Advertisement

Next-generation Interactomics: Considerations for the Use of Co-elution to Measure Protein Interaction Networks*

  • Daniela Salas
    Affiliations
    Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada

    Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
    Search for articles by this author
  • R. Greg Stacey
    Affiliations
    Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Mopelola Akinlaja
    Affiliations
    Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Leonard J. Foster
    Correspondence
    To whom correspondence should be addressed.
    Affiliations
    Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Author Footnotes
    * This work is supported by funding to L.J.F. from NSERC, Genome Canada and Genome British Columbia (project 214PRO). The authors declare that they have no conflicts of interest with the contents of this article.
Open AccessPublished:December 02, 2019DOI:https://doi.org/10.1074/mcp.R119.001803
      Understanding how proteins interact is crucial to understanding cellular processes. Among the available interactome mapping methods, co-elution stands out as a method that is simultaneous in nature and capable of identifying interactions between all the proteins detected in a sample. The general workflow in co-elution methods involves the mild extraction of protein complexes and their separation into several fractions, across which proteins bound together in the same complex will show similar co-elution profiles when analyzed appropriately. In this review we discuss the different separation, quantification and bioinformatic strategies used in co-elution studies, and the important considerations in designing these studies. The benefits of co-elution versus other methods makes it a valuable starting point when asking questions that involve the perturbation of the interactome.

      Graphical Abstract

      Cellular functions and responses are coordinated by proteins working in concert through networks of protein-protein interactions (PPIs)
      The abbreviations used are:
      PPIs
      protein–protein interactions
      Y2H
      yeast two-hybrid
      MS
      mass spectrometry
      AP
      affinity purification
      BioID
      proximity-dependent biotin identification
      BN-PAGE
      blue-native polyacrylamide gel electrophoresis
      PrInCE
      prediction of interactomes from co-elution
      EPIC
      elution profile-based inference of complexes
      SEC
      size-exclusion chromatography
      IEX
      ion-exchange chromatography
      HIC
      hydrophobic interaction chromatography
      SAX
      strong anion exchange
      WAX
      weak anion exchange
      WCX
      weak cation exchange
      iTRAQ
      isobaric tagging for relative and absolute quantitation
      TOF
      time of flight
      MS/MS
      tandem mass spectrometry
      SILAC
      stable isotope labeling by/with amino acids in cell culture
      SWATH-MS
      sequential windowed acquisition of all theoretical fragment ion mass spectra
      SILAM
      stable isotope labeling of mammals
      CORUM
      comprehensive resource of mammalian protein complexes
      TPP
      thermal proteome profiling
      TMT
      tandem mass tag.
      1The abbreviations used are:PPIs
      protein–protein interactions
      Y2H
      yeast two-hybrid
      MS
      mass spectrometry
      AP
      affinity purification
      BioID
      proximity-dependent biotin identification
      BN-PAGE
      blue-native polyacrylamide gel electrophoresis
      PrInCE
      prediction of interactomes from co-elution
      EPIC
      elution profile-based inference of complexes
      SEC
      size-exclusion chromatography
      IEX
      ion-exchange chromatography
      HIC
      hydrophobic interaction chromatography
      SAX
      strong anion exchange
      WAX
      weak anion exchange
      WCX
      weak cation exchange
      iTRAQ
      isobaric tagging for relative and absolute quantitation
      TOF
      time of flight
      MS/MS
      tandem mass spectrometry
      SILAC
      stable isotope labeling by/with amino acids in cell culture
      SWATH-MS
      sequential windowed acquisition of all theoretical fragment ion mass spectra
      SILAM
      stable isotope labeling of mammals
      CORUM
      comprehensive resource of mammalian protein complexes
      TPP
      thermal proteome profiling
      TMT
      tandem mass tag.
      , often involving higher-order complexes. Understanding the architecture of this interactome from a dynamic, topological and quantitative perspective is key to discerning biological processes and their involvement in disease (
      • Huttlin E.L.
      • Bruckner R.J.
      • Paulo J.A.
      • Cannon J.R.
      • Ting L.
      • Baltier K.
      • Colby G.
      • Gebreab F.
      • Gygi M.P.
      • Parzen H.
      • Szpyt J.
      • Tam S.
      • Zarraga G.
      • Pontano-Vaites L.
      • Swarup S.
      • White A.E.
      • Schweppe D.K.
      • Rad R.
      • Erickson B.K.
      • Obar R.A.
      • Guruharsha K.G.
      • Li K.
      • Artavanis-Tsakonas S.
      • Gygi S.P.
      • Harper J.W.
      Architecture of the human interactome defines protein communities and disease networks.
      ,
      • Hein M.Y.
      • Hubner N.C.
      • Poser I.
      • Cox J.
      • Nagaraj N.
      • Toyoda Y.
      • Gak I.A.
      • Weisswange I.
      • Mansfeld J.
      • Buchholz F.
      • Hyman A.A.
      • Mann M.
      A human interactome in three quantitative dimensions organized by stoichiometries and abundances.
      ,
      • Aebersold R.
      • Mann M.
      Mass-spectrometric exploration of proteome structure and function.
      ,
      • Altelaar A.F.M.
      • Munoz J.
      • Heck A.J.R.
      Next-generation proteomics: towards an integrative view of proteome dynamics.
      ).
      There are numerous techniques available for studying PPIs (
      • Titeca K.
      • Lemmens I.
      • Tavernier J.
      • Eyckerman S.
      Discovering cellular protein-protein interactions: Technological strategies and opportunities.
      ,
      • Rattray D.G.
      • Foster L.J.
      Dynamics of protein complex components.
      ,
      • Minic Z.
      • Dahms T.E.S.
      • Babu M.
      Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation.
      ,
      • Snider J.
      • Kotlyar M.
      • Saraon P.
      • Yao Z.
      • Jurisica I.
      • Stagljar I.
      Fundamentals of protein interaction network mapping.
      ,
      • Yugandhar K.
      • Gupta S.
      • Yu H.
      Inferring protein-protein interaction networks from mass spectrometry-based proteomic approaches: a mini-review.
      ,
      • Claire M.
      • Delahunty J.R.Y.I.
      ,
      • Woodsmith J.
      • Stelzl U.
      Studying post-translational modifications with protein interaction networks.
      ,
      • Kristensen A.R.
      • Foster L.J.
      High throughput strategies for probing the different organizational levels of protein interaction networks.
      ). These have evolved from the classic yeast two-hybrid (Y2H) method to mass spectrometry (MS) approaches based on the co-purification of interacting proteins. Currently, the most widely used technique is affinity purification (AP-MS), thanks to its simplicity and improvements made in quantification and data analysis (
      • Meyer K.
      • Selbach M.
      Quantitative affinity purification mass spectrometry: a versatile technology to study protein–protein interactions.
      ,
      • Dunham W.H.
      • Mullin M.
      • Gingras A.-C.
      Affinity-purification coupled to mass spectrometry: Basic principles and strategies.
      ). BioID is a novel strategy (
      • Varnaitė R.
      • MacNeill S.A.
      Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID.
      ) that has rapidly found a niche with important applications, despite the method still evolving (
      • Kim D.I.
      • Jensen S.C.
      • Noble K.A.
      • Kc B.
      • Roux K.H.
      • Motamedchaboki K.
      • Roux K.J.
      An improved smaller biotin ligase for BioID proximity labeling.
      ). For a systems-level analysis, the ideal interactome mapping method should be high-throughput, quantitative, simple, physiologically relevant and give information about stoichiometry, topology and dynamics. However, current techniques show limitations in at least a few of these characteristics so the key is to use complementary methods to corroborate results. One approach particularly useful for exploratory studies are co-elution methods.
      Co-elution or co-fractionation methods are collectively a global approach used to simultaneously study the whole interactome (as opposed to piece-by-piece, as in AP-MS) and will be the focus of this review. Co-elution methods all rely on separation of protein complexes under native conditions, with the fundamental idea being that proteins belonging to the same complex co-elute or migrate together during separation, showing the same migration profile (Fig. 1A). Co-elution strategies were originally introduced to assign proteins to the same subcellular localization if these displayed similar profiles across a density gradient (
      • Andersen J.S.
      • Wilkinson C.J.
      • Mayor T.
      • Mortensen P.
      • Nigg E.A.
      • Mann M.
      Proteomic characterization of the human centrosome by protein correlation profiling.
      ,
      • Foster L.J.
      • de Hoog C.L.
      • Zhang Y.
      • Zhang Y.
      • Xie X.
      • Mootha V.K.
      • Mann M.
      A mammalian organelle map by protein correlation profiling.
      ,
      • Dunkley T.P.J.
      • Watson R.
      • Griffin J.L.
      • Dupree P.
      • Lilley K.S.
      Localization of organelle proteins by isotope tagging (LOPIT).
      ). More recently, this method has been adapted to detect protein interactions, using chromatography (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ,
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ) or blue-native polyacrylamide gel electrophoresis (
      • Heide H.
      • Bleier L.
      • Steger M.
      • Ackermann J.
      • Dröse S.
      • Schwamb B.
      • Zörnig M.
      • Reichert A.S.
      • Koch I.
      • Wittig I.
      • Brandt U.
      Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex.
      ) (BN-PAGE) to generate high-resolution elution profiles for thousands of proteins. The analysis of co-elution data involves plotting the MS1 intensities of proteins across many fractions, matching and scoring those profiles to detect binary protein interactions and provide an interactome map from those interactions (Fig. 1B). Current advances in the analysis of co-elution data include the development of a bioinformatics pipeline (PrInCE) (
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ) and the software toolkit EPIC (
      • Hu L.Z.
      • Goebels F.
      • Tan J.H.
      • Wolf E.
      • Kuzmanov U.
      • Wan C.
      • Phanse S.
      • Xu C.
      • Schertzberg M.
      • Fraser A.G.
      • Bader G.D.
      • Emili A.
      EPIC: software toolkit for elution profile-based inference of protein complexes.
      ), both freely available. In this review we discuss the comparable advantages of co-elution, the different separation strategies used and design considerations with an emphasis on the separation method, quantification and data analysis.
      Figure thumbnail gr1
      Fig. 1Schematic of the steps commonly involved in co-elution methods. A, General workflow of a co-elution experiment. The lysed sample containing protein complexes under native conditions is separated in a set number of fractions. Proteins from the same complex show the same co-elution profile after a bioinformatic analysis to extract an interactome map. B, Co-elution data representative from an experiment where lysed HeLa cells were fractionated by size exclusion chromatography (SEC), quantified by MS/MS, and finally used to construct an interactome network through data analysis.

