- Lock C.
- Hermans G.
- Pedotti R.
- Brendolan A.
- Schadt E.
- Garren H.
- Langer-Gould A.
- Strober S.
- Cannella B.
- Allard J.
- Klonowski P.
- Austin A.
- Lad N.
- Kaminski N.
- Galli S.J.
- Oksenberg J.R.
- Raine C.S.
- Heller R.
- Steinman L.
- Stoop M.P.
- Dekker L.J.
- Titulaer M.K.
- Lamers R.J.
- Burgers P.C.
- Sillevis Smitt P.A.
- van Gool A.J.
- Luider T.M.
- Hintzen R.Q.
- Tumani H.
- Lehmensiek V.
- Rau D.
- Guttmann I.
- Tauscher G.
- Mogel H.
- Palm C.
- Hirt V.
- Suessmuth S.D.
- Sapunova-Meier I.
- Ludolph A.C.
- Brettschneider J.
- Ottervald J.
- Franzen B.
- Nilsson K.
- Andersson L.I.
- Khademi M.
- Eriksson B.
- Kjellstrom S.
- Marko-Varga G.
- Vegvari A.
- Harris R.A.
- Laurell T.
- Miliotis T.
- Matusevicius D.
- Salter H.
- Ferm M.
- Olsson T.
- Vanheel A.
- Daniels R.
- Plaisance S.
- Baeten K.
- Hendriks J.J.
- Leprince P.
- Dumont D.
- Robben J.
- Brone B.
- Stinissen P.
- Noben J.P.
- Hellings N.
- Ottervald J.
- Franzen B.
- Nilsson K.
- Andersson L.I.
- Khademi M.
- Eriksson B.
- Kjellstrom S.
- Marko-Varga G.
- Vegvari A.
- Harris R.A.
- Laurell T.
- Miliotis T.
- Matusevicius D.
- Salter H.
- Ferm M.
- Olsson T.
- Tumani H.
- Lehmensiek V.
- Rau D.
- Guttmann I.
- Tauscher G.
- Mogel H.
- Palm C.
- Hirt V.
- Suessmuth S.D.
- Sapunova-Meier I.
- Ludolph A.C.
- Brettschneider J.
- Stoop M.P.
- Dekker L.J.
- Titulaer M.K.
- Lamers R.J.
- Burgers P.C.
- Sillevis Smitt P.A.
- van Gool A.J.
- Luider T.M.
- Hintzen R.Q.
MATERIALS AND METHODS
EAE Induction and Tissue Collection
Preparation of Soluble Protein Extracts from Spinal Cord Tissue
Preparation of Membrane-enriched Protein Fractions from PBMCs
Protein Digestion by Filter-aided Sample Preparation (FASP)
Mass Spectrometry Analysis
Database Search and Protein Identification
Protein Quantification and Statistical Analysis
Bioinformatics Analysis
Pathway Enrichment Analyses
Quantitative Western Blot Analysis
Label-free MRM-based Validation of Candidate Biomarkers
Peptide Quantitation by Label-free MRM
RESULTS
Label-free Peptide Quantification Reveals Novel Disease Markers of EAE



UniProt ID | Gene ID | Protein description | Spectral counting (MS2) | Progenesis LC-MS (MS1) | MRM | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p value (KS-test) | %CV | log2-fold Δ | # UPEPS | p value (ANOVA) | Max. fold Δ | # UPEPS for quant. | p value ≤ 0.05 (t-test), # UPEPS | ||||||
EAE | Sham | EAE | MScl | ||||||||||
↑ EAE | |||||||||||||
P07724 | Alb | Serum albumin | 4.11E-05 | 28.0 | 4.2 | 51 | 13 | 5.98E-04 | 17.0 | 14 | ✓, 3 | ( 24 , 27 , 29 ,
Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. PLoS One. 2012; 7: e35544 88 , 89 ) | ( 30 ) |
