td>857.4839</td>
<td>429.2456</td>
<td>840.4574</td>
</tr>
<tr>
<td>8</td>
<td>974.4578</td>
<td>487.7325</td>
<td>957.4312</td>
<td>479.2193</td>
<td>956.4472</td>
<td>478.7273</td>
<td>K</td>
<td>687.3784</td>
<td>344.1928</td>
<td>670.1519</td>
</tr>
<tr>
<td>9</td>
<td>1071.5106</td>
<td>536.2589</td>
<td>1054.4840</td>
<td>527.7456</td>
<td>1053.5000</td>
<td>527.2536</td>
<td>P</td>
<td>599.3257</td>
<td>295.6665</td>
<td>592.2991</td>
</tr>
<tr>
<td>10</td>
<td>1128.5320</td>
<td>564.7666</td>
<td>1111.5555</td>
<td>556.2564</td>
<td>1110.5215</td>
<td>555.7641</td>
<td>G</td>
<td>533.3042</td>
<td>267.1537</td>
<td>516.2776</td>
</tr>
<tr>
<td>11</td>
<td>1229.5797</td>
<td>615.2935</td>
<td>1212.5531</td>
<td>606.7802</td>
<td>1211.5691</td>
<td>606.2882</td>
<td>T</td>
<td>432.2565</td>
<td>216.6319</td>
<td>415.2300</td>
</tr>
<tr>
<td>12</td>
<td>1316.6117</td>
<td>658.8065</td>
<td>1299.5852</td>
<td>650.3962</td>
<td>1298.6012</td>
<td>649.8042</td>
<td>S</td>
<td>345.2245</td>
<td>173.1159</td>
<td>328.1979</td>
</tr>
<tr>
<td>13</td>
<td>1375.6332</td>
<td>687.3202</td>
<td>1358.6068</td>
<td>678.8070</td>
<td>1357.6226</td>
<td>678.3149</td>
<td>G</td>
<td>288.2030</td>
<td>144.6051</td>
<td>271.1765</td>
</tr>
<tr>
<td>14</td>
<td>1486.7173</td>
<td>743.8623</td>
<td>1469.6909</td>
<td>735.3490</td>
<td>1468.7067</td>
<td>734.8570</td>
<td>I</td>
<td>175.1190</td>
<td>83.0631</td>
<td>158.0924</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **STHDYW KALVTK**

Found in Q9DR819, Inorganic pyrophosphatase OS=Mus musculus GN=Pppl PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Or, Plot from ___ to ___ Da Full range

Label all possible matches ☐ Label matches used for scoring ☑

Monoisotopic mass of neutral peptide Mr(calc): 1529.7464

**Fixed modifications: **MTB (C) (apply to specified residues or termini only)

**Variable modifications: **

R7 : +57.0215 Da, with neutral loss 43.0269

Ions Score: 21 Expect: 0.041

Matches : 21/110 fragment ions using 60 most intense peaks (base)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+++</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+++</th>
<th>Seq.</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.0393</td>
<td>44.5233</td>
<td>70.0287</td>
<td>33.5180</td>
<td>S</td>
<td>1403.7318</td>
<td>702.3692</td>
<td>1398.7332</td>
<td>693.3563</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>189.0370</td>
<td>95.0471</td>
<td>171.0764</td>
<td>86.0418</td>
<td>T</td>
<td>1302.6841</td>
<td>651.8457</td>
<td>1285.8576</td>
<td>643.3124</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>326.1459</td>
<td>163.5766</td>
<td>308.1233</td>
<td>154.5713</td>
<td>H</td>
<td>1165.6252</td>
<td>583.3162</td>
<td>1148.5986</td>
<td>574.8030</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>441.1728</td>
<td>221.0901</td>
<td>423.1623</td>
<td>212.0848</td>
<td>D</td>
<td>1050.5982</td>
<td>525.8028</td>
<td>1033.5717</td>
<td>517.2895</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>694.2362</td>
<td>347.1217</td>
<td>586.2356</td>
<td>293.6164</td>
<td>Y</td>
<td>887.5349</td>
<td>444.2711</td>
<td>870.5084</td>
<td>435.7578</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>790.3155</td>
<td>395.5614</td>
<td>772.3649</td>
<td>386.6561</td>
<td>W</td>
<td>809.5244</td>
<td>435.2638</td>
<td>809.5244</td>
<td>435.2638</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>960.4210</td>
<td>480.7141</td>
<td>943.3945</td>
<td>472.2009</td>
<td>K</td>
<td>701.4559</td>
<td>351.2314</td>
<td>684.4291</td>
<td>342.7132</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1031.4651</td>
<td>516.2237</td>
<td>1014.4316</td>
<td>507.7194</td>
<td>A</td>
<td>531.3501</td>
<td>266.1787</td>
<td>514.3225</td>
<td>257.6654</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1144.5422</td>
<td>572.7747</td>
<td>1127.5156</td>
<td>564.2615</td>
<td>L</td>
<td>460.3130</td>
<td>230.6601</td>
<td>443.2864</td>
<td>222.1468</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1243.6106</td>
<td>622.3089</td>
<td>1226.5841</td>
<td>613.7957</td>
<td>V</td>
<td>347.2289</td>
<td>174.1181</td>
<td>330.2023</td>
<td>165.6048</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1346.6583</td>
<td>672.8328</td>
<td>1327.8017</td>
<td>664.3195</td>
<td>I</td>
<td>248.1065</td>
<td>124.5393</td>
<td>231.1339</td>
<td>116.0706</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147.1128</td>
<td>74.0600</td>
<td>130.0863</td>
<td>65.2458</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of VPDGKPENEFAFNAEFK
Found in Q9D819, Inorganic pyrophosphate OS=Mus musculus GN=Ppa1 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 2000 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z) : 2222.9142
Fixed modifications: MAS (C) (apply to specified residues or termini only)
Variable modifications:
K8 : m/z 145.099 (N), with neutral loss 44.0505
Ion Score: 26 ExpMass: 0.0001
Matches : 46/176 fragment ions using 110 most intense peaks (base)

