Supplemental Figure 1

Data set overview

Data set and analysis overview used for the evaluation of pyQms. A-C; Summary of the Bruderer et al. (2015) data set evaluation. D-J; Summary of the pulse chase gold standard data set evaluation (Leufken et al. 2017).

A) Sample and master mix overview. Eight different samples were generated containing an equal background of human proteins from HEK293 cell lysates (0.5 μg/µl). Additionally, three master mixes of non-human proteins were diluted as indicated and spiked into the samples (resulting protein concentrations are indicated, y-axis: log scale). B) Data acquisition and analysis performed by Bruderer et al. (2015). Samples were measured using DDA or DIA measuring mode. Subsequently, data were analyzed with MaxQuant (DDA measurements only, Andromeda used for identification) and Spectronaut (DIA measurements only). pyQms was used for peptide quantification of both DDA and DIA measurements. C) Summary of the peptide ratio evaluation principle using pyQms as quantification engine.

D) The green algae *C. reinhardtii* was grown several generations in medium containing different proportions of 15N (0, 20, 40, 60, 80, 100 %) and E) mixed on equal chlorophyll level. F) Full cell lysates were tryptically digested and subjected to LC-MS/MS analysis. G) LC-MS/MS files were analyzed using Ursgal, employing four different database search engines for peptide identification in unlabeled or fully labeled state (100% 15N). Resulting peptides were quantified using pyQms and further analysed using the analysis framework piqDB. I) Example match for the 0|60 mixture sample displaying the two isotopologues. J) All matches (in each mixture peptide isotopologues from 0 - 100 % in 1 % steps were quantified) were used to determine the mScore dependent false discovery rate of pyQms.

Bars on the sides indicate which parts of the data acquisition and analysis was performed by Bruderer et al. (2015) or within this manuscript (Leufken et al. 2017).
label-free evaluation dataset (Bruderer et al. 2015)

- Background HEK293
- Master mix 1: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
- Master mix 2: 1, 1.1, 1.21, 1.33, 10, 11.01, 12.11, 13.33
- Master mix 3: 200, 125.99, 79.37, 50, 4, 2.62, 1.59, 1

Bruderer et al. 2015, sample preparation, measurement, and data analysis

- DDA
- LC-MS/MS
- DIA
- MaxQuant (Identification: Andromeda)
- Spectronaut

Evaluation of label-free ratios for all peptides between all combinations of samples and technical replicates (each n=276)

pulse (chase) gold standard dataset (Leufken et al. 2017)

- C. reinhardtii
- 0% 15N (99.4%)

Identification
- X!Tandem
- OMMSSA
- MSGF+
- Myrimatch

Quantification
- Scoring of all matches (mScore)
- Calculation of false discovery rate (FDR)
Venn diagram of peptide overlap obtained with the four used peptide database identification engines (OMSSA, red; X! Tandem, yellow; Myrimatch, blue; MS-GF+, purple) in the Python framework Ursgal (Kremer et al. 2016) with a posterior error probability (PEP) <= 1% on database search engine level. 14N and 15N identifications were pooled for each engine. For details on the peptide identification please refer to the methods section.
Venn diagram of peptide overlap between the five partially labeled gold standard data sample sets. 14N and 15N identifications were pooled and the overlap determined using U stigma (Kremer et al. 2016). A posterior error probability (PEP) \leq 1% on database search engine level is assured. 0:100, mixture of 14N and 100% 15N samples; 20:100, mixture of 20% 15N and 100% 15N samples; 40:100, mixture of 40% 15N and 100% 15N samples; 0:60, mixture of 14N and 60% 15N samples; 0:80, mixture of 14N and 80% 15N samples.
Peptide amounts (log2) for spiked-in-protein P02666 (Beta-Casein, *Bos taurus*) from master mix 3 for the DDA dataset using pyQms as quantification engine. Each sign represents the amount for one technical replicate of the indicated sample. X-axis shows the sample number, y-axis the determined log2 peptide amount. A liner regression was performed using Scipy (http://www.scipy.org/), the resulting function and the coefficient of determination is indicated in the figure. The peptide amount can accurately be determined over three orders of magnitude (1024 fold change) with a coefficient of determination of 0.989 in the presence of a complex background (human HEK293 cells).
$y = 1.7426x - 4.2012$