P29699 | Ahsg | Alpha-2-HS-glycoprotein | 2.47E-04 | 29.0 | 10.2 | 8 | 0 | 1.20E-03 | 10.1 | 3 | ✓, 3 | ( 24 , 28 ) | ( 17 ,
Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J. Proteomics. 2010; 73: 1117-1132 90 ) |
P12246 | Apcs | Serum amyloid P-component | 3.36E-04 | 4.19 | 1 | NA | ( 26 ) | ( 91 ) | |||||
Q61176 | Arg1 | Arginase-1 | 2.47E-04 | 75.8 | 9.2 | 7 | 0 | 6.59E-03 | 5.44 | 3 | ✓, 3 | ( 19 , 21 , 92 ) | |
P01887 | B2m | Beta-2-microglobulin | 3.96E-04 | 93.3 | 1 | NA | ( 25 , 28 ) | ( 30 ) | |||||
P01027 | C3 | Isoform Long of Complement C3 (Fragment) | 2.47E-04 | 52.4 | 9.2 | 26 | 0 | 1.54E-03 | 8.41 | 10 | ✓, 3 | ( 19 , 21 , 23 , 24 , 28 , 93 ) | ( 11 , 13 ,
Quantitative matrix-assisted laser desorption ionization-fourier transform ion cyclotron resonance (MALDI-FT-ICR) peptide profiling and identification of multiple-sclerosis-related proteins. J. Proteome Res. 2009; 8: 1404-1414 94 , 95 , 96 , 97 , 98 ) |
O35744 | Chi3l3 | Chitinase-3-like protein 3 | 1.63E-03 | 62.6 | 8.6 | 6 | 0 | 9.07E-03 | 8.13 | 6 | ✓, 3 | ( 19 , 23 ) | |
Q9Z1Q5 | Clic1 | Chloride intracellular channel protein 1 | 8.64E-03 | 82.3 | 8.1 | 4 | 0 | 8.02E-04 | 5.5 | 2 | ✓, 3 | ( 22 , 26 , 29 )
Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. PLoS One. 2012; 7: e35544 | |
P26040 | Ezr | Ezrin | 2.47E-04 | 28.1 | 7.4 | 2 | 0 | 5.65E-03 | 3.09 | 1 | ✓, 2 | ||
Q6WVG3 | Kctd12 | BTB/POZ domain-containing protein KCTD12 | 8.64E-03 | 56.9 | 6.7 | 1 | 0 | ✓, 3 | |||||
P16110 | Lgals3 | Galectin-3 | 3.66E-02 | 86.2 | 7.4 | 1 | 0 | 1.34E-03 | 3.10 | 1 | ✓, 1 | ( 19 , 21 , 99 ) | ( 100 ) |
P26041 | Msn | Moesin | 4.11E-05 | 16.4 | 1.1 | 19 | 12 | 5.36E-04 | 2.50 | 8 | ✓, 3 | ( 19 , 24 ) | ( 101 ) |
P21614 | Gc | Vitamin d-binding protein | 1.63E-03 | 61.1 | 8.5 | 5 | 0 | 6.32E-03 | 17.2 | 1 | ✓, 3 | ( 28 ) | ( 16 , 17 ,
Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J. Proteomics. 2010; 73: 1117-1132 91 ) |
Q99KQ4 | Nampt | Nicotinamide phosphoribosyltransferase | 2.47E-04 | 59.8 | 4.2 | 9 | 1 | 9.10E-04 | 3.17 | 4 | ✓, 2 | ||
Q62422 | Ostf1 | Osteoclast-stimulating factor 1 | 3.66E-02 | 97.4 | 7.8 | 2 | 0 | ✓, 1 | |||||
P29351-2 | Ptpn6 | Isoform 2 of Tyrosine-protein phosphatase nonreceptor type 6 | 3.66E-02 | 80.5 | 6.4 | 3 | 0 | 3.42E-03 | 3.69 | 3 | ✓, 2 | ||
P42225 | Stat1 | Signal transducer and activator of transcription 1 | 2.47E-04 | 21.7 | 9.9 | 17 | 0 | 3.93E-06 | 4.97 | 7 | ✓, 3 | ( 19 , 21 , 23 ) | ( 12 ) |
↓ EAE | |||||||||||||
Q8C8R3-2 | Ank2 | Isoform 2 of Ankyrin-2 | 8.64E-03 | 20.6 | −1.3 | 4 | 9 | 9.20E-04 | −2.26 | 3 | ✓, 3 | ||
Q8R3P0 | Aspa | Aspartoacylase | 8.64E-03 | 22.4 | −1.1 | 4 | 6 | ✓, 3 | |||||