<table>
<thead>
<tr>
<th>z</th>
<th>b</th>
<th>b+1</th>
<th>b+2</th>
<th>y0</th>
<th>b0</th>
<th>SW0</th>
<th>y'</th>
<th>y''</th>
<th>y0''</th>
<th>y''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.075</td>
<td>50.5415</td>
<td>V</td>
<td>1881.8654</td>
<td>941.4363</td>
<td>1864.8368</td>
<td>932.9230</td>
<td>1863.8548</td>
<td>932.4310</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>197.1285</td>
<td>99.0679</td>
<td>P</td>
<td>1812.8554</td>
<td>941.4363</td>
<td>1864.8368</td>
<td>932.9230</td>
<td>1863.8548</td>
<td>932.4310</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>312.8554</td>
<td>156.5813</td>
<td>D</td>
<td>1784.8176</td>
<td>892.9099</td>
<td>1767.7861</td>
<td>884.3967</td>
<td>1766.8020</td>
<td>883.9047</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>369.1769</td>
<td>185.0921</td>
<td>G</td>
<td>1669.7857</td>
<td>835.3865</td>
<td>1652.7591</td>
<td>826.6832</td>
<td>1651.7751</td>
<td>826.3912</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>519.2824</td>
<td>270.1414</td>
<td>K</td>
<td>1612.7642</td>
<td>806.6857</td>
<td>1595.7377</td>
<td>798.3725</td>
<td>1594.7536</td>
<td>797.8805</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>618.3352</td>
<td>318.8712</td>
<td>E</td>
<td>1442.6587</td>
<td>721.8330</td>
<td>1425.6321</td>
<td>713.3197</td>
<td>1424.6461</td>
<td>712.8277</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>765.3777</td>
<td>383.1925</td>
<td>E</td>
<td>1345.6059</td>
<td>673.3066</td>
<td>1328.5794</td>
<td>664.7933</td>
<td>1327.5953</td>
<td>664.3013</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>819.4207</td>
<td>440.2140</td>
<td>N</td>
<td>1216.5433</td>
<td>608.7853</td>
<td>1199.5368</td>
<td>600.2720</td>
<td>1198.5527</td>
<td>599.7800</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1008.4633</td>
<td>504.7353</td>
<td>E</td>
<td>1105.5324</td>
<td>551.7638</td>
<td>1088.5098</td>
<td>543.2506</td>
<td>1084.5098</td>
<td>542.7585</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1155.5317</td>
<td>578.2695</td>
<td>F</td>
<td>973.4778</td>
<td>487.2425</td>
<td>956.4512</td>
<td>478.7293</td>
<td>955.4672</td>
<td>478.2373</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1226.5686</td>
<td>633.7890</td>
<td>A</td>
<td>826.6094</td>
<td>413.7083</td>
<td>809.5823</td>
<td>405.1915</td>
<td>808.5894</td>
<td>404.7030</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1373.6372</td>
<td>687.3222</td>
<td>F</td>
<td>755.3723</td>
<td>378.1898</td>
<td>739.3457</td>
<td>369.6765</td>
<td>737.3617</td>
<td>369.1845</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1497.6801</td>
<td>744.3437</td>
<td>N</td>
<td>698.6562</td>
<td>304.6526</td>
<td>681.6293</td>
<td>295.0441</td>
<td>679.6263</td>
<td>294.5509</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1538.7152</td>
<td>779.8623</td>
<td>A</td>
<td>644.2460</td>
<td>247.6341</td>
<td>627.2244</td>
<td>239.1208</td>
<td>626.2204</td>
<td>238.6284</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1687.7569</td>
<td>844.3836</td>
<td>E</td>
<td>423.2228</td>
<td>212.1155</td>
<td>406.1973</td>
<td>208.6023</td>
<td>405.2132</td>
<td>205.1108</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1834.8283</td>
<td>917.9178</td>
<td>K</td>
<td>294.1812</td>
<td>147.5942</td>
<td>277.1547</td>
<td>139.0810</td>
<td>276.1514</td>
<td>138.5888</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of YKVPDGKPENEFAFNAEFK
Found in Q98619. Inorganic pyrophosphatase OS=Mus musculus GN=Ppal PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1800 Da Full range
Label all possible matches Label matches used for scoring