$R^2 = 0.9891$
Peptide amounts (log$_2$) for spiked-in-protein P68082 (Myoglobin, *Equus caballus*) from master mix 3 for the DDA data set from Bruderer et al. (2015) using pyQms as the quantification engine. Each sign represents the amount for one technical replicate of the indicated sample. X-axis shows the sample number, y-axis the determined log$_2$ peptide amount. Linear regressions were performed using Scipy (http://www.scipy.org/), the resulting function and the coefficient of determination are indicated in the figure. The peptide sequence and the charge state (separated with 'l') are shown above each sub plot.
Supplemental Figure 6

Peptide amount correlation of spiked-in-proteins of pyQms vs. MaxQuant

Peptide amount correlation of pyQms against MaxQuant (n=3,673 peptide-charge combinations). Peptide amount correlation of spiked-in-proteins from the Bruderer et al. (2015) DDA data set. The x-axis represents the pyQms peptide log2 intensity and the y-axis the MaxQuant peptide log2 intensity. The heat represent the counts in the intensity bin. Amounts were rounded to 1 decimal place. Single counts in bins are shown in grey squares. The coefficient of determination was determined using the Python Scipy linear regression function (http://www.scipy.org/) on non-log2 transformed amounts and is shown in the upper right corner. Samples were not intensity aligned.
$R^2 = 0.986$
$n = 3673$

The graph shows a scatter plot of pyQms log2 intensity vs. MaxQuant log2 intensity. The data points are tightly clustered along a line, indicating a strong positive correlation. The R^2 value of 0.986 suggests a very strong linear relationship between the two log2 intensities, and the number of samples, $n = 3673$, indicates a substantial dataset for analysis.
Supplemental Figure 7
Peptide amount correlation of background and spiked-in-proteins of pyQms vs. MaxQuant

Peptide amount correlation of pyQms vs. MaxQuant (n=247,228 peptide-charge combinations). Peptide amount correlation of human background proteins (HEK293 cells) from the DDA dataset of Bruderer et al. (2015). Shown are the log2 peptide amounts, x-axis represents pyQms amounts and y-axis MaxQuant amounts. The heat represents the counts in the intensity bin. Counts ≤ 0.1% of the maximum count are shown in grey. R^2 was determined using the Python Scipy linear regression function (http://www.scipy.org/) on non-log2 transformed amounts and is shown in the upper right corner. Samples were not intensity aligned.
\(R^2 = 0.983 \)
\(n = 247228 \)
Supplemental Figure 8

Ratio evaluation summary on protein level

Stacked bar plot for relative occurrences of the p-values of all 12 single spiked-in-proteins for each protein separate of the data set from Bruderer et al. (2015). Calculated p-values for peptide ratios on protein level were counted for DDA and DIA mode separately and for amounts determined by pyQms (for DDA and DIA) as well as MaxQuant (bruderer_dda, DDA) and Spectronaut (bruderer_hrm, DIA). Counts are displayed relatively to the maximum count of possible peptides ratios. Legend: x-axis, combination of master mix, protein, quantification software and data acquisition mode (grouped according to master mix group); y-axis, relative occurrence of p-value bin. t-test p-value legend, blue: not significant different, green: p-value <= 0.05, yellow: p-value <= 0.01, red: p-value <= 0.001.
Supplemental Figure 9
Visual label-free ratio evaluation