Q06138 | Cab39 | Calcium-binding protein 39 | 8.64E-03 | 52.7 | −1.8 | 1 | 3 | 1.69E-03 | −4.05 | 2 | ✓, 3 | ||
Q91XM9-1 | Dlg2 | Isoform 1 of Disks large homolog 2 | 2.47E-04 | 1.88 | −5.5 | 0 | 1 | ✓, 1 | |||||
P11499 | Hsp90ab1 | Heat shock protein HSP 90-beta | 5.43E-05 | −3.22 | 3 | NA | |||||||
O89112 | Lancl1 | LanC-like protein 1 | 1.63E-03 | 36.9 | −3.2 | 1 | 4 | 2.45E-03 | −1.58 | 1 | ✓, 3 | ||
Q9JJK2 | Lancl2 | LanC-like protein 2 | 8.64E-03 | 29.8 | −2.2 | 1 | 2 | ✓, 1 | |||||
P63085 | Mapk1 | Mitogen-activated protein kinase 1 | 1.10E-03 | −2.38 | 3 | NA | |||||||
Q80W80 | Mapk10 | JNK3 beta2 protein kinase | 2.47E-04 | 35.4 | −6.7 | 0 | 1 | ✓, 1 | |||||
P04370-4 | Mbp | Isoform 4 of Myelin basic protein | 2.47E-04 | 38.3 | −10.3 | 0 | 4 | ✓, 1 | |||||
Q91XL9 | Osbpl1a | Oxysterol-binding protein-related protein 1 | 1.63E-03 | 33.6 | −4.7 | 1 | 4 | 6.70E-03 | −2.35 | 1 | ✓, 3 | ||
P70296 | Pebp1 | Phosphatidylethanolamine-binding protein 1 | 1.27E-04 | −3.34 | 1 | NA | |||||||
Q9QZ06 | Tollip | Toll-interacting protein | 8.64E-03 | 79.6 | −7.8 | 0 | 3 | 1.25E-02 | −1.87 | 1 | ✓, 2 |
UniProt ID | Gene ID | Protein description | Spectral counting (MS2) | Progenesis LC-MS (MS1) | MRM | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p value (KS-test) | %CV | Log2-fold Δ | # UPEPS | p value (ANOVA) | Max fold Δ | # UPEPS for quant. | p value < 0.05 (t-test), # UPEPS | ||||||
EAE | Sham | EAE | MScl | ||||||||||
↑ EAE | |||||||||||||
O08538 | Angpt1 | Angiopoietin-1 | 3.66E-02 | 100 | 8.6 | 5 | 0 | ✓, 2 | ( 102 ) | ||||
D3YVS6 | AU023871 | ITIM-receptor G6b-B | 8.64E-03 | 20.1 | 1.2 | 3 | 3 | ✓, 2 | |||||
O08529 | Capn2 | Calpain-2 catalytic subunit | 2.47E-04 | 32.3 | 2.9 | 7 | 2 | ✓, 1 | ( 103 ) | ( 104 ) | |||
Q9JL99 | Clec1b | C-type lectin domain family 1 member B | 3.36E-02 | 25.1 | 0.60 | 7 | 7 | 1.74E-02 | 1.64 | 2 | NA | ||
P11276 | Fn1 | Fibronectin | 3.66E-02 | 71.9 | 2.7 | 4 | 3 | ✓, 1 | ( 105 ) | ||||
P63038 | Hspd1 | Isoform 1 of 60 kDa heat shock protein, mitochondrial | 4.11E-05 | 20.8 | 1.5 | 24 | 16 | 2.84E-02 | 3.13 | 9 | ✓, 3 | ||
P25911-2 | Lyn | Isoform LYN B of Tyrosine-protein kinase Lyn | 3.36E-02 | 29.8 | 0.50 | 16 | 14 | 2.11E-03 | 1.67 | 4 | NA | ||
B1ARB3 | Pecam1 | Platelet endothelial cell adhesion molecule | 3.66E-02 | 63.7 | 2.8 | 4 | 2 | ✓, 1 | ( 106 , 107 , 108 ) | ||||
Q62087 | Pon3 | Serum paraoxonase/lactonase 3 | 4.11E-05 | 17.2 | 1.2 | 6 | 3 | ✓, 1 | |||||
P35441 | Thbs1 | Thrombospondin 1 | 4.11E-05 | 22.6 | 0.88 | 36 | 30 | 3.32E-02 | 1.47 | 17 | ✓, 1 | ( 102 , 109 ) | ( 110 )
Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers. Mult. Scler. 2011; 17: 43-56 |
Q3UZG1 | Trpc6 | Short transient receptor potential channel 6 | 8.64E-03 | 50.4 | 2.4 | 1 | 1 | ✓, 2 | |||||