Neoclistropic mass of neutral peptide M(m/e): 2116.0716
Fixed modifications: MET2 (C) (apply to specified residues or termini only)
Variable modifications:
PT Term(D96) (N), with neutral loss 46.015
Ion Source: ES Mass Spec: Q-TOF 1.0.2013
Matches : 28/292 fragment ions using 54 most intense peaks (HPLC)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b^-</th>
<th>b^+</th>
<th>b^##</th>
<th>Seq.</th>
<th>y</th>
<th>y^-</th>
<th>y^+</th>
<th>y^##</th>
<th>y^0</th>
<th>y^##</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>164.0706</td>
<td>82.3399</td>
<td>Y</td>
<td>K</td>
<td>2109.0287</td>
<td>1053.0180</td>
<td>2002.0022</td>
<td>1046.5047</td>
<td>2091.0182</td>
<td>1046.0127</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>591.2340</td>
<td>196.1206</td>
<td>274.0704</td>
<td>187.9704</td>
<td>2216.0716</td>
<td>1053.0180</td>
<td>2002.0022</td>
<td>1046.5047</td>
<td>2091.0182</td>
<td>1046.0127</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>488.2867</td>
<td>244.6470</td>
<td>471.2602</td>
<td>236.1337</td>
<td>1881.8654</td>
<td>941.4363</td>
<td>1854.8388</td>
<td>932.9230</td>
<td>1853.8548</td>
<td>932.4310</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>603.3137</td>
<td>302.1605</td>
<td>586.2871</td>
<td>293.6473</td>
<td>585.3031</td>
<td>293.1552</td>
<td>1784.8126</td>
<td>892.9099</td>
<td>1767.8761</td>
<td>854.3967</td>
<td>1766.8020</td>
<td>883.9047</td>
</tr>
<tr>
<td>7</td>
<td>510.4107</td>
<td>415.7240</td>
<td>513.4141</td>
<td>407.2107</td>
<td>2702.0189</td>
<td>1012.1264</td>
<td>1953.0737</td>
<td>982.4573</td>
<td>1953.9232</td>
<td>981.9652</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>307.4534</td>
<td>246.2304</td>
<td>390.4669</td>
<td>434.7321</td>
<td>909.4320</td>
<td>455.2451</td>
<td>1442.6587</td>
<td>721.8330</td>
<td>1425.6521</td>
<td>713.3197</td>
<td>1424.6481</td>
<td>712.8277</td>
</tr>
<tr>
<td>9</td>
<td>1056.3560</td>
<td>528.7717</td>
<td>1039.0095</td>
<td>520.2384</td>
<td>1038.3225</td>
<td>519.7664</td>
<td>1345.6859</td>
<td>673.3066</td>
<td>1328.7594</td>
<td>664.7031</td>
<td>1327.7593</td>
<td>664.3011</td>
</tr>
<tr>
<td>10</td>
<td>1170.5790</td>
<td>585.7931</td>
<td>1153.5524</td>
<td>577.7398</td>
<td>1152.5984</td>
<td>576.7878</td>
<td>1216.3623</td>
<td>608.7853</td>
<td>1199.5508</td>
<td>600.2720</td>
<td>1198.5557</td>
<td>599.7800</td>
</tr>
<tr>
<td>11</td>
<td>1299.6216</td>
<td>650.3144</td>
<td>1282.5950</td>
<td>641.8011</td>
<td>1281.6110</td>
<td>641.3091</td>
<td>1107.5394</td>
<td>551.7638</td>
<td>1085.4593</td>
<td>543.2506</td>
<td>1084.5098</td>
<td>542.7585</td>
</tr>
<tr>
<td>12</td>
<td>1446.6900</td>
<td>723.8480</td>
<td>1429.7634</td>
<td>715.3533</td>
<td>1428.7684</td>
<td>714.8483</td>
<td>1427.2178</td>
<td>687.4225</td>
<td>1405.4512</td>
<td>678.7293</td>
<td>1405.4672</td>
<td>678.2753</td>
</tr>
<tr>
<td>13</td>
<td>1517.7217</td>
<td>750.3672</td>
<td>1500.7005</td>
<td>750.2539</td>
<td>1499.7165</td>
<td>750.3619</td>
<td>A</td>
<td>826.6494</td>
<td>413.7083</td>
<td>809.3823</td>
<td>405.1951</td>
<td>809.3888</td>
</tr>
<tr>
<td>14</td>
<td>1564.7535</td>
<td>822.9014</td>
<td>1467.7640</td>
<td>824.3841</td>
<td>1466.7340</td>
<td>823.8904</td>
<td>A</td>
<td>757.3723</td>
<td>372.1898</td>
<td>738.3457</td>
<td>369.6765</td>
<td>737.3617</td>
</tr>
<tr>
<td>15</td>
<td>1784.8384</td>
<td>882.9229</td>
<td>1761.8119</td>
<td>881.4066</td>
<td>1760.8279</td>
<td>880.9176</td>
<td>A</td>
<td>968.2859</td>
<td>304.6556</td>
<td>951.2773</td>
<td>306.1423</td>
<td>950.2933</td>
</tr>
<tr>
<td>16</td>
<td>1849.8755</td>
<td>925.4414</td>
<td>1832.8400</td>
<td>916.9281</td>
<td>1831.8150</td>
<td>916.4341</td>
<td>A</td>
<td>492.6069</td>
<td>247.6341</td>
<td>477.2344</td>
<td>239.1208</td>
<td>476.2504</td>
</tr>
<tr>
<td>18</td>
<td>2125.9865</td>
<td>1063.4949</td>
<td>2108.9600</td>
<td>1054.9836</td>
<td>2107.9760</td>
<td>1054.4916</td>
<td>A</td>
<td>259.1182</td>
<td>147.9542</td>
<td>247.5717</td>
<td>139.8010</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>147.1128</td>
<td>74.0600</td>
<td>136.0853</td>
<td>65.5468</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLISVYSEKGESSGK
MS/MS Fragmentation of KNPDSQYGELIEK

Found in Q9DBP5, UMP-CMP kinase OS=Mus musculus GN=Cmpk1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot zoom: 200 to 1500 Da

Monoisotopic mass of neutral peptide Mr(calc): 1665.7822
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
K: csi-Cys (K), with neutral loss 42.0189

Matches: 44/136 fragment ions using 105 most intense peaks (Help)
MS/MS Fragmentation of VVGAQSLKDMVSK
Found in Q9DC00, 6-phosphogluconate dehydrogenase, decarboxylating OS=Mus musculus GN=Pgd PE=2 SV=3

Click mouse within plot area to zoom in by factor of two about that point
Or, Flat from 200 to 1400 Da
Label all possible matches ○ Label matches used for scoring @

Monoisotopic mass of neutral peptide M(calc): 1666.7248
Fixed modifications: MTW8 (C) (apply to specified residues or termini only)
Variable modifications:
K8 : mal-COOH (K), with neutral loss 48.0898

Tons Score: 41 Expect: 0.0006
Matches : 12/124 fragment ions using 22 most intense peaks (99.9999)