      Existing Co-elution Strategies Are Well-suited for Global Exploratory PPI Studies When Compared with Other Methods

      The main comparative benefit of co-elution strategies (Table I) is that hundreds to thousands of protein complexes can be simultaneously and rapidly analyzed in a single experiment (
      • Larance M.
      • Lamond A.I.
      Multidimensional proteomics for cell biology.
      ). Because the primary measurement in these experiments is the abundances of thousands of proteins across the elution gradient, rather than a focus on bait proteins, co-elution studies scale much more easily than Y2H or AP-MS (
      • Huttlin E.L.
      • Ting L.
      • Bruckner R.J.
      • Gebreab F.
      • Gygi M.P.
      • Szpyt J.
      • Tam S.
      • Zarraga G.
      • Colby G.
      • Baltier K.
      • Dong R.
      • Guarani V.
      • Vaites L.P.
      • Ordureau A.
      • Rad R.
      • Erickson B.K.
      • Wühr M.
      • Chick J.
      • Zhai B.
      • Kolippakkam D.
      • Mintseris J.
      • Obar R.A.
      • Harris T.
      • Artavanis-Tsakonas S.
      • Sowa M.E.
      • De Camilli P.
      • Paulo J.A.
      • Harper J.W.
      • Gygi S.P.
      The BioPlex Network: A systematic exploration of the human interactome.
      ). Thus, co-elution can identify all the interactors for many proteins simultaneously, as well as to identify when a single protein participates in multiple complexes (
      • Rattray D.G.
      • Foster L.J.
      Dynamics of protein complex components.
      ), which is more difficult to determine by AP-MS. A similar and recently developed complementary approach to co-elution is thermal proteome profiling (TPP), which can provide the proteome-wide detection of protein complexes and their rearrangements (
      • Dai L.
      • Zhao T.
      • Bisteau X.
      • Sun W.
      • Prabhu N.
      • Lim Y.T.
      • Sobota R.M.
      • Kaldis P.
      • Nordlund P.
      Modulation of protein-interaction states through the cell Cycle.
      ,
      • Becher I.
      • Andrés-Pons A.
      • Romanov N.
      • Stein F.
      • Schramm M.
      • Baudin F.
      • Helm D.
      • Kurzawa N.
      • Mateus A.
      • Mackmull M.-T.
      • Typas A.
      • Müller C.W.
      • Bork P.
      • Beck M.
      • Savitski M.M.
      Pervasive protein thermal stability variation during the cell cycle.
      ) but is based on comparing protein melting curves instead of co-elution profiles.
      Table IComparison between co-elution approaches and other commonly used strategies to detect protein-protein interactions
      Co-elutionY2H-basedAP-MSIP-MSBioID
      “All-to-all” interactome+
      High-throughput+++
      Protein tagging+++
      Study different biological contexts+++
      Type of interactions
       Direct+++++
       Indirect++++
       Proximal+
      Selectivity+
      Same protein in multiple complexes+
      In vivo++
      Suited for weak/transient interactions++
      An added attraction of co-elution studies is that the generated interactome should be more physiologically relevant than results from studies involving protein tagging because modifying proteins can perturb endogenous interactions by the presence of the tag or overexpression of the bait (
      • Titeca K.
      • Lemmens I.
      • Tavernier J.
      • Eyckerman S.
      Discovering cellular protein-protein interactions: Technological strategies and opportunities.
      ,
      • Claire M.
      • Delahunty J.R.Y.I.
      ). In this sense, co-elution is similar to immunoprecipitation-type AP-MS studies, where proteins are purified with an antibody against the bait itself, rather than an added epitope, but co-elution is not dependent on the existence of a specific and high affinity antibody (
      • Snider J.
      • Kotlyar M.
      • Saraon P.
      • Yao Z.
      • Jurisica I.
      • Stagljar I.
      Fundamentals of protein interaction network mapping.
      ,
      • Claire M.
      • Delahunty J.R.Y.I.
      ). In AP-MS, the bait is fused to an affinity tag allowing the purification of this bait and its interacting partners without the need for a specific antibody, but it still relies on the fusion step.
      Co-elution studies take considerably less time and resources than an equivalently scaled AP-MS study, so replicates can be conducted more easily. This also means that biological perturbations of the network can be measured. This has so far only been done globally using SILAC (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ,
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ), but in principle could also be accomplished using label-free quantitation. Improved quantitation in AP-MS has allowed the comparison of proteins that co-purify with a bait protein under normal and perturbed conditions in a quantitative manner (
      • Meyer K.
      • Selbach M.
      Quantitative affinity purification mass spectrometry: a versatile technology to study protein–protein interactions.
      ), but not nearly at the scale enabled by co-elution.
      The various interactome methods provide fundamentally different types of information. Co-elution, at its heart, identifies binary interactions, but these interactions do not necessarily represent direct physical connections, and can include proteins that co-elute because they are members of the same complex but not in direct physical contact (Table I, “Indirect” interactions). AP-MS targets only the complexes co-purified with a specific protein. The BioID method is similar in that it focuses on the potential interactors of a specific protein. However, the candidates identified can be direct or indirect interactors, and/or vicinal proteins that do not physically interact with the fusion protein (
      • Varnaitė R.
      • MacNeill S.A.
      Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID.
      ).
      False positive interactions are a problem for all PPI technologies, to a greater or lesser degree. In co-elution strategies, functionally unrelated complexes can co-elute, leading the user to conclude that all the component proteins interact and thus manifesting as false positives. Therefore, co-elution results should be regarded with caution. Potential novel complexes provide a good seed for follow-up analyses to obtain more detailed and high confidence biochemical information. These types of false positives can be mitigated by using as high resolution separation conditions as possible. The use of multiple orthogonal separation strategies can also decrease the effect of co-elution by chance. Targeted complex quantification should also be helpful for follow-up experiments. In addition, rigorous bioinformatic analyses lower the chances of predicting false positive interactions.
      The chromatograms or electropherograms generated in co-elution studies can also be used to quantify the relative distribution of a protein into multiple different protein complexes. That is, if one protein participates in more than one complex, the relative amounts of those different complexes can be derived. This can yield information about the dynamics of PPIs as substoichiometric interactors will, e.g., more likely be dynamic partners in the complex (
      • Titeca K.
      • Lemmens I.
      • Tavernier J.
      • Eyckerman S.
      Discovering cellular protein-protein interactions: Technological strategies and opportunities.
      ,
      • Smits A.H.
      • Vermeulen M.
      Characterizing protein–protein interactions using mass spectrometry: challenges and opportunities.
      ).
      When compared with other methods, co-elution stands out as a global approach capable of producing vast information of the interactome. It is therefore particularly suited for exploratory studies that can later be validated with complementary approaches.