Q07235 | Serpine2 | Glia-derived nexin | 4.11E-05 | 27.6 | 1.7 | 8 | 6 | 1.77E-02 | 2.00 | 4 | ✓, 3 | ( 111 ) | |
A3KGU9 | Spna2 | Spectrin alpha 2 | 7.40E-04 | 47.9 | 2.1 | 13 | 6 | ✓, 2 | |||||
Q62261-2 | Sptbn1 | Isoform 2 of Spectrin beta chain, brain 1 | 7.40E-04 | 20.8 | 1.50 | 29 | 12 | 6.84E-03 | 1.64 | 18 | ✓, 3 | ||
↓ EAE | |||||||||||||
P10107 | Anxa1 | Annexin A1 | 3.36E-02 | 31.0 | −1.0 | 7 | 10 | 3.66E-02 | −2.60 | 5 | ✓, 3 | ||
P01027-1 | C3 # | Isoform Long of Complement C3 (Fragment) | 2.47E-04 | 47.7 | −3.4 | 3 | 9 | 2.58E-02 | −1.97 | 6 | ✓, 3 | ||
Q3U1U4 | Itgam | Integrin alpha-M | 8.64E-03 | 60.7 | −2.3 | 1 | 7 | ✓, 3 | |||||
P11672 | Lcn2 | Neutrophil gelatinase-associated lipocalin | 8.64E-03 | 55.7 | −2.3 | 2 | 5 | 3.06E-02 | −3.64 | 1 | ✓, 2 | ( 112 ) | |
Q61233 | Lcp1# | Plastin-2 | 2.74E-04 | 45.3 | −3.8 | 3 | 14 | 9.17E-03 | −2.93 | 5 | ✓, 4 | ||
P08071 | Ltf | Lactotransferrin | 8.64E-03 | 70.6 | −2.4 | 7 | 21 | 1.22E-02 | −3.14 | 3 | ✓, 4 | ||
P26041 | Msn# | Moesin | 6.29E-03 | 25.9 | −1.1 | 3 | 8 | 1.29E-02 | −1.71 | 5 | ✓, 2 | ||
Q62422 | Ostf1# | Osteoclast-stimulating factor 1 | 3.66E-02 | 78.7 | −7.9 | 0 | 2 | 2.45E-02 | −3.27 | 1 | ✓, 2 | ||
Q61096 | Prtn3 | Myeloblastin | 8.64E-03 | 48.7 | −2.3 | 2 | 3 | 4.52E-02 | −3.90 | 2 | ✓, 2 | ||
P27005 | S100a8 | Protein S100-A8 | 8.64E-03 | 39.4 | −1.8 | 3 | 3 | ✓, 2 | |||||
P31725 | S100a9 | Protein S100-A9 | 1.63E-03 | 43.0 | −2.1 | 2 | 3 | 2.86E-02 | −4.19 | 1 | ✓, 2 | ||
Q921I1 | Trf # | Serotransferrin | 2.47E-04 | 47.9 | −3.3 | 3 | 9 | 4.61E-4 | −2.94 | 5 | ✓, 3 | ||
Q62351 | Tfrc | Transferrin receptor protein 1 | 2.47E-04 | 28.3 | −10.0 | 0 | 12 | 3.70E-03 | −9.00 | 5 | ✓, 3 | ( 113 , 114 )
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013; 41: D1063-1069 |


KEGG pathway | Count | % | p value | Fold enrichment | Benjamini | Genes |
---|---|---|---|---|---|---|
From genes ↑ EAE spinal cord | ||||||
Proteasome | 9 | 0.32 | 5.56E-07 | 11.9 | 5.00E-05 | PSMB10, PSMC5, PSMA6, PSMB1, PSME1, PSME2, PSMD1, PSMC1, PSMA3, PSME2B-PS |
Regulation of actin cytoskeleton | 13 | 0.46 | 1.42E-04 | 3.7 | 6.37E-03 | ACTB, ACTN4, ACTN1, MYH9, VCL, PFN1, ARPC1B, EZR, GSN, RAC1, CFL1, RHOA, MSN |
Complement and coagulation cascades | 8 | 0.28 | 1.65E-04 | 6. 7 | 4.95E-03 | KNG1, FGG, FGA, SERPINA1B, FGB, C3, SERPINA1D, C1QC |
Adherens junction | 7 | 0.25 | 1.21E-03 | 5.7 | 2.68E-02 | ACTB, PTPN6, ACTN4, RAC1, RHOA, ACTN1, VCL |
Leukocyte transendothelial migration | 8 | 0.28 | 2.65E-03 | 4. 2 | 4.67E-02 | ACTB, EZR, ACTN4, RAC1, RHOA, ACTN1, MSN, VCL |
From genes ↓ EAE spinal cord | ||||||