#	b	b''	b^a	b''^a	b^b	b''^b	Seq	y	y''	y^a	y''^a	y^b	y''^b	y^c	y''^c	y^d	y''^d	y^e	y''^e	y^f	y''^f	y^g	y''^g		
1	100.0737				V			V																	
2	199.1441	100.0757			V	1304.6879	652.8476	1287.6613	644.3243	1286.6773	642.8422	12													
3	256.1656	128.5846			G	1205.6195	603.3134	1188.3929	594.8001	1187.6089	594.3081	11													
4	327.2027	164.1050			A	1148.5980	574.8026	1131.5714	566.2894	1130.5874	565.7973	10													
5	452.2613	228.1346	438.2347	219.6210	Q	1077.5609	539.2841	1069.5343	530.7708	1059.5303	530.2788	9													
6	542.2933	271.6303	525.2667	263.1370	524.2827	262.6430	S	949.5023	475.2548	932.4757	466.7415	931.4817	466.2495	8											
7	655.3774	328.1923	638.3508	319.6790	637.3688	319.1870	L	862.4703	431.7388	845.4437	423.2225	844.4597	422.7335	7											
8	825.4203	413.2421	808.4563	404.7318	807.4723	404.2398	K	749.3862	375.1967	732.3597	366.8833	731.3756	366.1915	6											
10	1071.5385	536.2788	1054.5238	527.7055	1053.5397	527.2372	M	464.2537	236.6203	447.2272	224.1172	446.2432	223.6232	4											
12	1257.6508	629.5290	1240.6242	620.8157	1239.6402	620.3357	S	234.4148	117.7561	217.1183	109.0628	216.1343	108.5708	2											
13	147.1128	74.0600	139.0863	65.5468	K																				
MS/MS Fragmentation of KVLQEVQR
Found in Q9DD20. Methyltransferase-like protein 7B OS=Mus musculus GN=Mett7b PE=2 SV=2

Click mouse within plot area to zoom in by factor of two about that point

Monoisotopic mass of neutral peptide Mr(calc): 1084.5377
Fixed modifications: MetC(57) (apply to specified residues or termini only)
Variable modifications:
K1: mal-CO2 (K), with neutral loss 43.0098

Matches: 20/70 fragment ions using 52 most intense peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b++</th>
<th>b*</th>
<th>b+**</th>
<th>b0</th>
<th>b+**</th>
<th>Seq.</th>
<th>y</th>
<th>y++</th>
<th>y*</th>
<th>y+**</th>
<th>y0</th>
<th>y+**</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171.1128</td>
<td>86.0600</td>
<td>154.0863</td>
<td>77.5468</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>270.1812</td>
<td>135.5942</td>
<td>253.1547</td>
<td>127.0810</td>
<td>V</td>
<td>871.496</td>
<td>436.2534</td>
<td>854.4730</td>
<td>427.7402</td>
<td>853.4890</td>
<td>427.2482</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>511.3239</td>
<td>256.1656</td>
<td>494.2973</td>
<td>247.6523</td>
<td>Q</td>
<td>659.3471</td>
<td>330.1772</td>
<td>642.3206</td>
<td>321.6639</td>
<td>641.3306</td>
<td>321.1719</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>640.3665</td>
<td>320.6869</td>
<td>623.3399</td>
<td>312.1736</td>
<td>E</td>
<td>531.2885</td>
<td>266.1479</td>
<td>514.2620</td>
<td>257.8346</td>
<td>513.2780</td>
<td>257.1426</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>739.4349</td>
<td>370.2211</td>
<td>722.4083</td>
<td>361.7078</td>
<td>V</td>
<td>402.2459</td>
<td>201.6266</td>
<td>385.2194</td>
<td>193.1133</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>867.4934</td>
<td>434.2504</td>
<td>850.4669</td>
<td>425.7371</td>
<td>Q</td>
<td>308.1775</td>
<td>152.0924</td>
<td>286.1510</td>
<td>143.5791</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5488</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **TQQHYYDKCPK**

Found in Q9ET01, Glycogen phosphorylase, liver form OS=Mus musculus GN=Pygl PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1500 Da Full range.
Label all possible matches ✅ Label matches used for scoring ✅

Monoisotopic mass of neutral peptide Mr(calc): 1241.6479
Fixed modifications: Met(S) (C) (apply to specified residues or termini only)
Variable modifications:
X0: nitrilotriacetic acid (K), with neutral loss 92.0106
Ion Score: 20 Expected: 0.004
Matches : 18/110 fragment ions using 82 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>y</th>
<th>y''</th>
<th>y++</th>
<th>y++</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y++</th>
<th>y++</th>
</tr>
</thead>
</table>
| 1 | 102.0550 | 51.5311 | | 84.0444 | 42.5258 | T | 11
| 2 | 230.1135 | 115.5504 | 213.0870 | 107.0471 | 212.1030 | 106.5531 | Q | 1397.5977 | 699.3023 | 1380.5711 | 690.7892 | 1379.5871 | 690.2972 | 10
| 3 | 358.1721 | 179.5397 | 341.1456 | 171.0764 | 340.1615 | 170.5844 | Q | 1269.5291 | 635.2732 | 1232.5125 | 626.7359 | 1231.5285 | 626.2679 | 9
| 4 | 495.2310 | 248.1151 | 478.2045 | 239.6059 | 477.2205 | 239.1139 | H | 1141.4865 | 571.2459 | 1124.4540 | 562.7206 | 1123.4699 | 562.2386 | 8
| 6 | 821.3577 | 411.1825 | 804.3311 | 402.6692 | 803.3471 | 402.1772 | Y | 841.5853 | 421.1828 | 824.3317 | 412.6693 | 823.3477 | 412.1773 | 6
| 7 | 956.3846 | 468.6960 | 939.3581 | 460.1827 | 918.3741 | 459.6907 | D | 678.2949 | 339.6511 | 661.2684 | 331.1378 | 660.2844 | 330.6458 | 5
| 8 | 1106.4902 | 553.7487 | 1089.4636 | 545.2354 | 1088.4796 | 544.7424 | K | 563.2689 | 282.1376 | 546.2415 | 273.6244 | 4
| 9 | 1225.4871 | 628.2472 | 1208.4602 | 619.7339 | 1207.4762 | 619.2419 | C | 393.1625 | 197.0349 | 376.1239 | 188.2716 | 3
| 10 | 1352.5388 | 676.7735 | 1335.5133 | 668.2603 | 1334.5293 | 667.7683 | P | 244.1656 | 122.5864 | 227.1390 | 114.0731 | 2
| 11 | 1471.1128 | 74.0600 | 1390.0863 | 65.5468 | 1 |
MS/MS Fragmentation of GIVGVENVAELKK
Found in QET01, Glycogen phosphorylase, liver form OS=Mus musculus GN=Pygl PE=1 SV=4