      Separation Strategies Used for Co-elution

      In co-elution studies, tissues or cells are lysed to extract protein complexes that are subsequently fractionated under conditions that are designed to preserve the PPIs within the complexes. Different separation techniques have been used for fractionation, including size-exclusion chromatography (SEC), ion-exchange (IEX) and hydrophobic interaction chromatography (HIC), and BN-PAGE (Table II) (
      • Minic Z.
      • Dahms T.E.S.
      • Babu M.
      Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation.
      ). Protein complexes can also be separated according to their sedimentation rate or isoelectric point by fractionating in sucrose gradients (
      • Ramani A.K.
      • Li Z.
      • Hart G.T.
      • Carlson M.W.
      • Boutz D.R.
      • Marcotte E.M.
      A map of human protein interactions derived from co-expression of human mRNAs and their orthologs.
      ) or native capillary isoelectric focusing (IEF) (
      • Dong M.
      • Yang L.L.
      • Williams K.
      • Fisher S.J.
      • Hall S.C.
      • Biggin M.D.
      • Jin J.
      • Witkowska H.E.
      A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking.
      ). However, considering that sucrose gradients have low resolution and IEF is mostly coupled to native MS and can be challenging for whole lysates, we recommend the use of these for orthogonal separations or complementary experiments.
      Table IIComparison between co-elution separation strategies: SEC, IEX, HIC, BN-PAGE
      Separation techniqueStationary phaseSeparation principleMobile phase
      Salts commonly used for buffers: NaCl, HEPES, KCl, MgCl2, Tris, PBS, NaCH3COO, NaN3, (NH4)2SO4. May contain additives like proteases inhibitors, dithiothreitol or glycerol.
      Benefits/DrawbacksApplications
      SECMaterial with different pore sizes (silica, polymeric or cross-linked agarose)Hydrodynamic sizeMillimolar salt buffers at neutral pHLess buffer requirements, isocratic/Modest resolutionSoluble complexes
      IEXMaterial with ionic groups (silica-based or polymeric) with SAX, WAX, WCX or mixed-bed (WAX & WCX) propertiesSalt gradientIncreasing molar salt gradient (NaCl) at neutral pHHigher resolution, more chemistries available/Higher salt concentrations requiredSoluble complexes
      HICHydrophobicSalt gradientDecreasing molar salt gradient (e.g. (NH4)2SO4) at neutral pHHigher salt concentrations requiredMultiple orthogonal separations
      BN-PAGEPolyacrylamide gelElectrophoretic mobilityCoomassie blue G, salt buffersNot limited to soluble complexes/Less reproducibleMembrane protein complexes
      a Salts commonly used for buffers: NaCl, HEPES, KCl, MgCl2, Tris, PBS, NaCH3COO, NaN3, (NH4)2SO4. May contain additives like proteases inhibitors, dithiothreitol or glycerol.
      An early proof-of-principle study (
      • Dong M.
      • Yang L.L.
      • Williams K.
      • Fisher S.J.
      • Hall S.C.
      • Biggin M.D.
      • Jin J.
      • Witkowska H.E.
      A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking.
      ) demonstrated how E. coli polypeptides from protein complexes had the same elution profile through multiple orthogonal chromatographic steps (including IEX, HIC and SEC) performed successively. A simpler approach using only SEC (
      • Olinares P.D.B.
      • Ponnala L.
      • van Wijk K.J.
      Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering.
      ) provided a biologically relevant map of soluble chloroplast-localized complexes of Arabidopsis thaliana, showing the potential of the approach for interactome study. The use of SEC in global monitoring of protein complexes was limited until the introduction of the first co-elution study using SILAC and SEC (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ). The same year, Havugimana et al. (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ) used multiple orthogonal separations including weak-anion exchange and mixed-bed ion exchange, sucrose gradient centrifugation and IEF. This strategy was later used to examine complexes among diverse metazoan models, studying eight different organisms in total (
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ).
      Current co-elution studies are mostly based on the two previously mentioned approaches using SILAC-SEC (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ) or label-free-IEX (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ), with some variations but keeping the basis of co-elution (
      • Kastritis P.L.
      • O'Reilly F.J.
      • Bock T.
      • Li Y.
      • Rogon M.Z.
      • Buczak K.
      • Romanov N.
      • Betts M.J.
      • Bui K.H.
      • Hagen W.J.
      • Hennrich M.L.
      • Mackmull M.-T.
      • Rappsilber J.
      • Russell R.B.
      • Bork P.
      • Beck M.
      • Gavin A.-C.
      Capturing protein communities by structural proteomics in a thermophilic eukaryote.
      ,
      • Gilbert M.
      • Schulze W.X.
      Global identification of protein complexes within the membrane proteome of Arabidopsis roots using a SEC-MS approach.
      ,
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ,
      • Aryal U.K.
      • McBride Z.
      • Chen D.
      • Xie J.
      • Szymanski D.B.
      Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling.
      ). E.g., some SEC studies have used label-free quantification approaches instead of SILAC (
      • Aryal U.K.
      • McBride Z.
      • Chen D.
      • Xie J.
      • Szymanski D.B.
      Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling.
      ), including SWATH-MS (
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ). Recently, both SEC and IEX were used in parallel to separate the same samples and obtain an overlapping data set to hopefully reduce the confounding effect of chance co-elution (
      • McBride Z.
      • Chen D.
      • Lee Y.
      • Aryal U.K.
      • Xie J.
      • Szymanski D.B.
      A label-free mass spectrometry method to predict endogenous protein complex composition.
      ). A recent study was based on the IEX approach but using SILAC instead of label-free quantification to monitor interactome changes following perturbation assays (
      • O'Meara T.R.
      • O'Meara M.J.
      • Polvi E.J.
      • Pourhaghighi M.R.
      • Liston S.D.
      • Lin Z.-Y.
      • Veri A.O.
      • Emili A.
      • Gingras A.-C.
      • Cowen L.E.
      Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen.
      ) using a single mixed-bed exchange column rather than two columns in series as originally.
      One downside of previous co-elution methods is that they only target soluble complexes and do not focus on membrane complexes (
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ,
      • Carlson M.L.
      • Young J.W.
      • Zhao Z.
      • Fabre L.
      • Jun D.
      • Li J.
      • Li J.
      • Dhupar H.S.
      • Wason I.
      • Mills A.T.
      • Beatty J.T.
      • Klassen J.S.
      • Rouiller I.
      • Duong F.
      The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution.
      ,
      • Carlson M.L.
      • Stacey R.G.
      • Young J.W.
      • Wason I.S.
      • Zhao Z.
      • Rattray D.G.
      • Scott N.
      • Kerr C.H.
      • Babu M.
      • Foster L.J.
      • Duong F.V.H.
      Profiling the E. coli membrane interactome captured in peptidisc libraries.
      ), as lysis is done under mild, complex-preserving conditions. To allow the study of soluble and membrane-bound complexes of entire mitochondria, Heide et al. (
      • Heide H.
      • Bleier L.
      • Steger M.
      • Ackermann J.
      • Dröse S.
      • Schwamb B.
      • Zörnig M.
      • Reichert A.S.
      • Koch I.
      • Wittig I.
      • Brandt U.
      Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex.
      ) used BN-PAGE and large-pore BN-PAGE after digitonin solubilization. With this approach, they also resolved large complexes (up to a molecular mass of 30 MDa) that cannot be resolved by SEC. More recently, Scott et al. (
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ) also used the BN-PAGE approach for fractionation instead of SEC, as an adaptation of the SILAC-SEC method (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ). Other methods have used fractionation after detergent solubilization, including SEC or IEX (
      • Maddalo G.
      • Stenberg-Bruzell F.
      • Götzke H.
      • Toddo S.
      • Björkholm P.
      • Eriksson H.
      • Chovanec P.
      • Genevaux P.
      • Lehtiö J.
      • Ilag L.L.
      • Daley D.O.
      Systematic analysis of native membrane protein complexes in Escherichia coli.
      ,
      • Walian P.J.
      • Allen S.
      • Shatsky M.
      • Zeng L.
      • Szakal E.D.
      • Liu H.
      • Hall S.C.
      • Fisher S.J.
      • Lam B.R.
      • Singer M.E.
      • Geller J.T.
      • Brenner S.E.
      • Chandonia J.-M.
      • Hazen T.C.
      • Witkowska H.E.
      • Biggin M.D.
      • Jap B.K.
      High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.
      ,
      • Babu M.
      • Bundalovic-Torma C.
      • Calmettes C.
      • Phanse S.
      • Zhang Q.
      • Jiang Y.
      • Minic Z.
      • Kim S.
      • Mehla J.
      • Gagarinova A.
      • Rodionova I.
      • Kumar A.
      • Guo H.
      • Kagan O.
      • Pogoutse O.
      • Aoki H.
      • Deineko V.
      • Caufield J.H.
      • Holtzapple E.
      • Zhang Z.
      • Vastermark A.
      • Pandya Y.
      • Lai C.C.-L.
      • El Bakkouri M.
      • Hooda Y.
      • Shah M.
      • Burnside D.
      • Hooshyar M.
      • Vlasblom J.
      • Rajagopala S.V.
      • Golshani A.
      • Wuchty S.F.
      • Greenblatt J
      • Saier M.
      • Uetz P. F
      • Moraes T
      • Parkinson J.
      • Emili A.
      Global landscape of cell envelope protein complexes in Escherichia coli.
      ). Detergent-free solubilization strategies have been recently introduced to improve the study of membrane proteins, where amphipathic scaffold proteins (
      • Denisov I.G.
      • Sligar S.G.
      Nanodiscs for structural and functional studies of membrane proteins.
      ) or bi-helical peptides (
      • Carlson M.L.
      • Young J.W.
      • Zhao Z.
      • Fabre L.
      • Jun D.
      • Li J.
      • Li J.
      • Dhupar H.S.
      • Wason I.
      • Mills A.T.
      • Beatty J.T.
      • Klassen J.S.
      • Rouiller I.
      • Duong F.
      The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution.
      ) wrap around the hydrophobic parts of the target membrane protein and shield them from the aqueous solution.