Heat maps of label-free ratio evaluation (t-test p-value) of 12 spiked-in-proteins (A-L) of the data set from Bruderer et al. (2015). Results from pyQms are compared against MaxQuant and Spectronaut. Numbers in the bins show the number of peptide charge combination ratios (DDA) or peptide ratios (DIA) used for the t-test. Each bin reflects a p-value calculated for peptide ratios between the indicated sample and technical replicate (total 24) on the x and y-axis. blue: not significant different, green: p-value <= 0.05, yellow: p-value <= 0.01, red: p-value <= 0.001. Histograms on the top and right indicate the relative spiked-in amount for the samples; x-axes, sample; y-axes, relative spiked-in protein concentration.
Proteins A-L panel 1: The upper half shows the t-test ratio evaluation results for the DDA data using pyQms for quantification. The lower half shows the t-test ratio evaluation results for the DIA data using pyQms for quantification.
Proteins A-L panel 2: The upper half shows the t-test ratio evaluation results for the DDA data using pyQms for quantification. The lower half shows the t-test ratio evaluation results for the DDA data using MaxQuant for quantification (using results from Bruderer et al. 2015).
Proteins A-L panel 3: The upper half shows the t-test ratio evaluation results for the DIA data using pyQms for quantification. The lower half shows the t-test ratio evaluation results for the DIA data using Spectronaut for quantification (using results from Bruderer et al. 2015).
Ratio evaluation heat maps for protein P00366 (Glutamate dehydrogenase) from master mix 1.
Ratio evaluation heat maps for protein P00921 (Carbonic anhydrase) from master mix 1.
Ratio evaluation heat maps for protein P80025 (Lactoperoxidase) from master mix 1.
Ratio evaluation heat maps for protein P02754 (Beta-lactoglobulin) from master mix 1.
Ratio evaluation heat maps for protein P02662 (Alpha-S1-casein) from master mix 1.
Ratio evaluation heat maps for protein P02672 (Fibrinogen alpha chain) from master mix 2.
Ratio evaluation heat maps for protein P02676 (Fibrinogen beta chain) from master mix 2.
Ratio evaluation heat maps for protein P12799 (Fibrinogen gamma-B chain) from master mix 2.
Ratio evaluation heat maps for protein P61823 (Ribonuclease pancreatic) from master mix 2.
Ratio evaluation heat maps for protein P02789 (Ovotransferrin) from master mix 2.
Ratio evaluation heat maps for protein P68082 (Myoglobin) from master mix 3.
Ratio evaluation heat maps for protein P02666 (Beta-casein) from master mix 3.
Stacked bar plot for relative occurrences of the p-values (binned) of all 12 spiked-in-proteins on master mix level. Calculated p-values for peptide ratios on protein level were counted and binned for DDA and DIA mode separately and for amount determined by pyQms (for DDA and DIA) as well as MaxQuant (bruderer_dda, DDA) and Spectronaut (bruderer_hrm, DIA). Counts are displayed relatively to the maximum count of possible ratios (numbers on bars). Legend: x-axis, combination of master mix, quantification engine and data acquisition mode (grouped according to master mix); y-axis, relative occurrence of p-value (binned); t-test p-value legend, blue: not significant different, green: p-value <= 0.05, yellow: p-value <= 0.01, red: p-value <= 0.001.
The quantification engines MaxQuant, Spectronaut and pyQms were compared. The absolute deviation of log2 peptide ratios from the ground truth was assessed for all spiked-in proteins in the data set of Bruderer et al. (2015). The observed label-free log2 peptide ratios between all sample combinations were calculated. The deviations between the observed and expected (ground truth) ratios (log2) was calculated and are displayed as density plots and as box plots in the inset. Density plot: x-axis, absolute deviation of log2 peptide ratios from log2 ground truth ratio; y-axis, density. Box plot: x-axis, quantification engine and data acquisition mode combination, y-axis, absolute deviation of log2 peptide ratios from log2 ground truth ratio. The legend shows the total number of peptide ratios compared (n) and the x-position of the maximum density (max@). MaxQuant: red, n=17520; Spectronaut: light green, n=48145; pyQms (DDA): green, n=24511; pyQms (DIA): blue, n=23741. * Please note, that for the pyQms DIA ratio evaluation a simple, preliminary algorithm was used to select the fragment ions used for quantification. A fair comparison to Spectronaut would be only possible, if all ions selected for quantification by Spectronaut would have been available.
Supplemental Figure 12

Visual partially labeled gold standard data set evaluation

A, C, E, and G; heat map showing the matched labelling percentiles combined for each 7 LC-MS/MS runs. Whole cell samples were mixed on equal chlorophyll level and measured via LC-MS/MS. All identified peptides (19,976 peptide sequences, PEP <= 0.01) from all samples were quantified in all LC-MS/MS runs in 5 charge states and labelling percentiles ranging from 0 to 99 % in 1% steps. Heat maps correspond to Fig. 3D.