Click mouse within plot area to zoom in by factor of two about that point
On/Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mz (Dal): 1440.7024
Fixed modifications: MBD5 (C) (apply to specified residues or termini only)
Variable modifications:
K12 : N-ace_COOH (E), with neutral loss 44.0005
Ions Search: 29 Peptid: 0.0525
Matches : 28/116 fragment ions using 46 most intense peaks (best)

<table>
<thead>
<tr>
<th>n</th>
<th>b/2</th>
<th>b-1</th>
<th>b+</th>
<th>b-2</th>
<th>b+2</th>
<th>Seq</th>
<th>y+2</th>
<th>y+2+1</th>
<th>y+2+4</th>
<th>y+2+6</th>
<th>y+2+8</th>
<th>y+2+10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.0287</td>
<td>29.5190</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.6060</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>270.1312</td>
<td>135.5941</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>327.2072</td>
<td>164.1035</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>426.2713</td>
<td>213.6392</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>555.3137</td>
<td>292.1603</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>669.3566</td>
<td>335.1819</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>768.4256</td>
<td>384.7162</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>838.4491</td>
<td>420.2247</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>968.5047</td>
<td>484.7560</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1081.5888</td>
<td>541.2980</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1251.6943</td>
<td>626.3508</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIVGVENVAELKK
MS/MS Fragmentation of AVEKAAAHGSKPNVYATR

Found in Q9JLF6. Protein-glutamine gamma-glutamyltransferase K OS=Mus musculus GN=Tgm1 PE=1 SV=2

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 2000 Da. Full range
Label all possible matches. Label matches used for scoring.

Fixed modifications: C (C) (apply to specified residues or termini only)
Variable modifications: K: [mal] C (H) with neutral loss 43.0109

Matches: 17/178 [Sequence ions using 26 most intense peaks]

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>y</th>
<th>y*</th>
<th>y**</th>
<th>y***</th>
<th>Seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72.0444</td>
<td>36.5238</td>
<td>A</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171.1128</td>
<td>86.0600</td>
<td>V</td>
<td>1840.9649</td>
<td>280.9648</td>
<td>912.9799</td>
</tr>
<tr>
<td>3</td>
<td>303.1554</td>
<td>150.5913</td>
<td>E</td>
<td>1741.9931</td>
<td>871.9930</td>
<td>1724.9875</td>
</tr>
<tr>
<td>4</td>
<td>470.2069</td>
<td>253.6411</td>
<td>252.6314</td>
<td>252.628</td>
<td>226.6282</td>
<td>1612.8814</td>
</tr>
<tr>
<td>5</td>
<td>541.2990</td>
<td>271.1527</td>
<td>271.1527</td>
<td>271.1527</td>
<td>271.1527</td>
<td>1442.7494</td>
</tr>
<tr>
<td>6</td>
<td>612.3552</td>
<td>306.6712</td>
<td>296.6712</td>
<td>296.6712</td>
<td>296.6712</td>
<td>1371.7128</td>
</tr>
<tr>
<td>7</td>
<td>683.3723</td>
<td>342.1869</td>
<td>332.1869</td>
<td>332.1869</td>
<td>332.1869</td>
<td>1300.8797</td>
</tr>
<tr>
<td>9</td>
<td>877.4526</td>
<td>439.2300</td>
<td>430.2300</td>
<td>430.2300</td>
<td>430.2300</td>
<td>1062.3796</td>
</tr>
<tr>
<td>10</td>
<td>954.4871</td>
<td>482.7450</td>
<td>474.7450</td>
<td>474.7450</td>
<td>474.7450</td>
<td>903.5532</td>
</tr>
<tr>
<td>11</td>
<td>1059.7516</td>
<td>546.7935</td>
<td>538.2802</td>
<td>537.7882</td>
<td>537.7882</td>
<td>948.3261</td>
</tr>
<tr>
<td>12</td>
<td>1159.6392</td>
<td>593.3198</td>
<td>586.8049</td>
<td>586.8049</td>
<td>586.8049</td>
<td>1171.0218</td>
</tr>
<tr>
<td>13</td>
<td>1303.6753</td>
<td>652.3413</td>
<td>642.8280</td>
<td>642.8280</td>
<td>642.8280</td>
<td>1323.6648</td>
</tr>
<tr>
<td>14</td>
<td>1402.7473</td>
<td>701.8757</td>
<td>693.3622</td>
<td>693.3622</td>
<td>693.3622</td>
<td>1384.7392</td>
</tr>
<tr>
<td>15</td>
<td>1585.8013</td>
<td>783.4072</td>
<td>774.8939</td>
<td>774.8939</td>
<td>774.8939</td>
<td>1547.7965</td>
</tr>
<tr>
<td>16</td>
<td>1656.8442</td>
<td>818.9227</td>
<td>811.4125</td>
<td>811.4125</td>
<td>811.4125</td>
<td>1618.8336</td>
</tr>
<tr>
<td>17</td>
<td>1737.8919</td>
<td>860.4496</td>
<td>852.9365</td>
<td>852.9365</td>
<td>852.9365</td>
<td>1709.8813</td>
</tr>
<tr>
<td>18</td>
<td>R</td>
<td>175.1190</td>
<td>88.0651</td>
<td>158.9824</td>
<td>79.2489</td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of KTQEILSQLPFK
Found in O9OUH0. Ch: Torpedo O:18 Mus musculus GN: Glu PE:1 SV:3
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 200 to 1400 Da Full range
Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(mole): 5518.8127
Fixed modifications: MMTS (C) (apply to specified residues or termini only)
Variable modifications:
KL : m1_f12 (R), with neutral loss 48.0195
Matches : 12/120 fragment ions using 40 most intense peaks (help)