      Design Considerations

      Choice of Separation Method

      Perhaps the first question to ask when designing a co-elution protocol is which type of proteins are the focus of study: soluble or membrane proteins. The mild, detergent-free lysis conditions at neutral pH and physiological salt concentration used to preserve protein complexes are not suitable to solubilize membrane complexes because of their hydrophobicity (
      • Kirkwood K.J.
      • Ahmad Y.
      • Larance M.
      • Lamond A.I.
      Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.
      ). Beside the soluble cytosolic protein complexes, these conditions extract soluble intra-organellar protein complexes such as nuclear, mitochondrial and lysosomal ones. Thus, for initial and exploratory investigations, the soluble interactome provides a large map of the biological processes of an organism (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ,
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ). However, membrane proteins are involved in important cell processes and they can be the focus of study. Some studies have used mild and non-denaturing detergents to solubilize membrane complexes, which are then separated by SEC or BN-PAGE (
      • Heide H.
      • Bleier L.
      • Steger M.
      • Ackermann J.
      • Dröse S.
      • Schwamb B.
      • Zörnig M.
      • Reichert A.S.
      • Koch I.
      • Wittig I.
      • Brandt U.
      Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex.
      ,
      • Babu M.
      • Bundalovic-Torma C.
      • Calmettes C.
      • Phanse S.
      • Zhang Q.
      • Jiang Y.
      • Minic Z.
      • Kim S.
      • Mehla J.
      • Gagarinova A.
      • Rodionova I.
      • Kumar A.
      • Guo H.
      • Kagan O.
      • Pogoutse O.
      • Aoki H.
      • Deineko V.
      • Caufield J.H.
      • Holtzapple E.
      • Zhang Z.
      • Vastermark A.
      • Pandya Y.
      • Lai C.C.-L.
      • El Bakkouri M.
      • Hooda Y.
      • Shah M.
      • Burnside D.
      • Hooshyar M.
      • Vlasblom J.
      • Rajagopala S.V.
      • Golshani A.
      • Wuchty S.F.
      • Greenblatt J
      • Saier M.
      • Uetz P. F
      • Moraes T
      • Parkinson J.
      • Emili A.
      Global landscape of cell envelope protein complexes in Escherichia coli.
      ). However, the use of detergent in SEC or IEX deteriorates separation because detergent micelles can bound proteins (
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ,
      • Kunji E.R.S.
      • Harding M.
      • Butler P.J.G.
      • Akamine P.
      Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography.
      ) or interfere with solvent access to charged proteins. Instead, BN-PAGE has the advantage of being an established method for membrane protein separations and has proved to be well suited for co-elution interactome studies (
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ). A recent co-elution method used in vivo formaldehyde protein crosslinking with denaturing SEC separation which identified membrane and membrane-associated protein complexes compared with the only-soluble-complexes approach (
      • Larance M.
      • Kirkwood K.J.
      • Tinti M.
      • Brenes Murillo A.
      • Ferguson M.A.J.
      • Lamond A.I.
      Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling.
      ). No current method allows the simultaneous study of native soluble and membrane proteins as mild detergents can disrupt soluble PPIs. However, new detergent-free technologies to solubilize membrane proteins might lead to a global method (
      • Carlson M.L.
      • Young J.W.
      • Zhao Z.
      • Fabre L.
      • Jun D.
      • Li J.
      • Li J.
      • Dhupar H.S.
      • Wason I.
      • Mills A.T.
      • Beatty J.T.
      • Klassen J.S.
      • Rouiller I.
      • Duong F.
      The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution.
      ). Potentially, the use of crosslinking could also help overcome the limitation of co-elution (shared with other lysis-based methods) of possibly missing important transient and weak interactions. However, this adds a layer of complexity to the bioinformatics analysis involving the identification of crosslinked peptides.
      In theory, soluble proteins can be effectively separated in any type of chromatography that allows separations in aqueous conditions with proper column dimensions to accommodate protein complexes. Traditional reversed-phase or hydrophilic interaction LC require the use of organic solvents that denature proteins and disrupt PPIs. The biggest advantage of SEC is precisely that separations can be performed under aqueous and isocratic conditions, as separation only depends on the hydrodynamic volume of the complexes (SEC columns have pores of different sizes where small hydrodynamic volumes equilibrate more often than large ones and therefore smaller complexes elute later (
      • Kunji E.R.S.
      • Harding M.
      • Butler P.J.G.
      • Akamine P.
      Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography.
      )). The mobile phase can be the same buffer used for lysis at neutral pH and physiological salt concentration. One downside of SEC is that it has modest resolution and is thus prone to co-elution by chance. One way to increase resolution in SEC separations (applicable to any LC) is to use two long columns (300 mm) in series.
      IEX separation is based on the charge attraction between column and protein, which carries surface charges depending on their isoelectric point and buffer pH. Salt concentration is controlled to drive the actual separation by ion displacement of immobilized proteins by mobile phase ions. Compared with SEC, IEX might show enhanced retention and therefore more characteristic profiles. There are also more columns available with different chemistries. However, the increased salt concentration required for separation might disrupt some PPIs. To minimize this, shallow salt gradients are used to not perturb nonionic protein associations and maintain non-denaturing conditions. In HIC, separation is also driven by salt concentration, where high concentrations reduce solvation of proteins, promoting interaction of the protein's hydrophobic parts with the hydrophobic stationary phase. HIC requires higher salt concentrations to promote retention, which is why HIC is less used than other chromatographies (
      • Jungbauer A.
      • Hahn R.
      Ion-exchange chromatography.
      ,
      • Havugimana P.C.
      • Wong P.
      • Emili A.
      Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography.
      ).
      As mentioned before, several studies have combined several of the above techniques in sequence or in parallel to obtain multiple orthogonal fractionation (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Dong M.
      • Yang L.L.
      • Williams K.
      • Fisher S.J.
      • Hall S.C.
      • Biggin M.D.
      • Jin J.
      • Witkowska H.E.
      A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking.
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • McBride Z.
      • Chen D.
      • Lee Y.
      • Aryal U.K.
      • Xie J.
      • Szymanski D.B.
      A label-free mass spectrometry method to predict endogenous protein complex composition.
      ). The main advantage of these approaches is that complexes that might be lost by one strategy can be rescued by another one (e.g. salt in IEX may disrupt some complexes that can be rescued by SEC). Multiple separations also further separate protein complexes that might be poorly resolved by a single separation. These methods are however time-consuming, and they still require validation experiments by complementary approaches.
      LC stationary phases require a suitable column (typically high resolution, analytical-grade), particle and pore dimensions to separate protein complexes with high efficiency. Large biomolecules require large pore sizes to allow unrestricted diffusion inside the pores and larger columns with smaller particles (e.g. 500Å, 300 mm, ≤5 μm) give narrower peaks, with limits imposed by separation time, column backpressure and material synthesis (
      • Wagner B.M.
      • Schuster S.A.
      • Boyes B.E.
      • Shields T.J.
      Superficially porous particles with 1000 Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.
      ,
      • Goyon A.
      • Beck A.
      • Colas O.
      • Sandra K.
      • Guillarme D.
      • Fekete S.
      Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins.
      ). Material technology for chromatography is constantly introducing advances, which are applied to biomolecules, such as mixed-mode materials or superficially porous particles, and co-elution methods could benefit from them to achieve faster and more efficient separations (
      • Chen W.
      • Jiang K.
      • Mack A.
      • Sachok B.
      • Zhu X.
      • Barber W.E.
      • Wang X.
      Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies.
      ,
      • Zhang K.
      • Liu X.
      Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications.
      ). To achieve faster separations, temperature is also controlled, often set at room or higher temperatures. However, for protein complexes keeping the temperature during separation (and sample handling) lower (e.g. work on ice, LC separations <10 °C) is critical for complex stability. The use of low temperatures also prevents protein aggregation when the sample is concentrated to a suitable volume for LC injection. The absence of large macromolecules eluting at void-volume in SEC are evidence of absence of protein aggregation. Column dimensions and separation conditions will determine overall separation resolution and, in turn, this determines the optimum number of fractions that should be collected to obtain adequate co-elution data. Narrow peaks are desired because it gives characteristic elution profiles that can be more effectively compared for co-migration data. However, narrow peaks can also go undetected if they are only spread across one or two fractions. The solution to this could be to collect a larger number of fractions, but this comes at the cost of more sample preparation and increased MS analysis time.
      Once protein complexes are fractionated their stability as complexes is not important and the goal is to digest the proteins adequately for peptide LC-MS/MS analysis. The sample handling considerations for this step are the same as for any MS-based proteomics procedure. Nevertheless, it is important to mention here that digestion procedures free of detergents, salts and contaminants produce clean samples that are key to maximize protein identification.

      Quantitative Approaches

      Some form of quantitation is required to generate chromatograms or electropherograms from co-elution data and, thus, the choice of the quantitation method is important. The main approaches used to quantify co-elution data are SILAC and label-free methods, both frequently used in normal MS-based proteomic workflows. Much has been written about the comparative advantages of both quantification strategies (
      • Merl J.
      • Ueffing M.
      • Hauck S.M.
      • von Toerne C.
      Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Müller cells.
      ,
      • Cox J.
      • Hein M.Y.
      • Luber C.A.
      • Paron I.
      • Nagaraj N.
      • Mann M.
      Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
      ,
      • Ong S.-E.
      • Blagoev B.
      • Kratchmarova I.
      • Kristensen D.B.
      • Steen H.
      • Pandey A.
      • Mann M.
      Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
      ) and those apply to co-elution workflows. SILAC provides accuracy and consistency across different samples as the metabolic labels are introduced during cell culture, allowing normalization to be done at an early stage in the sample handling. SILAC also saves a significant amount of sample preparation time as different conditions can be pooled into one sample for simultaneous analysis (
      • Ong S.-E.
      • Blagoev B.
      • Kratchmarova I.
      • Kristensen D.B.
      • Steen H.
      • Pandey A.
      • Mann M.
      Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
      ). For co-elution, these benefits are key, as high accuracy across fractions is achieved and the introduction of a third channel allows the study of interactome rearrangements on perturbation.
      A common misconception about SILAC is that it is expensive. Although it is true that SILAC reagents add cost to an experiment, the increased accuracy in quantitation means that fewer fractions or samples are required to get equivalent data, and thus much less instrument time (which also has a cost) is needed. One caveat to using SILAC is that there are certain biological systems that cannot be easily labeled metabolically, such as primary cells, clinical samples or most whole organisms. The applications of SILAC are still vast, being compatible with numerous cell lines and, though costly, whole organisms (stable isotope labeling of mammals, SILAM (
      • Rauniyar N.
      • McClatchy D.B.
      • Yates 3rd, J.R.
      Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis.
      )) so long as they are not large or unrealistic.
      Global interactome studies have been conducted involving heterologous expression of genetically manipulated cell lines which raises the question of how physiologically relevant the results obtained are. Skinnider et al. recently produced a SILAM mouse for tissue interactome study (
      • Skinnider M.A.
      • Scott N.E.
      • Prudova A.
      • Stoynov N.
      • Stacey R.G.
      • Gsponer J.
      • Foster L.J.
      An atlas of protein-protein interactions across mammalian tissues.
      ) of seven mouse tissues to map tissue-specific mammalian interactomes. Despite being experimentally challenging, these types of studies yield interactome maps that are more relevant.
      SILAC limitations have also been addressed by producing a SILAC-labeled spike-in standard (
      • Geiger T.
      • Wisniewski J.R.
      • Cox J.
      • Zanivan S.
      • Kruger M.
      • Ishihama Y.
      • Mann M.
      Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
      ), where a SILAC sample is prepared separately in a compatible material and is added as a reference to each of the experimental samples. This method allows a SILAC-like quantification for SILAC incompatible samples and is an alternative to whole-organism labeling. Spike-in SILAC could be applied to co-elution, but the same as with label-free approaches, different physiological conditions cannot be pooled for simultaneous MS analysis.
      In theory, other labeling approaches like isobaric labeling (i.e. iTRAQ or tandem mass tag, TMT) could be used in co-elution approaches to minimize MS analysis time. This could be particularly useful for multiple separation approaches (
      • Dong M.
      • Yang L.L.
      • Williams K.
      • Fisher S.J.
      • Hall S.C.
      • Biggin M.D.
      • Jin J.
      • Witkowska H.E.
      A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking.
      ). However, pooling samples is the only advantage facing several disadvantages, including that normalization is done at a late stage (after protein digestion), sample handling is increased and data analysis becomes more challenging.
      As previously mentioned, label-free approaches have also been successfully used to quantify co-elution data sets (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • Kastritis P.L.
      • O'Reilly F.J.
      • Bock T.
      • Li Y.
      • Rogon M.Z.
      • Buczak K.
      • Romanov N.
      • Betts M.J.
      • Bui K.H.
      • Hagen W.J.
      • Hennrich M.L.
      • Mackmull M.-T.
      • Rappsilber J.
      • Russell R.B.
      • Bork P.
      • Beck M.
      • Gavin A.-C.
      Capturing protein communities by structural proteomics in a thermophilic eukaryote.
      ,
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ,
      • Aryal U.K.
      • McBride Z.
      • Chen D.
      • Xie J.
      • Szymanski D.B.
      Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling.
      ,
      • Wan C.
      • Liu J.
      • Fong V.
      • Lugowski A.
      • Stoilova S.
      • Bethune-Waddell D.
      • Borgeson B.
      • Havugimana P.C.
      • Marcotte E.M.
      • Emili A.
      ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS.
      ,
      • Connelly K.E.
      • Hedrick V.
      • Paschoal Sobreira T.J.
      • Dykhuizen E.C.
      • Aryal U.K.
      Analysis of human nuclear protein complexes by quantitative mass spectrometry profiling.
      ). Both available label-free methods, spectral counting from MS/MS scans or MS1 precursor ion intensities, have been used for this purpose, employing appropriate software (e.g. PepQuant (
      • Wan C.
      • Liu J.
      • Fong V.
      • Lugowski A.
      • Stoilova S.
      • Bethune-Waddell D.
      • Borgeson B.
      • Havugimana P.C.
      • Marcotte E.M.
      • Emili A.
      ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS.
      ) and MaxQuant (
      • Cox J.
      • Hein M.Y.
      • Luber C.A.
      • Paron I.
      • Nagaraj N.
      • Mann M.
      Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
      )). Label-free methods are arguably simpler and have no sample limitations. While SILAC can compare up to two conditions in perturbation studies, label-free has virtually no limits. This strategy is therefore quite useful for quantification across larger comparison sets (>2 and up to 10s of biological conditions). In these cases, data-independent acquisition (DIA or SWATH-MS) is another alternative that has already been applied to co-elution studies (
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ). However, this comes with a significant increase in sample preparation and MS analysis time and, in the case of SWATH, additional computational challenges.