B, D, F and H; same as heat maps A, C, E and G but only quantifications are considered which appear in stringent determined retention time windows after retention time alignment. Heat maps correspond to Figure 3G.

A and B, 0 and 100% mixture; C and D, 0 and 80% mixture; E and F, 20 and 100% mixture; G and H, 40 and 100% mixture. The x-axes of the heat maps represents the labelling percentile bin (0 - 100%; 0-1), y-axes represents the mScore of the matches (0.5 - 1). The heat represents the summed up intensities of all peptide matches in all MS1 spectra in the respective labelling percentile – mScore bin. Histograms at axes indicate the total count in the respective column or row. Legend bars at the bottom indicate the color to total intensity relation ranging from blue (minimum intensity) to red/yellow (medium intensity) to white (maximum intensity). The intensity thresholds for the heat bins is indicated.
Heats maps for the 0 and 100% mixture of pulse chase gold standard data set. A, all peptides were quantified in all spectra. B, only quantifications of peptides were allowed for spectra which appeared in stringent determined peptide specific retention time windows.
Heats maps for the 0 and 80% mixture of pulse chase gold standard data set. C, all peptides were quantified in all spectra. D, only quantifications of peptides were allowed for spectra which appeared in stringent determined peptide specific retention time windows.
Heats maps for the 20 and 100% mixture of pulse chase gold standard data set. E, all peptides were quantified in all spectra. F, only quantifications of peptides were allowed for spectra which appeared in stringent determined peptide specific retention time windows.
Heats maps for the 40 and 100% mixture of pulse chase gold standard data set. G, all peptides were quantified in all spectra. H, only quantifications of peptides were allowed for spectra which appeared in stringent determined peptide specific retention time windows.
Retention-time window length distribution density plot. Shown is the frequency of the length of the retention-time windows in minutes for 19,976 peptides before (green) and after the alignment (red). Retention time windows are defined by the difference between the latest and the earliest identification (PEP <= 0.01) over all LC-MS/MS runs. Each RT window was extended by 1 min in both directions. RT windows were determined using piqDB as described earlier (Hoehner et al. 2012, Barth et al. 2014)
The image shows a graph with the x-axis labeled "RT window length [min]" and the y-axis labeled "Density." The graph compares aligned and unaligned data, with aligned data (red) peaking at 2.013 minutes and unaligned data (green) peaking at 2.092 minutes. Both datasets have 19976 samples.
Supplemental Figure 14

Overlapping isotopologue examples.

Overlapping isotopologue examples of 0, 20, 40, 60, 80 and 100% enrichment of 99.4% enriched 15N. The theoretical isotopologues of an example peptide are shown to illustrate the overlapping isotopic peaks at various positions of each isotopologue pattern. X-axis represents the m/z dimension, y-axis the relative intensity dimension. Isotopologues were colour coded to highlight the overlapping peaks: 0% cyan; 20% orange, 40% purple, 60% green, 80% light blue, 100% dark blue.
Isotopologues were color coded to highlight the overlapping peaks: 0% cyan; 20% orange, 40% purple, 60% green, 80% light blue, 100% dark blue.
Supplemental Figure 15
mScore dependent quantification accuracy - spiked-in proteins

The mScore dependent accuracy of pyQms. The absolute deviation of log2 peptide ratios from the ground truth was assessed for all 12 spiked-in proteins in the data set of Bruderer et al. (2015). The observed label-free log2 peptide ratio between all sample combinations was calculated. The deviation between the observed ratio and expected (ground truth) ratio (log2) was calculated and are displayed as density plot and box plots in the inset on the right. The mScore is defined as the average from both samples compared. The ratios were binned according to this average mScore. Density plot: x-axis, absolute deviation of log2 peptide ratios from log2 ground truth ratio; y-axis, density. Box plot: x-axis, mScore bin; y-axis, absolute deviation of log2 peptide ratios from log2 ground truth ratio. The legend shows the total number of peptide ratios compared (n) and the x-position of the maximum density (‘max@’).