#	b	b''	b'	b++	b++	Seq.	y	y''	y'	y'++	y''	#
1	171.1128	86.0600	154.0863	77.5468	K	1302.7256	652.3665	1286.6991	643.8332	1285.7151	643.8362	
2	272.1605	136.3839	255.1339	128.0706	254.1469	127.3786	T	1302.7256	652.3665	1286.6991	643.8332	1285.7151
3	400.2191	200.6132	383.1925	192.0999	382.2083	191.4079	Q	1302.6780	601.8426	1183.6514	503.3293	1184.6674
4	529.2617	265.1345	512.2351	256.6212	511.2511	255.1282	E	1047.6194	537.8133	1057.5928	529.3001	1056.6085
5	642.3457	321.0676	625.3192	313.1632	624.3332	312.6712	I	945.5768	473.2920	928.2390	464.7788	927.5662
6	755.4298	378.2183	738.4032	369.7053	737.4192	369.2132	L	832.4927	416.7300	815.4662	408.2367	814.4282
7	842.4618	421.7343	825.4353	413.2212	824.4512	412.7203	S	719.4087	360.2080	702.3281	351.6947	701.3981
8	970.5204	485.7618	953.4938	477.2506	952.5098	476.7582	Q	612.3786	316.6920	613.3501	308.1787	613.3501
9	1083.6048	542.3059	1066.5779	533.7926	1055.5939	533.3006	L	504.3150	252.6627	487.2915	244.1494	252.6627
10	1180.6572	590.8222	1163.6307	582.3190	1162.6467	581.8270	P	391.2240	196.1206	374.2074	187.6074	196.1206
11	1327.7256	664.3663	1310.6991	655.8522	1309.7151	655.3612	F	294.1812	147.5942	277.1547	139.0810	147.5942
12	147.1128	74.0600	130.0868	65.5468	F	294.1812	147.5942	277.1547	139.0810	147.5942	277.1547	139.0810
MS/MS Fragmentation of TGKVSAIDFR
Found in Q9QXX4, Calcium-binding mitochondrial carrier protein Aralar2 OS=Mus musculus GN=Slc25a13 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da Full range
Label all possible matches ☐ Label matches used for scoring ☐

Monoisotopic mass of neutral peptide Mw(mono): 1178.6002
Fixed modifications: NMTG (C) [apply to specified residues or termini only]
Variable modifications:
K3: m+1_C02 (R), with neutral loss 43.0030
Ions Score: 62 Expect: 4.5e-008
Matches: 18/100 fragment ions using 20 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b^0</th>
<th>b''^0</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y^0</th>
<th>y''^0</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102.0559</td>
<td>51.5311</td>
<td>84.0444</td>
<td>42.5258</td>
<td>T</td>
<td>K</td>
<td>977.5415</td>
<td>489.2744</td>
<td>960.7149</td>
<td>480.7611</td>
<td>959.5309</td>
<td>480.7611</td>
</tr>
<tr>
<td>2</td>
<td>159.0764</td>
<td>80.0418</td>
<td>141.0559</td>
<td>71.0366</td>
<td>G</td>
<td>K</td>
<td>977.5415</td>
<td>489.2744</td>
<td>960.7149</td>
<td>480.7611</td>
<td>959.5309</td>
<td>480.7611</td>
</tr>
<tr>
<td>3</td>
<td>329.1819</td>
<td>161.0945</td>
<td>312.1354</td>
<td>156.5813</td>
<td>311.1714</td>
<td>156.0893</td>
<td>K</td>
<td>977.5415</td>
<td>489.2744</td>
<td>960.7149</td>
<td>480.7611</td>
<td>959.5309</td>
</tr>
<tr>
<td>5</td>
<td>515.2824</td>
<td>258.1448</td>
<td>498.2558</td>
<td>249.6316</td>
<td>497.2718</td>
<td>249.1396</td>
<td>S</td>
<td>708.3675</td>
<td>354.6874</td>
<td>691.3410</td>
<td>346.1741</td>
<td>690.3570</td>
</tr>
<tr>
<td>6</td>
<td>586.3195</td>
<td>293.6634</td>
<td>569.2930</td>
<td>285.1301</td>
<td>568.3089</td>
<td>284.6581</td>
<td>A</td>
<td>621.3335</td>
<td>311.1714</td>
<td>604.3089</td>
<td>302.6581</td>
<td>603.3249</td>
</tr>
<tr>
<td>8</td>
<td>814.4303</td>
<td>407.7189</td>
<td>797.4040</td>
<td>399.2056</td>
<td>796.4199</td>
<td>398.7136</td>
<td>D</td>
<td>437.2143</td>
<td>219.1108</td>
<td>420.1878</td>
<td>210.5973</td>
<td>419.2037</td>
</tr>
<tr>
<td>9</td>
<td>961.4989</td>
<td>481.2531</td>
<td>944.4724</td>
<td>472.7398</td>
<td>943.4884</td>
<td>472.2478</td>
<td>F</td>
<td>322.1874</td>
<td>161.5973</td>
<td>305.1608</td>
<td>153.0840</td>
<td>306.1608</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>175.1190</td>
<td>88.0631</td>
<td>158.0824</td>
<td>79.2498</td>
<td>153.0840</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of LNLYELKEGR
Found in Q8R1P1. Proteasome subunit beta-type-3 OS=Mus musculus GN=Psb3 PE=1 SV=1
Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from 100 to 1200 Da
Label all possible matches ○ Label matches used for scoring ○

Monoisotopic mass of neutral peptide Mr(calc): 1329.6721
Fixed modifications: iodoacetamide (C) (apply to specified residues or termini only)
Variable modifications:
K7 : mal-CO2 (K), with neutral loss 43.0595
Lons Score: 98 Expect: 0.00072
Matches: 10/94 fragment ions using 31 most intense peaks (help)

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b0</th>
<th>b0''</th>
<th>Seq.</th>
<th>y</th>
<th>y''</th>
<th>y'''</th>
<th>y''''</th>
<th>y0</th>
<th>y''''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.0913</td>
<td>57.5493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1163.6855</td>
<td>582.3064</td>
<td>1146.5790</td>
<td>573.7931</td>
<td>1145.5949</td>
<td>573.3011</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>228.1343</td>
<td>114.5708</td>
<td>211.1077</td>
<td>106.0575</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>341.2165</td>
<td>171.1128</td>
<td>324.1918</td>
<td>162.5953</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>504.2817</td>
<td>252.8415</td>
<td>487.2251</td>
<td>244.1312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>633.3243</td>
<td>317.1635</td>
<td>616.2977</td>
<td>308.6525</td>
<td>615.3137</td>
<td>308.1805</td>
<td>E</td>
<td>773.4152</td>
<td>387.2112</td>
<td>756.3886</td>
<td>378.6980</td>
<td>755.4046</td>
<td>758.2060</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>746.4063</td>
<td>373.7078</td>
<td>729.3818</td>
<td>365.1945</td>
<td>728.3978</td>
<td>364.7025</td>
<td>L</td>
<td>644.3726</td>
<td>322.6899</td>
<td>627.3461</td>
<td>314.1767</td>
<td>626.3620</td>
<td>313.6847</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>916.5138</td>
<td>458.7606</td>
<td>899.4873</td>
<td>450.2473</td>
<td>898.5033</td>
<td>449.7553</td>
<td>K</td>
<td>531.2888</td>
<td>266.1479</td>
<td>514.2620</td>
<td>257.6346</td>
<td>513.2780</td>
<td>257.1426</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1045.5564</td>
<td>523.2819</td>
<td>1028.3299</td>
<td>514.7686</td>
<td>1027.3459</td>
<td>513.2766</td>
<td>F</td>
<td>361.1839</td>
<td>181.0951</td>
<td>344.1555</td>
<td>172.5819</td>
<td>343.1724</td>
<td>172.0899</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MS/MS Fragmentation of **SLQKVTTAAK**

Found in **Q9W688**, Peroxinsomal 2,4-dienoyl-CoA reductase OS=Mus musculus GN=Dec2 PE=1 SV=1

Clic mouse within plot area to zoom in by factor of two about that point

Or, Plot from [] to [900] Da [] Full range

Label all possible matches [] Label matches used for scoring []

Monoisotopic mass of neutral peptide Mr(calc): 1131.6135

Fixed modifications: Met8 (C) (apply to specified residues or termini only)

Variable modifications:

- K4: mal-COOH (K), with neutral loss 42.0000

Ions Score: 22 Exponent: 0.068

Matches: 7/98 fragment ions using 0 most intense peaks [help]

| # | b | b++ | b+ | b+++ | b0 | b00 | Seq. | y | y++ | y+ | y+++ | y0 | y00 |
|---|-----|-----|----|------|-----|-----|------|-----|-----|-----|------|-----|-----|------|
| 1 | 88.0393 | 44.5233 | 70.0287 | 35.5180 | S | 1001.5990 | 501.3031 | 984.5724 | 492.7899 | 982.5384 | 492.2978 |
| 2 | 201.1234 | 101.0653 | 183.1128 | 92.0600 | L | 329.1819 | 165.0946 | 312.1354 | 156.5813 | 311.1714 | 156.0893 |
| 3 | 495.2875 | 250.1474 | 482.2609 | 241.6341 | Q | 760.4563 | 380.7318 | 743.4298 | 372.2185 | 742.4458 | 371.7285 |
| 4 | 598.3559 | 299.6816 | 581.3293 | 291.1683 | V | 596.3508 | 295.6790 | 573.3243 | 287.1658 | 572.3402 | 286.6738 |
| 5 | 699.4036 | 350.2054 | 682.3770 | 341.6921 | T | 491.3282 | 246.1448 | 474.2558 | 237.6316 | 473.2718 | 237.1396 |
| 6 | 780.4512 | 400.7299 | 763.4247 | 392.2160 | T | 390.3347 | 195.6210 | 373.2082 | 187.1077 | 372.2241 | 186.6157 |
| 7 | 871.4884 | 436.2478 | 854.4181 | 427.7345 | A | 289.1870 | 145.0972 | 272.1603 | 156.3839 | 288.2197 |
| 8 | 942.5255 | 471.7664 | 925.4989 | 463.2531 | A | 218.1199 | 109.5786 | 201.1234 | 101.0653 | 218.1199 |
| 9 | 147.1128 | 74.0600 | 120.0863 | 65.5468 | K | 147.1128 | 74.0600 | 120.0863 | 65.5468 | 147.1128 |

Note: The table above shows the fragment ions for the peptide **SLQKVTTAAK**, including b-, b++, b+, b+++ ions, and y-, y++, y+, y+++ ions. The ions are scored based on their mass-to-charge ratio (m/z) and the sequence coverage. The modifications include a fixed modification at Met8 (C) and a variable modification at K4: mal-COOH (K), with a neutral loss of 42.0000 Da.
MS/MS Fragmentation of FKVDLSYPYTISHINK

Found in Q9VW10. Maleylacetoacetate isomerase OS=Mus musculus GN=Gstz1 PE=1 SV=1

Click mouse within plot area to zoom in by factor of two about that point.