Citrate cycle (TCA cycle) | 7 | 0.19 | 1.74E-05 | 12.1 | 1.90E-03 | SDHA, IDH3G, ACO1, ACLY, FH1, SUCLA2, MDH1 |
Alanine, aspartate and glutamate metabolism | 6 | 0.17 | 2.31E-04 | 6.3 | 1.05E-02 | GLUL, ASPA, GOT1, GLUD1, ADSL, ABAT |
Arginine and proline metabolism | 7 | 0.19 | 3.91E-04 | 7.1 | 1.06E-02 | GLUL, ALDH7A1, GOT1, CKMT2, GLUD1, CKMT1, ALDH2 |
Pyruvate metabolism | 6 | 0.17 | 8.64E-04 | 7.8 | 1.87E-02 | ALDH7A1, PKM2, LOC100047228, ALDH2, GRHPR, ACAT2, MDH1 |
Propanoate metabolism | 5 | 0.14 | 2.08E-03 | 8.9 | 3.72E-02 | ALDH7A1, ALDH2, ABAT, SUCLA2, ACAT2 |
Glyoxylate and dicarboxylate metabolism | 4 | 0.11 | 2.88E-03 | 13.4 | 4.39E-02 | PGP, ACO1, GRHPR, MDH1 |
Cysteine and methionine metabolism | 5 | 0.14 | 2.98E-03 | 8.1 | 3.99E-02 | GOT1, MAT2A, MTAP, AHCYL1, AHCYL2 |
Endocytosis | 11 | 0.30 | 3.92E-03 | 2.9 | 4.65E-02 | DNM3, EPN3, AP2A2, AP2B1, AP2A1, DNAJC6, PDCD6IP, DNM1, SH3GL2, EHD3, AP2M1 |
KEGG pathway | Count | % | p value | Fold enrichment | Benjamini | Genes |
---|---|---|---|---|---|---|
From genes ↑ EAE membrane-enriched PBMCs | ||||||
ECM-receptor interaction | 10 | 0.48 | 9.19E-07 | 9.2 | 7.81E-05 | VWF, GP5, ITGA6, ITGA2, GP1BA, ITGB3, THBS1, ITGB1, ITGA2B, FN1 |
Focal adhesion | 14 | 0.67 | 1.09E-06 | 5.4 | 4.63E-05 | ACTB, 2900073G15RIK, ITGA2, ITGB3, CAPN2, ITGB1, FLNA, PRKCB, VWF, ITGA6, LOC640441, GM6517, THBS1, PARVB, ITGA2B, FN1 |
Butanoate metabolism | 7 | 0.33 | 6.35E-06 | 14.5 | 1.80E-04 | ACADS, OXCT1, PDHA1, HADH, ACAT1, HADHA, ALDH9A1 |
Fatty acid metabolism | 7 | 0.33 | 2.05E-05 | 11.9 | 4.35E-04 | CPT2, ACADS, HADH, ACAA1A, ACAT1, HADHA, ALDH9A1 |
Valine, leucine and isoleucine degradation | 7 | 0.33 | 2.33E-05 | 11.6 | 3.97E-04 | ACADS, OXCT1, HADH, ACAA1A, ACAT1, HADHA, ALDH9A1 |
Citrate cycle (TCA cycle) | 6 | 0.29 | 4.07E-05 | 14.8 | 5.77E-04 | SDHA, IDH3B, PDHA1, FH1, OGDH, MDH2 |
From genes ↓ EAE membrane-enriched PBMCs | ||||||
Ribosome | 12 | 0.60 | 4.39E-11 | 16.9 | 1.58E-09 | RPL14, RPLP2, RPLP0, RPS27A, WDR89, UBA52, RPS28, RPL8, RPSA, RPS7, RPL30-PS2, UBC, UBB, RPL27A, RPL30, RPL24, RPL23 |
Antigen processing and presentation | 9 | 0.45 | 3.91E-07 | 12.3 | 7.04E-06 | HSP90AB1, PDIA3, IFI30, CALR, TAPBP, PSME1, PSME2, PSME2B-PS, HSPA4, HSPA5 |

Orthogonal Validation of Candidate Biomarkers by Western Blot Analysis

Candidate Biomarker Validation by Targeted Mass Spectrometry (Label-free MRM)




DISCUSSION
Label-free Based Proteomic Identification and Subsequent Label-free MRM Validation of EAE Biomarkers
Biological Significance of the Putative Disease Markers Detected in the Spinal Cord
- Kong Y.Y.
- Feige U.
- Sarosi I.
- Bolon B.
- Tafuri A.
- Morony S.
- Capparelli C.
- Li J.
- Elliott R.
- McCabe S.
- Wong T.
- Campagnuolo G.