      Data Analysis for Co-elution Profiling Studies

      A distinct advantage of co-elution studies over other high-throughput methods is that they can detect PPIs between all proteins identified in a sample (“all-to-all”, also known as the matrix model (
      • Hakes L.
      • Robertson D.L.
      • Oliver S.G.
      • Lovell S.C.
      Protein interactions from complexes: a structural perspective.
      )). Other high-throughput methods are limited to detecting interactions between two tagged or labeled proteins (“bait-to-bait”) such as Y2H, or between a tagged protein and any other (“bait-to-all”, also known as the spoke model) such as BioID (Fig. 2A). This increased number of potential interactions can result in a combinatorial explosion, however. For example, a co-elution data set can contain millions of potential interactions, only thousands of which are likely to be real. Analyzing co-elution data sets, therefore, often involves separating true interactors from a background of spurious false positives through bioinformatic analysis.
      Figure thumbnail gr2
      Fig. 2Bioinformatic analysis of co-elution data. A, Bioinformatic analysis of co-elution data is complicated by the number of potential interactions. In contrast to techniques such as Y2H that find interactions between tagged proteins (“Bait-to-bait”) or BioID (and sometimes AP-MS) that find interactions involving at least one bait protein (“Bait-to-all”), co-elution experiments have the potential to find interactions between all identified proteins in a sample (“All-to-all”). B, Schematic of classifier-based analysis of co-elution data. The strength of co-elution is quantified for every pair of proteins using multiple metrics (“features”). Features derived from external data can be included, such as co-citation or co-expression. Using a gold standard set of known complexes, a subset of the protein pairs are labeled as interacting or not-interacting. Finally, a classifier uses to the features and labels to assign every pair of profiles a classifier score, to which a threshold is applied. C, Performance of single co-elution features. Interactomes were predicted from four data sets using a single co-elution metric. Each dot represents an interactome from one replicate, and the y axis gives the precision of the 500 best-scoring interactions. Interactomes were predicted using PrInCE with default parameters (CORUM gold standard). weighted_xcorr: Weighted cross-correlation, measured with R function wccsom. pearson_R_cleaned: Pearson correlation (cleaned profiles). mutual_info: Mutual information. co_apex: Mininum number of fractions between fitted Gaussian centers. pearson_P: Pearson correlation (raw profiles) p value. pearson_R_raw: Pearson correlation (raw profiles). euclidean_distance: Euclidean distance (cleaned profiles). co_peak: Number of fractions between maximum value. pearson_plus_poisson: Pearson R (raw profiles) plus Poisson noise. co_fraction: 1 if maximum values are in the same fraction, 0 otherwise. Jaccard: Overlapping fractions in which both proteins are quantified, measured with Jaccard. Data sets: 1 Kristensen et al. 2012 (
      • Kristensen A.R.
      • Gsponer J.
      • Foster L.J.
      A high-throughput approach for measuring temporal changes in the interactome.
      ), 2 Scott et al. 2017 (
      • Scott N.E.
      • Rogers L.D.
      • Prudova A.
      • Brown N.F.
      • Fortelny N.
      • Overall C.M.
      • Foster L.J.
      Interactome disassembly during apoptosis occurs independent of caspase cleavage.
      ), Carlson et al. 2019 (
      • Carlson M.L.
      • Stacey R.G.
      • Young J.W.
      • Wason I.S.
      • Zhao Z.
      • Rattray D.G.
      • Scott N.
      • Kerr C.H.
      • Babu M.
      • Foster L.J.
      • Duong F.V.H.
      Profiling the E. coli membrane interactome captured in peptidisc libraries.
      ), Scott et al. 2015 (
      • Scott N.E.
      • Brown L.M.
      • Kristensen A.R.
      • Foster L.J.
      Development of a computational framework for the analysis of protein correlation profiling and spatial proteomics experiments.
      ).
      Although there are many workflows for analyzing co-elution data, it is common to use co-elution data to generate a list of pairwise PPIs (i.e. an interactome), typically done via a machine learning classifier (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Huttlin E.L.
      • Ting L.
      • Bruckner R.J.
      • Gebreab F.
      • Gygi M.P.
      • Szpyt J.
      • Tam S.
      • Zarraga G.
      • Colby G.
      • Baltier K.
      • Dong R.
      • Guarani V.
      • Vaites L.P.
      • Ordureau A.
      • Rad R.
      • Erickson B.K.
      • Wühr M.
      • Chick J.
      • Zhai B.
      • Kolippakkam D.
      • Mintseris J.
      • Obar R.A.
      • Harris T.
      • Artavanis-Tsakonas S.
      • Sowa M.E.
      • De Camilli P.
      • Paulo J.A.
      • Harper J.W.
      • Gygi S.P.
      The BioPlex Network: A systematic exploration of the human interactome.
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • Carlson M.L.
      • Stacey R.G.
      • Young J.W.
      • Wason I.S.
      • Zhao Z.
      • Rattray D.G.
      • Scott N.
      • Kerr C.H.
      • Babu M.
      • Foster L.J.
      • Duong F.V.H.
      Profiling the E. coli membrane interactome captured in peptidisc libraries.
      ,
      • Shatsky M.
      • Dong M.
      • Liu H.
      • Yang L.L.
      • Choi M.
      • Singer M.E.
      • Geller J.T.
      • Fisher S.J.
      • Hall S.C.
      • Hazen T.C.
      • Brenner S.E.
      • Butland G.
      • Jin J.
      • Witkowska H.E.
      • Chandonia J.-M.
      • Biggin M.D.
      Quantitative tagless copurification: a method to validate and identify protein-protein interactions.
      ,
      • Drew K.
      • Lee C.
      • Huizar R.L.
      • Tu F.
      • Borgeson B.
      • McWhite C.D.
      • Ma Y.
      • Wallingford J.B.
      • Marcotte E.M.
      Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes.
      ). In this analysis, the strength of co-elution is measured for every pair of proteins using a variety of metrics (Fig. 2B). Across published studies, we count eleven metrics used to evaluate the co-elution strength of pairs of proteins (Fig. 2C). These fall into five general categories: correlational metrics, such as weighted cross-correlation and Pearson correlation strength between raw and cleaned elution profiles (
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ), sometimes with the addition of Poisson noise (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ); co-apex measures, that attempt to quantify whether two proteins share an elution peak (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • Goebels F.
      • Hu L.
      • Bader G.
      • Emili A.
      Automated computational inference of multi-protein assemblies from biochemical co-purification data.
      ); mutual information (
      • Goebels F.
      • Hu L.
      • Bader G.
      • Emili A.
      Automated computational inference of multi-protein assemblies from biochemical co-purification data.
      ); the degree to which proteins are quantified in the same fractions, measured with the Jaccard index (
      • Goebels F.
      • Hu L.
      • Bader G.
      • Emili A.
      Automated computational inference of multi-protein assemblies from biochemical co-purification data.
      ); and Euclidean distance (
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ). Fig. 2C shows how these metrics perform when predicting interactomes using a single metric (PrInCE, default parameters). In general, we find that correlational metrics such as Pearson R and weighted cross-correlation that use quantified protein amounts are more informative than measures that just detect if proteins are quantified in the same fractions (Jaccard and co_fraction), although each metric differs between data sets. In practice, multiple metrics are used to better differentiate between true interactors and spurious pairs, because truly interacting protein pairs should score highly in most measures.
      Using a gold standard reference of known protein complexes (e.g. CORUM (
      • Giurgiu M.
      • Reinhard J.
      • Brauner B.
      • Dunger-Kaltenbach I.
      • Fobo G.
      • Frishman G.
      • Montrone C.
      • Ruepp A.
      CORUM: the comprehensive resource of mammalian protein complexes-2019.
      )) to label a subset of pairs in a data set as known PPIs or known non-interactors, it is possible to estimate the probability that any given protein pair is interacting. That is, combined with a gold standard reference, classifiers assign an interaction score to all protein pairs, with high-scoring pairs more closely resembling known PPIs. Finally, to arrive at an interactome, it is typical to take all protein pairs whose score is greater than a threshold as predicted PPIs. This threshold is typically chosen such that the ratio of true positives to false positives in the interactome, which are derived from the gold standard, satisfies a given FDR. Therefore, the task of finding pairwise PPIs in a co-elution data set can be framed as separating truly interacting protein pairs from a large background of non-interacting pairs. As an optional step, the resulting interactome can be clustered into protein complexes using a network-based clustering algorithm (
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • Drew K.
      • Lee C.
      • Huizar R.L.
      • Tu F.
      • Borgeson B.
      • McWhite C.D.
      • Ma Y.
      • Wallingford J.B.
      • Marcotte E.M.
      Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes.
      ), such as ClusterONE (
      • Nepusz T.
      • Yu H.
      • Paccanaro A.
      Detecting overlapping protein complexes in protein-protein interaction networks.
      ). Although it can be difficult to assess the quality of clusters, at least in part because metrics for measuring the similarity between clusters have biases and display non-intuitive behavior (
      • Gates A.J.
      • Wood I.B.
      • Hetrick W.P.
      • Ahn Y.-Y.
      Element-centric clustering comparison unifies overlaps and hierarchy.
      ), a number of studies find differences in robustness between algorithms (
      • Freytag S.
      • Tian L.
      • Lönnstedt I.
      • Ng M.
      • Bahlo M.
      Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data.
      ,
      • Song J.
      • Singh M.
      How and when should interactome-derived clusters be used to predict functional modules and protein function?.
      ), with MCL performing relatively well (
      • Brohée S.
      • van Helden J.
      Evaluation of clustering algorithms for protein-protein interaction networks.
      ). Additionally, Nepusz et al. (
      • Nepusz T.
      • Yu H.
      • Paccanaro A.
      Detecting overlapping protein complexes in protein-protein interaction networks.
      ) show that clustering weighted networks can be more robust than unweighted.
      Free classifier-based bioinformatic tools exist for co-elution data (
      • Stacey R.G.
      • Skinnider M.A.
      • Scott N.E.
      • Foster L.J.
      A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
      ,
      • Hu L.Z.
      • Goebels F.
      • Tan J.H.
      • Wolf E.
      • Kuzmanov U.
      • Wan C.
      • Phanse S.
      • Xu C.
      • Schertzberg M.
      • Fraser A.G.
      • Bader G.D.
      • Emili A.
      EPIC: software toolkit for elution profile-based inference of protein complexes.
      ). These tools can be used as both standalone executable programs, where data is loaded and output files and figures are generated, and as R packages. Parameters to take note of when using these tools are the number of quantified proteins in a data set (ideally greater than 500), the number of missing values in the data set, and, primarily, the width of elution peaks, because elution profiles with poor resolution (“wide” peaks) will be poorly distinguishable and yield more spuriously correlated pairs. For example, we find that in data sets with 50 fractions, elution peaks should have a full width at half maximum of no more than 10 fractions.
      Although classifier-based data analysis is common, there are many ways to treat co-elution data. For example, it is also common to cluster co-elution data into groups of similar profiles, as these groups can represent protein complexes (
      • Heide H.
      • Bleier L.
      • Steger M.
      • Ackermann J.
      • Dröse S.
      • Schwamb B.
      • Zörnig M.
      • Reichert A.S.
      • Koch I.
      • Wittig I.
      • Brandt U.
      Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex.
      ,
      • Kirkwood K.J.
      • Ahmad Y.
      • Larance M.
      • Lamond A.I.
      Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.
      ). Clustering like this does not require a gold standard, although reference complexes can be used to select an optimal number of clusters (
      • Kirkwood K.J.
      • Ahmad Y.
      • Larance M.
      • Lamond A.I.
      Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.
      ) and to validate the plausibility of the clustered proteins (
      • Hillier C.
      • Pardo M.
      • Yu L.
      • Bushell E.
      • Sanderson T.
      • Metcalf T.
      • Herd C.
      • Anar B.
      • Rayner J.C.
      • Billker O.
      • Choudhary J.S.
      Landscape of the Plasmodium interactome reveals both conserved and species-specific functionality.
      ). Data analysis methods discussed so far identify novel and known interactions, often focusing on PPIs with complex prediction as a downstream analysis. In contrast, “complex-centric” approaches (
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ) start with known protein complexes (e.g. CORUM) and assess whether members of a known complex are co-eluting. Although this approach does not detect novel PPIs, it does detect novel subunits of complexes and assembly intermediates. CCProfiler is a free software for complex-centric data analysis (
      • Heusel M.
      • Bludau I.
      • Rosenberger G.
      • Hafen R.
      • Frank M.
      • Banaei-Esfahani A.
      • Drogen A.
      • Collins B.C.
      • Gstaiger M.
      • Aebersold R.
      Complex-centric proteome profiling by SEC - SWATH - MS.
      ).
      An important consideration for both classifier-based and complex-centric methods is the choice of reference complexes (“gold standards”). Gold standards do not exist for all organisms, and although proteins from non-model organisms can be mapped to model organism proteins, this can introduce errors because orthologs between organisms do not necessarily interact with the same partners. Therefore, co-elution analysis often works best on human data sets, or data sets from other well-studied organisms. A further issue regarding gold standards is that many protein interactions only occur under certain conditions (
      • Celaj A.
      • Schlecht U.
      • Smith J.D.
      • Xu W.
      • Suresh S.
      • Miranda M.
      • Aparicio A.M.
      • Proctor M.
      • Davis R.W.
      • Roth F.P.
      • St Onge R.P.
      Quantitative analysis of protein interaction network dynamics in yeast.
      ). Therefore, it can be beneficial to tweak gold standards so that they more accurately reflect individual experiments (
      • Stacey R.G.
      • Skinnider M.A.
      • Chik J.H.L.
      • Foster L.J.
      Context-specific interactions in literature-curated protein interaction databases.
      ). Another caveat pertains to including external data as evidence of interaction, such as including a protein pairs’ tendency to co-express (
      • Havugimana P.C.
      • Hart G.T.
      • Nepusz T.
      • Yang H.
      • Turinsky A.L.
      • Li Z.
      • Wang P.I.
      • Boutz D.R.
      • Fong V.
      • Phanse S.
      • Babu M.
      • Craig S.A.
      • Hu P.
      • Wan C.
      • Vlasblom J.
      • Dar V.-U. -N.
      • Bezginov A.
      • Clark G.W.
      • Wu G.C.
      • Wodak S.J.
      • Tillier E.R.M.
      • Paccanaro A.
      • Marcotte E.M.
      • Emili A.
      A census of human soluble protein complexes.
      ,
      • Wan C.
      • Borgeson B.
      • Phanse S.
      • Tu F.
      • Drew K.
      • Clark G.
      • Xiong X.
      • Kagan O.
      • Kwan J.
      • Bezginov A.
      • Chessman K.
      • Pal S.
      • Cromar G.
      • Papoulas O.
      • Ni Z.
      • Boutz D.R.
      • Stoilova S.
      • Havugimana P.C.
      • Guo X.
      • Malty R.H.
      • Sarov M.
      • Greenblatt J.
      • Babu M.
      • Derry W.B.
      • Tillier E.R.
      • Wallingford J.B.
      • Parkinson J.
      • Marcotte E.M.
      • Emili A.
      Panorama of ancient metazoan macromolecular complexes.
      ,
      • Kastritis P.L.
      • O'Reilly F.J.
      • Bock T.
      • Li Y.
      • Rogon M.Z.
      • Buczak K.
      • Romanov N.
      • Betts M.J.
      • Bui K.H.
      • Hagen W.J.
      • Hennrich M.L.
      • Mackmull M.-T.
      • Rappsilber J.
      • Russell R.B.
      • Bork P.
      • Beck M.
      • Gavin A.-C.
      Capturing protein communities by structural proteomics in a thermophilic eukaryote.
      ,
      • Larance M.
      • Kirkwood K.J.
      • Tinti M.
      • Brenes Murillo A.
      • Ferguson M.A.J.
      • Lamond A.I.
      Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling.
      ). Although this can help filter out spuriously co-elution proteins, it can also bias results toward highly-studied proteins and away from less-well-studied and/or harder to identify proteins (
      • Skinnider M.A.
      • Stacey R.G.
      • Foster L.J.
      Genomic data integration systematically biases interactome mapping.
      ).

      CONCLUSIONS

      Co-elution can investigate all the existing interactions between all the proteins quantified in a given sample whereas other methods focus on a protein’s interactions at a time. In addition, it does not use protein tagging, gives quantitative information (including relative amounts of different complexes with a common protein), and, when combined with SILAC, provides interactome rearrangement information on perturbation in record time. Depending on whether soluble or membrane complexes are the focus of study, the separation strategy changes from SEC or IEX to BN-PAGE or mild detergent-based separations, but the introduction of recent membrane protein solubilization strategies might produce global approaches. To a large extent, the system under study defines the quantification strategy to use. SILAC, label-free and other methods are available depending on the cell line or tissue and whether the goal is to find new interactions or study the interactome under different physiological conditions. One important consideration of co-elution experiments is that they typically require sophisticated bioinformatic analyses, because co-elution analyses often compare all pairs of proteins quantified in a sample, and this number is large (millions) for modern data sets. Further, classifier-based analyses of co-elution data require gold standard databases of known protein complexes, a requirement which is not met for all organisms. Co-elution is a powerful tool for uncovering interactomes, and it provides many advantages over existing high-throughput interactome mapping technologies. In the future, we believe co-elution studies should move toward maximizing quantitation accuracy, lowering quantification limits and increasing separation resolution. This would allow the study of the interactome beyond the protein level (e.g. post-translational modifications) and the use of less sample amount, translating in lower costs and sustainable methods. Automatization of sample digestion would also improve the technique greatly, to alleviate the time-consuming analysis of multiple (>2) conditions.

      REFERENCES

        • Huttlin E.L.
        • Bruckner R.J.
        • Paulo J.A.
        • Cannon J.R.
        • Ting L.
        • Baltier K.
        • Colby G.
        • Gebreab F.
        • Gygi M.P.
        • Parzen H.
        • Szpyt J.
        • Tam S.
        • Zarraga G.
        • Pontano-Vaites L.
        • Swarup S.
        • White A.E.
        • Schweppe D.K.
        • Rad R.
        • Erickson B.K.
        • Obar R.A.
        • Guruharsha K.G.
        • Li K.
        • Artavanis-Tsakonas S.
        • Gygi S.P.
        • Harper J.W.
        Architecture of the human interactome defines protein communities and disease networks.
        Nature. 2017; 545: 505-509
        • Hein M.Y.
        • Hubner N.C.
        • Poser I.
        • Cox J.
        • Nagaraj N.
        • Toyoda Y.
        • Gak I.A.
        • Weisswange I.
        • Mansfeld J.
        • Buchholz F.
        • Hyman A.A.
        • Mann M.
        A human interactome in three quantitative dimensions organized by stoichiometries and abundances.
        Cell. 2015; 163: 712-723
        • Aebersold R.
        • Mann M.
        Mass-spectrometric exploration of proteome structure and function.
        Nature. 2016; 537: 347-355
        • Altelaar A.F.M.
        • Munoz J.
        • Heck A.J.R.
        Next-generation proteomics: towards an integrative view of proteome dynamics.
        Nat. Rev. Genet. 2013; 14: 35-48
        • Titeca K.
        • Lemmens I.
        • Tavernier J.
        • Eyckerman S.
        Discovering cellular protein-protein interactions: Technological strategies and opportunities.
        Mass Spectrom. Rev. 2019; 38: 79-111
        • Rattray D.G.
        • Foster L.J.
        Dynamics of protein complex components.
        Curr. Opinion Chem. Biol. 2019; 48: 81-85
        • Minic Z.
        • Dahms T.E.S.
        • Babu M.
        Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation.
        J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018; 1102–1103: 96-108
        • Snider J.
        • Kotlyar M.
        • Saraon P.
        • Yao Z.
        • Jurisica I.
        • Stagljar I.
        Fundamentals of protein interaction network mapping.
        Mol. Syst. Biol. 2015; 11: 848
        • Yugandhar K.
        • Gupta S.
        • Yu H.
        Inferring protein-protein interaction networks from mass spectrometry-based proteomic approaches: a mini-review.
        Comput. Struct. Biotechnol. J. 2019; 17: 805-811
        • Claire M.
        • Delahunty J.R.Y.I.
        Timothy D. Proteomics for Biological Discovery. Second Edition. Veenstra JRYI (Wiley), 2019: 125-144
        • Woodsmith J.
        • Stelzl U.
        Studying post-translational modifications with protein interaction networks.
        Curr. Opin. Struct. Biol. 2014; 24: 34-44
        • Kristensen A.R.
        • Foster L.J.
        High throughput strategies for probing the different organizational levels of protein interaction networks.
        Mol. Biosyst. 2013; 9: 2201-2212
        • Meyer K.
        • Selbach M.
        Quantitative affinity purification mass spectrometry: a versatile technology to study protein–protein interactions.
        Front. Genet. 2015; 6: 237
        • Dunham W.H.
        • Mullin M.
        • Gingras A.-C.
        Affinity-purification coupled to mass spectrometry: Basic principles and strategies.
        Proteomics. 2012; 12: 1576-1590
        • Varnaitė R.
        • MacNeill S.A.
        Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID.
        Proteomics. 2016; 16: 2503-2518
        • Kim D.I.
        • Jensen S.C.
        • Noble K.A.
        • Kc B.
        • Roux K.H.
        • Motamedchaboki K.
        • Roux K.J.
        An improved smaller biotin ligase for BioID proximity labeling.
        Mol. Biol. Cell. 2016; 27: 1188-1196
        • Andersen J.S.
        • Wilkinson C.J.
        • Mayor T.
        • Mortensen P.
        • Nigg E.A.
        • Mann M.
        Proteomic characterization of the human centrosome by protein correlation profiling.
        Nature. 2003; 426: 570-574
        • Foster L.J.
        • de Hoog C.L.
        • Zhang Y.
        • Zhang Y.
        • Xie X.
        • Mootha V.K.
        • Mann M.
        A mammalian organelle map by protein correlation profiling.
        Cell. 2006; 125: 187-199
        • Dunkley T.P.J.
        • Watson R.
        • Griffin J.L.
        • Dupree P.
        • Lilley K.S.
        Localization of organelle proteins by isotope tagging (LOPIT).
        Mol. Cell. Proteomics. 2004; 3: 1128-1134
        • Kristensen A.R.
        • Gsponer J.
        • Foster L.J.
        A high-throughput approach for measuring temporal changes in the interactome.
        Nat. Methods. 2012; 9: 907-909
        • Havugimana P.C.
        • Hart G.T.
        • Nepusz T.
        • Yang H.
        • Turinsky A.L.
        • Li Z.
        • Wang P.I.
        • Boutz D.R.
        • Fong V.
        • Phanse S.
        • Babu M.
        • Craig S.A.
        • Hu P.
        • Wan C.
        • Vlasblom J.
        • Dar V.-U. -N.
        • Bezginov A.
        • Clark G.W.
        • Wu G.C.
        • Wodak S.J.
        • Tillier E.R.M.
        • Paccanaro A.
        • Marcotte E.M.
        • Emili A.
        A census of human soluble protein complexes.
        Cell. 2012; 150: 1068-1081
        • Heide H.
        • Bleier L.
        • Steger M.
        • Ackermann J.
        • Dröse S.
        • Schwamb B.
        • Zörnig M.
        • Reichert A.S.
        • Koch I.
        • Wittig I.
        • Brandt U.
        Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex.
        Cell Metab. 2012; 16: 538-549
        • Stacey R.G.
        • Skinnider M.A.
        • Scott N.E.
        • Foster L.J.
        A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
        BMC Bioinformatics. 2017; 18: 457
        • Hu L.Z.
        • Goebels F.
        • Tan J.H.
        • Wolf E.
        • Kuzmanov U.
        • Wan C.
        • Phanse S.
        • Xu C.
        • Schertzberg M.
        • Fraser A.G.
        • Bader G.D.
        • Emili A.
        EPIC: software toolkit for elution profile-based inference of protein complexes.
        Nat. Methods. 2019; 16: 737-742
        • Larance M.
        • Lamond A.I.
        Multidimensional proteomics for cell biology.
        Nat. Rev. Mol. Cell Biol. 2015; 16: 269-280
        • Huttlin E.L.
        • Ting L.
        • Bruckner R.J.
        • Gebreab F.
        • Gygi M.P.
        • Szpyt J.
        • Tam S.
        • Zarraga G.
        • Colby G.
        • Baltier K.
        • Dong R.
        • Guarani V.
        • Vaites L.P.
        • Ordureau A.
        • Rad R.
        • Erickson B.K.
        • Wühr M.
        • Chick J.
        • Zhai B.
        • Kolippakkam D.
        • Mintseris J.
        • Obar R.A.
        • Harris T.
        • Artavanis-Tsakonas S.
        • Sowa M.E.
        • De Camilli P.
        • Paulo J.A.
        • Harper J.W.
        • Gygi S.P.
        The BioPlex Network: A systematic exploration of the human interactome.
        Cell. 2015; 162: 425-440
        • Dai L.
        • Zhao T.
        • Bisteau X.
        • Sun W.
        • Prabhu N.
        • Lim Y.T.
        • Sobota R.M.
        • Kaldis P.
        • Nordlund P.
        Modulation of protein-interaction states through the cell Cycle.
        Cell. 2018; 173: 1481-1494.e13
        • Becher I.
        • Andrés-Pons A.
        • Romanov N.
        • Stein F.
        • Schramm M.
        • Baudin F.
        • Helm D.
        • Kurzawa N.
        • Mateus A.
        • Mackmull M.-T.
        • Typas A.
        • Müller C.W.
        • Bork P.
        • Beck M.
        • Savitski M.M.
        Pervasive protein thermal stability variation during the cell cycle.
        Cell. 2018; 173: 1495-1507.e18
        • Scott N.E.
        • Rogers L.D.
        • Prudova A.
        • Brown N.F.
        • Fortelny N.
        • Overall C.M.
        • Foster L.J.
        Interactome disassembly during apoptosis occurs independent of caspase cleavage.
        Mol. Syst. Biol. 2017; 13: 906
        • Smits A.H.
        • Vermeulen M.
        Characterizing protein–protein interactions using mass spectrometry: challenges and opportunities.
        Trends Biotechnol. 2016; 34: 825-834
        • Ramani A.K.
        • Li Z.
        • Hart G.T.
        • Carlson M.W.
        • Boutz D.R.
        • Marcotte E.M.
        A map of human protein interactions derived from co-expression of human mRNAs and their orthologs.
        Mol. Syst. Biol. 2008; 4: 180
        • Dong M.
        • Yang L.L.
        • Williams K.
        • Fisher S.J.
        • Hall S.C.
        • Biggin M.D.
        • Jin J.
        • Witkowska H.E.
        A “tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking.
        J. Proteome Res. 2008; 7: 1836-1849
        • Olinares P.D.B.
        • Ponnala L.
        • van Wijk K.J.
        Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering.
        Mol. Cell. Proteomics. 2010; 9: 1594-1615
        • Wan C.
        • Borgeson B.
        • Phanse S.
        • Tu F.
        • Drew K.
        • Clark G.
        • Xiong X.
        • Kagan O.
        • Kwan J.
        • Bezginov A.
        • Chessman K.
        • Pal S.
        • Cromar G.
        • Papoulas O.
        • Ni Z.
        • Boutz D.R.
        • Stoilova S.
        • Havugimana P.C.
        • Guo X.
        • Malty R.H.
        • Sarov M.
        • Greenblatt J.
        • Babu M.
        • Derry W.B.
        • Tillier E.R.
        • Wallingford J.B.
        • Parkinson J.
        • Marcotte E.M.
        • Emili A.
        Panorama of ancient metazoan macromolecular complexes.
        Nature. 2015; 525: 339-344
        • Kastritis P.L.
        • O'Reilly F.J.
        • Bock T.
        • Li Y.
        • Rogon M.Z.
        • Buczak K.
        • Romanov N.
        • Betts M.J.
        • Bui K.H.
        • Hagen W.J.
        • Hennrich M.L.
        • Mackmull M.-T.
        • Rappsilber J.
        • Russell R.B.
        • Bork P.
        • Beck M.
        • Gavin A.-C.
        Capturing protein communities by structural proteomics in a thermophilic eukaryote.
        Mol. Syst. Biol. 2017; 13: 936
        • Gilbert M.
        • Schulze W.X.
        Global identification of protein complexes within the membrane proteome of Arabidopsis roots using a SEC-MS approach.
        J. Proteome Res. 2019; 18: 107-119
        • Heusel M.
        • Bludau I.
        • Rosenberger G.
        • Hafen R.
        • Frank M.
        • Banaei-Esfahani A.
        • Drogen A.
        • Collins B.C.
        • Gstaiger M.
        • Aebersold R.
        Complex-centric proteome profiling by SEC - SWATH - MS.
        Molecular Systems Biology. 2019; 15e8438
        • Aryal U.K.
        • McBride Z.
        • Chen D.
        • Xie J.
        • Szymanski D.B.
        Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling.
        J. Proteomics. 2017; 166: 8-18
        • McBride Z.
        • Chen D.
        • Lee Y.
        • Aryal U.K.
        • Xie J.
        • Szymanski D.B.
        A label-free mass spectrometry method to predict endogenous protein complex composition.
        Mol. Cell. Proteomics. 2019; 18: 1588-1606
        • O'Meara T.R.
        • O'Meara M.J.
        • Polvi E.J.
        • Pourhaghighi M.R.
        • Liston S.D.
        • Lin Z.-Y.
        • Veri A.O.
        • Emili A.
        • Gingras A.-C.
        • Cowen L.E.
        Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen.
        PLos Biol. 2019; 17e3000358
        • Carlson M.L.
        • Young J.W.
        • Zhao Z.
        • Fabre L.
        • Jun D.
        • Li J.
        • Li J.
        • Dhupar H.S.
        • Wason I.
        • Mills A.T.
        • Beatty J.T.
        • Klassen J.S.
        • Rouiller I.
        • Duong F.
        The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution.
        Elife. 2018; 7e34085
        • Carlson M.L.
        • Stacey R.G.
        • Young J.W.
        • Wason I.S.
        • Zhao Z.
        • Rattray D.G.
        • Scott N.
        • Kerr C.H.
        • Babu M.
        • Foster L.J.
        • Duong F.V.H.
        Profiling the E. coli membrane interactome captured in peptidisc libraries.
        Elife. 2019; 8e46615
        • Maddalo G.
        • Stenberg-Bruzell F.
        • Götzke H.
        • Toddo S.
        • Björkholm P.
        • Eriksson H.
        • Chovanec P.
        • Genevaux P.
        • Lehtiö J.
        • Ilag L.L.
        • Daley D.O.
        Systematic analysis of native membrane protein complexes in Escherichia coli.
        J. Proteome Res. 2011; 10: 1848-1859
        • Walian P.J.
        • Allen S.
        • Shatsky M.
        • Zeng L.
        • Szakal E.D.
        • Liu H.
        • Hall S.C.
        • Fisher S.J.
        • Lam B.R.
        • Singer M.E.
        • Geller J.T.
        • Brenner S.E.
        • Chandonia J.-M.
        • Hazen T.C.
        • Witkowska H.E.
        • Biggin M.D.
        • Jap B.K.
        High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.
        J. Proteome Res. 2012; 11: 5720-5735
        • Babu M.
        • Bundalovic-Torma C.
        • Calmettes C.
        • Phanse S.
        • Zhang Q.
        • Jiang Y.
        • Minic Z.
        • Kim S.
        • Mehla J.
        • Gagarinova A.
        • Rodionova I.
        • Kumar A.
        • Guo H.
        • Kagan O.
        • Pogoutse O.
        • Aoki H.
        • Deineko V.
        • Caufield J.H.
        • Holtzapple E.
        • Zhang Z.
        • Vastermark A.
        • Pandya Y.
        • Lai C.C.-L.
        • El Bakkouri M.
        • Hooda Y.
        • Shah M.
        • Burnside D.
        • Hooshyar M.
        • Vlasblom J.
        • Rajagopala S.V.
        • Golshani A.
        • Wuchty S.F.
        • Greenblatt J
        • Saier M.
        • Uetz P. F
        • Moraes T
        • Parkinson J.
        • Emili A.
        Global landscape of cell envelope protein complexes in Escherichia coli.
        Nat. Biotechnol. 2018; 36: 103-112
        • Denisov I.G.
        • Sligar S.G.
        Nanodiscs for structural and functional studies of membrane proteins.
        Nat. Struct. Mol. Biol. 2016; 23: 481-486
        • Kirkwood K.J.
        • Ahmad Y.
        • Larance M.
        • Lamond A.I.
        Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.
        Mol. Cell. Proteomics. 2013; 12: 3851-3873
        • Kunji E.R.S.
        • Harding M.
        • Butler P.J.G.
        • Akamine P.
        Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography.
        Methods. 2008; 46: 62-72
        • Larance M.
        • Kirkwood K.J.
        • Tinti M.
        • Brenes Murillo A.
        • Ferguson M.A.J.
        • Lamond A.I.
        Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling.
        Mol. Cell. Proteomics. 2016; 15: 2476-2490
        • Jungbauer A.
        • Hahn R.
        Ion-exchange chromatography.
        Methods Enzymol. 2009; 463: 349-371
        • Havugimana P.C.
        • Wong P.
        • Emili A.
        Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography.
        J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007; 847: 54-61
        • Wagner B.M.
        • Schuster S.A.
        • Boyes B.E.
        • Shields T.J.
        Superficially porous particles with 1000 Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.
        J. Chromatogr. A. 2017; 1489: 75-85
        • Goyon A.
        • Beck A.
        • Colas O.
        • Sandra K.
        • Guillarme D.
        • Fekete S.
        Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins.
        J. Chromatogr. A. 2017; 1498: 80-89
        • Chen W.
        • Jiang K.
        • Mack A.
        • Sachok B.
        • Zhu X.
        • Barber W.E.
        • Wang X.
        Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies.
        J. Chromatogr. A. 2015; 1414: 147-157
        • Zhang K.
        • Liu X.
        Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications.
        J. Pharm. Biomed. Anal. 2016; 128: 73-88
        • Merl J.
        • Ueffing M.
        • Hauck S.M.
        • von Toerne C.
        Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Müller cells.
        Proteomics. 2012; 12: 1902-1911
        • Cox J.
        • Hein M.Y.
        • Luber C.A.
        • Paron I.
        • Nagaraj N.
        • Mann M.
        Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
        Mol. Cell. Proteomics. 2014; 13: 2513-2526
        • Ong S.-E.
        • Blagoev B.
        • Kratchmarova I.
        • Kristensen D.B.
        • Steen H.
        • Pandey A.
        • Mann M.
        Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
        Mol. Cell. Proteomics. 2002; 1: 376-386
        • Rauniyar N.
        • McClatchy D.B.
        • Yates 3rd, J.R.
        Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis.
        Methods. 2013; 61: 260-268
        • Skinnider M.A.
        • Scott N.E.
        • Prudova A.
        • Stoynov N.
        • Stacey R.G.
        • Gsponer J.
        • Foster L.J.
        An atlas of protein-protein interactions across mammalian tissues.
        bioRxiv. 2018; (10.1101/351247)
        • Geiger T.
        • Wisniewski J.R.
        • Cox J.
        • Zanivan S.
        • Kruger M.
        • Ishihama Y.
        • Mann M.
        Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
        Nat. Protoc. 2011; 6: 147-157
        • Wan C.
        • Liu J.
        • Fong V.
        • Lugowski A.
        • Stoilova S.
        • Bethune-Waddell D.
        • Borgeson B.
        • Havugimana P.C.
        • Marcotte E.M.
        • Emili A.
        ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS.
        J. Proteomics. 2013; 81: 102-111
        • Connelly K.E.
        • Hedrick V.
        • Paschoal Sobreira T.J.
        • Dykhuizen E.C.
        • Aryal U.K.
        Analysis of human nuclear protein complexes by quantitative mass spectrometry profiling.
        Proteomics. 2018; 18e1700427
        • Hakes L.
        • Robertson D.L.
        • Oliver S.G.
        • Lovell S.C.
        Protein interactions from complexes: a structural perspective.
        Comparative Functional Genomics. 2007; 2007: 1-5
        • Shatsky M.
        • Dong M.
        • Liu H.
        • Yang L.L.
        • Choi M.
        • Singer M.E.
        • Geller J.T.
        • Fisher S.J.
        • Hall S.C.
        • Hazen T.C.
        • Brenner S.E.
        • Butland G.
        • Jin J.
        • Witkowska H.E.
        • Chandonia J.-M.
        • Biggin M.D.
        Quantitative tagless copurification: a method to validate and identify protein-protein interactions.
        Mol. Cell. Proteomics. 2016; 15: 2186-2202
        • Drew K.
        • Lee C.
        • Huizar R.L.
        • Tu F.
        • Borgeson B.
        • McWhite C.D.
        • Ma Y.
        • Wallingford J.B.
        • Marcotte E.M.
        Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes.
        Mol. Syst. Biol. 2017; 13: 932
        • Goebels F.
        • Hu L.
        • Bader G.
        • Emili A.
        Automated computational inference of multi-protein assemblies from biochemical co-purification data.
        Methods Mol. Biol. 2018; 1764: 391-399
        • Giurgiu M.
        • Reinhard J.
        • Brauner B.
        • Dunger-Kaltenbach I.
        • Fobo G.
        • Frishman G.
        • Montrone C.
        • Ruepp A.
        CORUM: the comprehensive resource of mammalian protein complexes-2019.
        Nucleic Acids Res. 2019; 47: D559-D563
        • Nepusz T.
        • Yu H.
        • Paccanaro A.
        Detecting overlapping protein complexes in protein-protein interaction networks.
        Nat. Methods. 2012; 9: 471-472
        • Gates A.J.
        • Wood I.B.
        • Hetrick W.P.
        • Ahn Y.-Y.
        Element-centric clustering comparison unifies overlaps and hierarchy.
        Sci. Rep. 2019; 98574
        • Freytag S.
        • Tian L.
        • Lönnstedt I.
        • Ng M.
        • Bahlo M.
        Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data.
        F1000Research. 2018; 71297
        • Song J.
        • Singh M.
        How and when should interactome-derived clusters be used to predict functional modules and protein function?.
        Bioinformatics. 2009; 25: 3143-3150
        • Brohée S.
        • van Helden J.
        Evaluation of clustering algorithms for protein-protein interaction networks.
        BMC Bioinformatics. 2006; 7: 488
        • Hillier C.
        • Pardo M.
        • Yu L.
        • Bushell E.
        • Sanderson T.
        • Metcalf T.
        • Herd C.
        • Anar B.
        • Rayner J.C.
        • Billker O.
        • Choudhary J.S.
        Landscape of the Plasmodium interactome reveals both conserved and species-specific functionality.
        Cell Rep. 2019; 28: 1635-1647.e5
        • Celaj A.
        • Schlecht U.
        • Smith J.D.
        • Xu W.
        • Suresh S.
        • Miranda M.
        • Aparicio A.M.
        • Proctor M.
        • Davis R.W.
        • Roth F.P.
        • St Onge R.P.
        Quantitative analysis of protein interaction network dynamics in yeast.
        Mol. Syst. Biol. 2017; 13: 934
        • Stacey R.G.
        • Skinnider M.A.
        • Chik J.H.L.
        • Foster L.J.
        Context-specific interactions in literature-curated protein interaction databases.
        BMC Genomics. 2018; 19: 758
        • Skinnider M.A.
        • Stacey R.G.
        • Foster L.J.
        Genomic data integration systematically biases interactome mapping.
        PLoS Comput. Biol. 2018; 14e1006474
        • Scott N.E.
        • Brown L.M.
        • Kristensen A.R.
        • Foster L.J.
        Development of a computational framework for the analysis of protein correlation profiling and spatial proteomics experiments.
        J. Proteomics. 2015; 118: 112-129