Label all possible matches Label matches used for scoring

Monoisotopic mass of neutral peptide Mr(m/z): 1982.0003

Fixed modifications: M(15) C (apply to specified residues or termini only)

Variable modifications:

E2 n-hex-2-ene (E), with neutral loss 44.0095

Ions Scored: 68 **Expect:** 4.8e-005

Matches: 42/164 fragment ions using 92 most intense peaks

<table>
<thead>
<tr>
<th>m</th>
<th>b</th>
<th>b'</th>
<th>b''</th>
<th>b'''</th>
<th>b''''</th>
<th>b#</th>
<th>Seq.</th>
<th>y</th>
<th>y'</th>
<th>y''</th>
<th>y'''</th>
<th>y#</th>
<th>y''''</th>
<th>p</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.0757</td>
<td>74.4151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>318.1812</td>
<td>159.5942</td>
<td>301.1547</td>
<td>151.0610</td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>1753.9483</td>
<td>877.4778</td>
<td>1736.9218</td>
<td>868.9645</td>
<td>1735.9377</td>
<td>868.4725</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>417.3085</td>
<td>209.1285</td>
<td>400.2221</td>
<td>200.6152</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>1583.8438</td>
<td>792.4250</td>
<td>1566.8162</td>
<td>783.9118</td>
<td>1565.8322</td>
<td>783.4197</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>532.3766</td>
<td>266.6419</td>
<td>515.2509</td>
<td>258.1287</td>
<td>514.2690</td>
<td>237.6396</td>
<td>D</td>
<td>1484.7746</td>
<td>742.8098</td>
<td>1467.7478</td>
<td>734.3771</td>
<td>1466.7618</td>
<td>733.8823</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>615.2686</td>
<td>325.1810</td>
<td>608.3341</td>
<td>314.6707</td>
<td>627.3501</td>
<td>314.1879</td>
<td>L</td>
<td>1569.7474</td>
<td>865.3774</td>
<td>1552.7209</td>
<td>861.6841</td>
<td>1551.7369</td>
<td>861.3721</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>732.3937</td>
<td>386.7000</td>
<td>715.3684</td>
<td>358.1687</td>
<td>714.3821</td>
<td>357.8947</td>
<td>S</td>
<td>1256.6634</td>
<td>628.8353</td>
<td>1239.6388</td>
<td>620.3220</td>
<td>1238.6352</td>
<td>619.8308</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>992.5088</td>
<td>496.7300</td>
<td>975.4822</td>
<td>488.2447</td>
<td>974.4982</td>
<td>487.7327</td>
<td>Y</td>
<td>1073.5798</td>
<td>536.7929</td>
<td>1055.5520</td>
<td>528.2796</td>
<td>1054.5880</td>
<td>527.7878</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1089.5615</td>
<td>543.2814</td>
<td>1072.5350</td>
<td>536.7711</td>
<td>1071.5310</td>
<td>536.2791</td>
<td>P</td>
<td>909.4312</td>
<td>453.2613</td>
<td>892.4887</td>
<td>446.7480</td>
<td>891.2047</td>
<td>446.2560</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>1190.6092</td>
<td>595.8062</td>
<td>1173.5827</td>
<td>587.3250</td>
<td>1172.5986</td>
<td>586.8030</td>
<td>T</td>
<td>812.4625</td>
<td>406.7349</td>
<td>795.4399</td>
<td>398.2216</td>
<td>794.4519</td>
<td>397.7896</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1262.6933</td>
<td>652.3503</td>
<td>1246.6667</td>
<td>643.8370</td>
<td>1238.6522</td>
<td>643.3450</td>
<td>I</td>
<td>711.4148</td>
<td>356.2110</td>
<td>694.3882</td>
<td>347.8978</td>
<td>693.4042</td>
<td>347.2018</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1350.7233</td>
<td>695.6603</td>
<td>1337.6987</td>
<td>687.5353</td>
<td>1372.7147</td>
<td>686.8610</td>
<td>S</td>
<td>598.3397</td>
<td>299.6909</td>
<td>581.3042</td>
<td>291.1557</td>
<td>580.3202</td>
<td>290.6637</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>1527.7842</td>
<td>764.9597</td>
<td>1510.7577</td>
<td>755.8825</td>
<td>1509.7736</td>
<td>755.3905</td>
<td>H</td>
<td>511.2867</td>
<td>256.1530</td>
<td>494.2722</td>
<td>247.6397</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1640.8683</td>
<td>820.9378</td>
<td>1623.8417</td>
<td>812.4245</td>
<td>1622.8577</td>
<td>811.9325</td>
<td>I</td>
<td>374.2398</td>
<td>187.6235</td>
<td>357.2132</td>
<td>179.1103</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1754.9112</td>
<td>877.5592</td>
<td>1737.8846</td>
<td>869.4460</td>
<td>1756.9006</td>
<td>868.5540</td>
<td>N</td>
<td>261.1557</td>
<td>131.0815</td>
<td>244.1292</td>
<td>122.5682</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1814.9704</td>
<td>921.0580</td>
<td>1797.9428</td>
<td>913.8297</td>
<td>1796.9293</td>
<td>912.3385</td>
<td>K</td>
<td>147.1128</td>
<td>74.0090</td>
<td>130.0863</td>
<td>65.5468</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>