- Moran E.
- Bogoch E.R.
- Van G.
- Nguyen L.T.
- Ohashi P.S.
- Lacey D.L.
- Fish E.
- Boyle W.J.
- Penninger J.M.
- Patarca R.
- Freeman G.J.
- Singh R.P.
- Wei F.Y.
- Durfee T.
- Blattner F.
- Regnier D.C.
- Kozak C.A.
- Mock B.A.
- Morse 3rd, H.C.
- et al.
- Ottervald J.
- Franzen B.
- Nilsson K.
- Andersson L.I.
- Khademi M.
- Eriksson B.
- Kjellstrom S.
- Marko-Varga G.
- Vegvari A.
- Harris R.A.
- Laurell T.
- Miliotis T.
- Matusevicius D.
- Salter H.
- Ferm M.
- Olsson T.
The Biological Significance of the Putative Disease Markers Detected in the Membrane-enriched PBMCs
- Schattling B.
- Steinbach K.
- Thies E.
- Kruse M.
- Menigoz A.
- Ufer F.
- Flockerzi V.
- Bruck W.
- Pongs O.
- Vennekens R.
- Kneussel M.
- Freichel M.
- Merkler D.
- Friese M.A.
- Mikita J.
- Dubourdieu-Cassagno N.
- Deloire M.S.
- Vekris A.
- Biran M.
- Raffard G.
- Brochet B.
- Canron M.H.
- Franconi J.M.
- Boiziau C.
- Petry K.G.
CONCLUSIONS
Acknowledgments
Supplementary Material
REFERENCES
- Multiple sclerosis.Lancet. 2002; 359: 1221-1231
- The initiation and prevention of multiple sclerosis.Nat. Rev. Neurol. 2012; 8: 602-612
- Animal models of multiple sclerosis: the good, the bad and the bottom line.Nat. Neurosci. 2012; 15: 1074-1077
- How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis.Ann. Neurol. 2006; 60: 12-21
- Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research.Brain. 2006; 129: 1953-1971
- Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis.Proteomics Clin. Appl. 2013; 7: 91-108
- Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis.Nat. Med. 2002; 8: 500-508
- Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease.Hum. Mol. Genet. 2003; 12: 2191-2199
- Cerebrospinal fluid proteome profile in multiple sclerosis.Mult. Scler. 2007; 13: 840-849
- CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis.Eur. J. Neurol. 2008; 15: 998-1001
- Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry.Proteomics. 2008; 8: 1576-1585
- Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets.Nature. 2008; 451: 1076-1081
- Quantitative matrix-assisted laser desorption ionization-fourier transform ion cyclotron resonance (MALDI-FT-ICR) peptide profiling and identification of multiple-sclerosis-related proteins.J. Proteome Res. 2009; 8: 1404-1414
- CSF proteome analysis in clinically isolated syndrome (CIS): candidate markers for conversion to definite multiple sclerosis.Neurosci. Lett. 2009; 452: 214-217
- Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis.PLoS One. 2010; 5: e12442
- Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis.Brain. 2010; 133: 1082-1093
- Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers.J. Proteomics. 2010; 73: 1117-1132
- Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions.J. Proteome Res. 2011; 10: 4855-4868
- Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis.Brain. 2001; 124: 1927-1938
- Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process.J. Neuroimmunol. 2004; 151: 158-170
- Gene and protein expression profiling of the microvascular compartment in experimental autoimmune encephalomyelitis in C57Bl/6 and SJL mice.Brain Pathol. 2005; 15: 1-16
- Modular transcriptional activity characterizes the initiation and progression of autoimmune encephalomyelitis.J. Immunol. 2005; 174: 7412-7422
- Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein.PLoS One. 2012; 7: e48555
- Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord.J. Proteome Res. 2007; 6: 2565-2575
- Altered proteolytic events in experimental autoimmune encephalomyelitis discovered by iTRAQ shotgun proteomics analysis of spinal cord.Proteome Sci. 2009; 7: 25
- Regulation of proteins mediating neurodegeneration in experimental autoimmune encephalomyelitis and multiple sclerosis.Proteomics Clin. Appl. 2009; 3: 1273-1287
- Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage.PLoS One. 2009; 4: e7624
- Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis.J. Proteome Res. 2012; 11: 2048-2060
- Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.PLoS One. 2012; 7: e35544
- Proteomic analysis of multiple sclerosis cerebrospinal fluid.Mult. Scler. 2004; 10: 245-260
- Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis.PLoS One. 2010; : 5
- Lumbar cerebrospinal fluid proteome in multiple sclerosis: characterization by ultrafiltration, liquid chromatography, and mass spectrometry.J. Proteome Res. 2006; 5: 1647-1657
- Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry.Anal. Chem. 2002; 74: 4741-4749
- Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry.J. Proteome Res. 2002; 1: 317-323
- A model for random sampling and estimation of relative protein abundance in shotgun proteomics.Anal. Chem. 2004; 76: 4193-4201
- Comparison of label-free methods for quantifying human proteins by shotgun proteomics.Mol. Cell. Proteomics. 2005; 4: 1487-1502
- Differential proteomics via probabilistic peptide identification scores.Anal. Chem. 2005; 77: 596-606
- Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors.Methods. 2006; 40: 303-311
- Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae.J. Proteome Res. 2006; 5: 2339-2347
- Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors.Mol. Biosyst. 2007; 3: 354-360
- Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein.Mol. Cell. Proteomics. 2005; 4: 1265-1272
- Large-scale proteomic analysis of the human spliceosome.Genome Res. 2002; 12: 1231-1245
- Mononuclear cell trafficking and plasma protein extravasation into the CNS during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice.J. Neurol. Sci. 1991; 104: 9-12
- Additive effect of the combination of glatiramer acetate and minocycline in a model of MS.J. Neuroimmunol. 2005; 158: 213-221
- Universal sample preparation method for proteome analysis.Nat. Methods. 2009; 6: 359-362
- Sample preparation and digestion for proteomic analyses using spin filters.Proteomics. 2005; 5: 1742-1745
- An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.J. Am. Soc. Mass Spectrom. 1994; 5: 976-989
- PRISM, a generic large scale proteomic investigation strategy for mammals.Mol. Cell. Proteomics. 2003; 2: 96-106
- A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus.J. Proteomics. 2009; 72: 110-120
- A hidden Markov model for predicting transmembrane helices in protein sequences.Proc. Int. Conf. Intell. Syst. Mol. Biol. 1998; 6: 175-182
- Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 15545-15550
- DAVID: Database for Annotation, Visualization, and Integrated Discovery.Genome Biol. 2003; 4: P3
- Enrichment map: a network-based method for gene-set enrichment visualization and interpretation.PLoS One. 2010; 5: e13984
- Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.Bioinformatics. 2010; 26: 966-968
- Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics.BMC Bioinformatics. 2012; 13: S9
- Feature selection and nearest centroid classification for protein mass spectrometry.BMC Bioinformatics. 2005; 6: 68
- A simple method for displaying the hydropathic character of a protein.J. Mol. Biol. 1982; 157: 105-132
- Western blots versus selected reaction monitoring assays: time to turn the tables?.Mol. Cell. Proteomics. 2013; 12: 2381-2382
- Intelligent use of retention time during multiple reaction monitoring for faster and extended compound screening with higher sensitivity and better reproducibility. 2010; (http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry-Multiple-Reaction-1282310.pdf)
- Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor.Nat. Biotechnol. 2011; 29: 653-658
- Acute-phase proteins and other systemic responses to inflammation.N. Engl. J. Med. 1999; 340: 448-454
- Isolation and characterization of a cDNA clone encoding a novel peptide (OSF) that enhances osteoclast formation and bone resorption.J. Cell. Physiol. 1998; 177: 636-645
- RANK-L and RANK: T cells, bone loss, and mammalian evolution.Annu. Rev. Immunol. 2002; 20: 795-823
- Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.Nature. 1999; 402: 304-309
- Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation.Int. J. Exp. Pathol. 2000; 81: 373-390
- Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection.J. Exp. Med. 1989; 170: 145-161
- Osteopontin–a molecule for all seasons.QJM. 2002; 95: 3-13
- Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene.Crit. Rev. Immunol. 1993; 13: 225-246
- The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease.Science. 2001; 294: 1731-1735
- Increased osteopontin plasma levels in multiple sclerosis patients correlate with bone-specific markers.Mult. Scler. 2010; 16: 443-449
- Elevated osteopontin levels in active relapsing-remitting multiple sclerosis.Ann. Neurol. 2003; 53: 819-822
- Increased osteopontin levels in the cerebrospinal fluid of patients with multiple sclerosis.Arch. Neurol. 2008; 65: 633-635
- Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D.Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 2076-2080
- Identification of the serum factor required for in vitro activation of macrophages. Role of vitamin D3-binding protein (group specific component, Gc) in lysophospholipid activation of mouse peritoneal macrophages.J. Immunol. 1991; 147: 273-280
- An introduction to TRP channels.Annu. Rev. Physiol. 2006; 68: 619-647
- Cells move when ions and water flow.Pflugers Arch. 2007; 453: 421-432
- TRP channels in disease.Biochim. Biophys. Acta. 2007; 1772: 805-812
- Nonselective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration.J. Cell. Physiol. 2009; 221: 325-334
- TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis.Nat. Med. 2012; 18: 1805-1811
- Critical requirement of CD11b (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis.J. Immunol. 2005; 175: 6327-6333
- beta2-integrins in demyelinating disease: not adhering to the paradigm.J. Leukoc. Biol. 2010; 87: 397-403
- Differential expression of beta 2-integrins and cytokine production between gammadelta and alphabeta T cells in experimental autoimmune encephalomyelitis.J. Leukoc. Biol. 2008; 83: 71-79
- Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod.Am. J. Pathol. 2012; 181: 642-651
- Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier.Cell. 2012; 148: 447-457
- Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.Nat. Neurosci. 2011; 14: 1142-1149
- Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration.Mult. Scler. 2011; 17: 2-15
- Fingolimod in multiple sclerosis: mechanisms of action and clinical efficacy.Clin. Immunol. 2012; 142: 15-24
- Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis.Neuroscience. 2007; 147: 664-673
- Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis.Proteomics. 2012; 12: 2656-2662
- Cerebrospinal fluid fetuin-A is a biomarker of active multiple sclerosis.Mult. Scler. 2013;
- Protein expression profiles in pediatric multiple sclerosis: potential biomarkers.Mult. Scler. 2009; 15: 455-464
- Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis.Brain Res. 2012; 1453: 77-86
- Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis.BMC Bioinformatics. 2011; 12: 254
- Immunoglobulins and complement in postmortem multiple sclerosis tissue.Ann. Neurol. 2009; 65: 32-46
- Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP.Immunology. 2009; 128: e451-461
- Correlation between serum thyroxine and complements in patients with multiple sclerosis and neuromyelitis optica.Neuro. Endocrinol. Lett. 2008; 29: 256-260
- C3c intrathecal synthesis evaluation in patients with multiple sclerosis.Arq. Neuropsiquiatr. 2007; 65: 800-802
- Cerebrospinal fluid IgM index correlates with cranial MRI lesion load in patients with multiple sclerosis.Eur. Neurol. 2007; 58: 90-95
- Galectin-3/MAC-2 in experimental allergic encephalomyelitis.Exp. Neurol. 1999; 160: 508-514
- Increased expression of distinct galectins in multiple sclerosis lesions.Neuropathol. Appl. Neurobiol. 2011; 37: 654-671
- Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis.Brain Res. Mol. Brain Res. 2003; 119: 170-183
- VEGF and angiogenesis in acute and chronic MOG((35–55)) peptide induced EAE.J. Neuroimmunol. 2009; 209: 6-15
- Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis.J. Neurosci. Res. 2008; 86: 2992-3001
- Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients.J. Neuroimmunol. 2007; 190: 139-145
- Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5.J. Immunol. 2007; 178: 8158-8167
- Increased serum levels of soluble PECAM-1 in multiple sclerosis patients with brain gadolinium-enhancing lesions.J. Neuroimmunol. 1999; 99: 169-172
- Elevated plasma endothelial microparticles in multiple sclerosis.Neurology. 2001; 56: 1319-1324
- Plasma levels of soluble adhesion molecules sPECAM-1, sP-selectin and sE-selectin are associated with relapsing-remitting disease course of multiple sclerosis.J. Neuroimmunol. 2005; 167: 143-149
- Deficiency of thrombospondin-1 reduces Th17 differentiation and attenuates experimental autoimmune encephalomyelitis.J. Autoimmun. 2009; 32: 94-103
- Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers.Mult. Scler. 2011; 17: 43-56
- Thrombin in inflammatory brain diseases.Autoimmun. Rev. 2006; 5: 528-531
- Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.Glia. 2012; 60: 1145-1159
- Monocyte activation in multiple sclerosis.Mult. Scler. 1998; 4: 162-168
- The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.Nucleic Acids Res. 2013; 41: D1063-1069
Article info
Publication history
Footnotes
Author contributions: L.F.D. and A.W.P. designed research; L.F.D. and N.P.C. performed research; N.P.C., J.B.O., V.F., and A.E. contributed new reagents or analytic tools; L.F.D., N.P.C., R.I., and A.W.P. analyzed data; L.F.D., A.E., and A.W.P. wrote the paper.
Disclosure statement: A.E. is the recipient of a research grant from Teva Pharmaceuticals. No other conflicts of interest are declared by the authors.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy