- Karsten C.M.
- Pandey M.K.
- Figge J.
- Kilchenstein R.
- Taylor P.R.
- Rosas M.
- McDonald J.U.
- Orr S.J.
- Berger M.
- Petzold D.
- Blanchard V.
- Winkler A.
- Hess C.
- Reid D.M.
- Majoul I.V.
- Strait R.T.
- Harris N.L.
- Kohl G.
- Wex E.
- Ludwig R.
- Zillikens D.
- Nimmerjahn F.
- Finkelman F.D.
- Brown G.D.
- Ehlers M.
- Kohl J.
- Rombouts Y.
- Willemze A.
- van Beers J.J.
- Shi J.
- Kerkman P.F.
- van Toorn L.
- Janssen G.M.
- Zaldumbide A.
- Hoeben R.C.
- Pruijn G.J.
- Deelder A.M.
- Wolbink G.
- Rispens T.
- van Veelen P.A.
- Huizinga T.W.
- Wuhrer M.
- Trouw L.A.
- Scherer H.U.
- Toes R.E.
- Karsten C.M.
- Pandey M.K.
- Figge J.
- Kilchenstein R.
- Taylor P.R.
- Rosas M.
- McDonald J.U.
- Orr S.J.
- Berger M.
- Petzold D.
- Blanchard V.
- Winkler A.
- Hess C.
- Reid D.M.
- Majoul I.V.
- Strait R.T.
- Harris N.L.
- Kohl G.
- Wex E.
- Ludwig R.
- Zillikens D.
- Nimmerjahn F.
- Finkelman F.D.
- Brown G.D.
- Ehlers M.
- Kohl J.
- Ferrara C.
- Grau S.
- Jager C.
- Sondermann P.
- Brunker P.
- Waldhauer I.
- Hennig M.
- Ruf A.
- Rufer A.C.
- Stihle M.
- Umana P.
- Benz J.
- Rombouts Y.
- Willemze A.
- van Beers J.J.
- Shi J.
- Kerkman P.F.
- van Toorn L.
- Janssen G.M.
- Zaldumbide A.
- Hoeben R.C.
- Pruijn G.J.
- Deelder A.M.
- Wolbink G.
- Rispens T.
- van Veelen P.A.
- Huizinga T.W.
- Wuhrer M.
- Trouw L.A.
- Scherer H.U.
- Toes R.E.
- Rombouts Y.
- Ewing E.
- van de Stadt L.A.
- Selman M.H.
- Trouw L.A.
- Deelder A.M.
- Huizinga T.W.
- Wuhrer M.
- van Schaardenburg D.
- Toes R.E.
- Scherer H.U.
- Huffman J.E.
- Pucic-Bakovic M.
- Klaric L.
- Hennig R.
- Selman M.H.
- Vuckovic F.
- Novokmet M.
- Kristic J.
- Borowiak M.
- Muth T.
- Polasek O.
- Razdorov G.
- Gornik O.
- Plomp R.
- Theodoratou E.
- Wright A.F.
- Rudan I.
- Hayward C.
- Campbell H.
- Deelder A.M.
- Reichl U.
- Aulchenko Y.S.
- Rapp E.
- Wuhrer M.
- Lauc G.
Conventional literature | UniProt | IMGT | |
---|---|---|---|
IgG1 | 297 | 180 | CH2-84.4 |
IgG2 | 297 | 176 | CH2-84.4 |
IgG3 | 297 | 227 | CH2-84.4 |
IgG3 | 392 | 322 | CH3-79 |
IgG4 | 297 | 177 | CH2-84.4 |
IgA1 | 263 | 144 | CH2-20 |
IgA1 | 459 | 340 | CHS-7 |
IgA2 | 166 | 47 | CH1-45.2 |
IgA2 | 211 | 92 | CH1-114 |
IgA2 | 263 | 131 | CH2-20 |
IgA2 | 337 | 205 | CH2-120 |
IgA2 | 459 | 327 | CHS-7 |
IgM | 171 | 46 | CH1-45 |
IgM | 332 | 209 | CH2-120 |
IgM | 395 | 272 | CH3-81 |
IgM | 402 | 279 | CH3-84.4 |
IgM | 563 | 439 | CHS-7 |
IgE | 140/145 | 21 | CH1-15.2 |
IgE | 168/173 | 49 | CH1-45.2 |
IgE | 218/219 | 99 | CH1-118 |
IgE | 265 | 146 | CH2-38 |
IgE | 371 | 252 | CH3-38 |
IgE | 394 | 275 | CH3-84.4 |
IgD | 354 | 225 | CH2-84.4 |
IgD | 445 | 316 | CH3-45.4 |
IgD | 496 | 367 | CH3-116 |
IgG-Fc Glycosylation at Asn180/176/227/177 (‘Asn297‘)
- Karsten C.M.
- Pandey M.K.
- Figge J.
- Kilchenstein R.
- Taylor P.R.
- Rosas M.
- McDonald J.U.
- Orr S.J.
- Berger M.
- Petzold D.
- Blanchard V.
- Winkler A.
- Hess C.
- Reid D.M.
- Majoul I.V.
- Strait R.T.
- Harris N.L.
- Kohl G.
- Wex E.
- Ludwig R.
- Zillikens D.
- Nimmerjahn F.
- Finkelman F.D.
- Brown G.D.
- Ehlers M.
- Kohl J.
- Lin C.W.
- Tsai M.H.
- Li S.T.
- Tsai T.I.
- Chu K.C.
- Liu Y.C.
- Lai M.Y.
- Wu C.Y.
- Tseng Y.C.
- Shivatare S.S.
- Wang C.H.
- Chao P.
- Wang S.Y.
- Shih H.W.
- Zeng Y.F.
- You T.H.
- Liao J.Y.
- Tu Y.C.
- Lin Y.S.
- Chuang H.Y.
- Chen C.L.
- Tsai C.S.
- Huang C.C.
- Lin N.H.
- Ma C.
- Wu C.Y.
- Wong C.H.
- Akmacic I.T.
- Ventham N.T.
- Theodoratou E.
- Vuckovic F.
- Kennedy N.A.
- Kristic J.
- Nimmo E.R.
- Kalla R.
- Drummond H.
- Stambuk J.
- Dunlop M.G.
- Novokmet M.
- Aulchenko Y.
- Gornik O.
- Campbell H.
- Pucic Bakovic M.
- Satsangi J.
- Lauc G.
- Vuckovic F.
- Kristic J.
- Gudelj I.
- Teruel M.
- Keser T.
- Pezer M.
- Pucic-Bakovic M.
- Stambuk J.
- Trbojevic-Akmacic I.
- Barrios C.
- Pavic T.
- Menni C.
- Wang Y.
- Zhou Y.
- Cui L.
- Song H.
- Zeng Q.
- Guo X.
- Pons-Estel B.A.
- McKeigue P.
- Leslie Patrick A.
- Gornik O.
- Spector T.D.
- Harjacek M.
- Alarcon-Riquelme M.
- Molokhia M.
- Wang W.
- Lauc G.
- Ho C.H.
- Chien R.N.
- Cheng P.N.
- Liu J.H.
- Liu C.K.
- Su C.S.
- Wu I.C.
- Li I.C.
- Tsai H.W.
- Wu S.L.
- Liu W.C.
- Chen S.H.
- Chang T.T.
- Kawaguchi-Sakita N.
- Kaneshiro-Nakagawa K.
- Kawashima M.
- Sugimoto M.
- Tokiwa M.
- Suzuki E.
- Kajihara S.
- Fujita Y.
- Iwamoto S.
- Tanaka K.
- Toi M.
Analysis of Released Glycans
- Kristic J.
- Vuckovic F.
- Menni C.
- Klaric L.
- Keser T.
- Beceheli I.
- Pucic-Bakovic M.
- Novokmet M.
- Mangino M.
- Thaqi K.
- Rudan P.
- Novokmet N.
- Sarac J.
- Missoni S.
- Kolcic I.
- Polasek O.
- Rudan I.
- Campbell H.
- Hayward C.
- Aulchenko Y.
- Valdes A.
- Wilson J.F.
- Gornik O.
- Primorac D.
- Zoldos V.
- Spector T.
- Lauc G.
- Huffman J.E.
- Pucic-Bakovic M.
- Klaric L.
- Hennig R.
- Selman M.H.
- Vuckovic F.
- Novokmet M.
- Kristic J.
- Borowiak M.
- Muth T.
- Polasek O.
- Razdorov G.
- Gornik O.
- Plomp R.
- Theodoratou E.
- Wright A.F.
- Rudan I.
- Hayward C.
- Campbell H.
- Deelder A.M.
- Reichl U.
- Aulchenko Y.S.
- Rapp E.
- Wuhrer M.
- Lauc G.
- Huffman J.E.
- Pucic-Bakovic M.
- Klaric L.
- Hennig R.
- Selman M.H.
- Vuckovic F.
- Novokmet M.
- Kristic J.
- Borowiak M.
- Muth T.
- Polasek O.
- Razdorov G.
- Gornik O.
- Plomp R.
- Theodoratou E.
- Wright A.F.
- Rudan I.
- Hayward C.
- Campbell H.
- Deelder A.M.
- Reichl U.
- Aulchenko Y.S.
- Rapp E.
- Wuhrer M.
- Lauc G.
Analysis of Glycopeptides
- Jiang H.
- Yuan H.
- Qu Y.
- Liang Y.
- Jiang B.
- Wu Q.
- Deng N.
- Liang Z.
- Zhang L.
- Zhang Y.
- Heemskerk A.A.
- Wuhrer M.
- Busnel J.M.
- Koeleman C.A.
- Selman M.H.
- Vidarsson G.
- Kapur R.
- Schoenmaker B.
- Derks R.J.
- Deelder A.M.
- Mayboroda O.A.

Analysis of Intact Glycoprotein or Glycoprotein Fragments
Fab Glycosylation
- Rombouts Y.
- Willemze A.
- van Beers J.J.
- Shi J.
- Kerkman P.F.
- van Toorn L.
- Janssen G.M.
- Zaldumbide A.
- Hoeben R.C.
- Pruijn G.J.
- Deelder A.M.
- Wolbink G.
- Rispens T.
- van Veelen P.A.
- Huizinga T.W.
- Wuhrer M.
- Trouw L.A.
- Scherer H.U.
- Toes R.E.
- Radcliffe C.M.
- Arnold J.N.
- Suter D.M.
- Wormald M.R.
- Harvey D.J.
- Royle L.
- Mimura Y.
- Kimura Y.
- Sim R.B.
- Inoges S.
- Rodriguez-Calvillo M.
- Zabalegui N.
- de Cerio A.L.
- Potter K.N.
- Mockridge C.I.
- Dwek R.A.
- Bendandi M.
- Rudd P.M.
- Stevenson F.K.
- Sabouri Z.
- Schofield P.
- Horikawa K.
- Spierings E.
- Kipling D.
- Randall K.L.
- Langley D.
- Roome B.
- Vazquez-Lombardi R.
- Rouet R.
- Hermes J.
- Chan T.D.
- Brink R.
- Dunn-Walters D.K.
- Christ D.
- Goodnow C.C.
- Rombouts Y.
- Willemze A.
- van Beers J.J.
- Shi J.
- Kerkman P.F.
- van Toorn L.
- Janssen G.M.
- Zaldumbide A.
- Hoeben R.C.
- Pruijn G.J.
- Deelder A.M.
- Wolbink G.
- Rispens T.
- van Veelen P.A.
- Huizinga T.W.
- Wuhrer M.
- Trouw L.A.
- Scherer H.U.
- Toes R.E.
- Rombouts Y.
- Willemze A.
- van Beers J.J.
- Shi J.
- Kerkman P.F.
- van Toorn L.
- Janssen G.M.
- Zaldumbide A.
- Hoeben R.C.
- Pruijn G.J.
- Deelder A.M.
- Wolbink G.
- Rispens T.
- van Veelen P.A.
- Huizinga T.W.
- Wuhrer M.
- Trouw L.A.
- Scherer H.U.
- Toes R.E.
Additional N- and O-glycosylation of IgG3
Antigen-specific IgG
- Rombouts Y.
- Ewing E.
- van de Stadt L.A.
- Selman M.H.
- Trouw L.A.
- Deelder A.M.
- Huizinga T.W.
- Wuhrer M.
- van Schaardenburg D.
- Toes R.E.
- Scherer H.U.
- Kapur R.
- Kustiawan I.
- Vestrheim A.
- Koeleman C.A.
- Visser R.
- Einarsdottir H.K.
- Porcelijn L.
- Jackson D.
- Kumpel B.
- Deelder A.M.
- Blank D.
- Skogen B.
- Killie M.K.
- Michaelsen T.E.
- de Haas M.
- Rispens T.
- van der Schoot C.E.
- Wuhrer M.
- Vidarsson G.
- Kapur R.
- Kustiawan I.
- Vestrheim A.
- Koeleman C.A.
- Visser R.
- Einarsdottir H.K.
- Porcelijn L.
- Jackson D.
- Kumpel B.
- Deelder A.M.
- Blank D.
- Skogen B.
- Killie M.K.
- Michaelsen T.E.
- de Haas M.
- Rispens T.
- van der Schoot C.E.
- Wuhrer M.
- Vidarsson G.
- Wuhrer M.
- Stavenhagen K.
- Koeleman C.A.
- Selman M.H.
- Harper L.
- Jacobs B.C.
- Savage C.O.
- Jefferis R.
- Deelder A.M.
- Morgan M.
- Wuhrer M.
- Stavenhagen K.
- Koeleman C.A.
- Selman M.H.
- Harper L.
- Jacobs B.C.
- Savage C.O.
- Jefferis R.
- Deelder A.M.
- Morgan M.
- Espy C.
- Morelle W.
- Kavian N.
- Grange P.
- Goulvestre C.
- Viallon V.
- Chereau C.
- Pagnoux C.
- Michalski J.C.
- Guillevin L.
- Weill B.
- Batteux F.
- Guilpain P.
- Wuhrer M.
- Stavenhagen K.
- Koeleman C.A.
- Selman M.H.
- Harper L.
- Jacobs B.C.
- Savage C.O.
- Jefferis R.
- Deelder A.M.
- Morgan M.
- Rombouts Y.
- Ewing E.
- van de Stadt L.A.
- Selman M.H.
- Trouw L.A.
- Deelder A.M.
- Huizinga T.W.
- Wuhrer M.
- van Schaardenburg D.
- Toes R.E.
- Scherer H.U.
- Harre U.
- Lang S.C.
- Pfeifle R.
- Rombouts Y.
- Fruhbeisser S.
- Amara K.
- Bang H.
- Lux A.
- Koeleman C.A.
- Baum W.
- Dietel K.
- Grohn F.
- Malmstrom V.
- Klareskog L.
- Kronke G.
- Kocijan R.
- Nimmerjahn F.
- Toes R.E.
- Herrmann M.
- Scherer H.U.
- Schett G.
IgA
IgM
IgE
Conclusions and Perspectives
- Rombouts Y.
- Ewing E.
- van de Stadt L.A.
- Selman M.H.
- Trouw L.A.
- Deelder A.M.
- Huizinga T.W.
- Wuhrer M.
- van Schaardenburg D.
- Toes R.E.
- Scherer H.U.
- Kapur R.
- Kustiawan I.
- Vestrheim A.
- Koeleman C.A.
- Visser R.
- Einarsdottir H.K.
- Porcelijn L.
- Jackson D.
- Kumpel B.
- Deelder A.M.
- Blank D.
- Skogen B.
- Killie M.K.
- Michaelsen T.E.
- de Haas M.
- Rispens T.
- van der Schoot C.E.
- Wuhrer M.
- Vidarsson G.
- Ferrara C.
- Grau S.
- Jager C.
- Sondermann P.
- Brunker P.
- Waldhauer I.
- Hennig M.
- Ruf A.
- Rufer A.C.
- Stihle M.
- Umana P.
- Benz J.
REFERENCES
- Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1.Nat. Med. 2012; 18: 1401-1406
- Glycoproteomic analysis of antibodies.Mol. Cell. Proteomics. 2013; 12: 856-865
- Pathways responsible for human autoantibody and therapeutic intravenous IgG activity in humanized mice.Cell Rep. 2015; 13: 610-620
- The impact of glycosylation on the biological function and structure of human immunoglobulins.Annu. Rev. Immunol. 2007; 25: 21-50
- Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3).Mol. Cell. Proteomics. 2015; 14: 1373-1384
- Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.Mol. Cell. Proteomics. 2014; 13: 3029-3039
- Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis.Ann. Rheum. Dis. 2015; 75: 578-585
- Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions.Mol. Immunol. 2000; 37: 107-113
- In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity.PLoS ONE. 2015; 10: e0134949
- Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc.Science. 2008; 320: 373-376
- Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions.Cancer Immunol. Res. 2015; 3: 704-713
- The role of differential IgG glycosylation in the interaction of antibodies with FcgammaRs in vivo.Curr. Opin. Organ Transplant. 2011; 16: 7-14
- Glycosylation: impact, control and improvement during therapeutic protein production.Crit. Rev. Biotechnol. 2014; 34: 281-299
- Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 12669-12674
- Increased N-linked glycosylation leading to oversialylation of monomeric immunoglobulin A1 from patients with Sjogren's syndrome.Scand. J. Immunol. 2000; 51: 300-306
- Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells.PLos Biol. 2013; 11: e1001658
van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T., and Rombouts, Y., (in press) The Emerging Importance of IgG Fab Glycosylation in Immunity. J. Immunol. 196,
- Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review.J. Autoimmun. 2015; 57: 1-13
- Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis.Ann. Rheum. Dis. 2015; 74: 234-241
- Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation.J. Proteome Res. 2013; 12: 4522-4531
- Expression of recombinant antibodies.Front. Immunol. 2013; 4: 217
- Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research.Mol. Cell. Proteomics. 2014; 13: 1598-1610
- Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods.MAbs. 2015; 7: 732-742
- Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles–part 1: separation-based methods.MAbs. 2015; 7: 167-179
IMGT® (2001) Protein display: Human IGH C-REGIONs [last updated 20/12/2012; accessed 01/2016] http://www.imgt.org/IMGTrepertoire/Proteins/protein/human/IGH/IGHC/Hu_IGHCallgenes.html,
UniProt 2003 [last updated 28/08/2016; accessed 01/2016] http://uniprot.org,
- Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires.Curr. Opin. Chem. Biol. 2015; 24: 112-120
- A proteomics approach for the identification and cloning of monoclonal antibodies from serum.Nat. Biotechnol. 2012; 30: 447-452
- Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides.Anal. Chem. 2015; 87: 8284-8291
- A common glycan structure on immunoglobulin G for enhancement of effector functions.Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 10611-10616
- Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome.Inflamm. Bowel Dis. 2015; 21: 1237-1247
- Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid.J. Neuroinflammation. 2015; 12: 235
- Association of Systemic Lupus Erythematosus With Decreased Immunosuppressive Potential of the IgG Glycome.Arthritis Rheumatol. 2015; 67: 2978-2989
- Sialylated IgG-Fc: a novel biomarker of chronic inflammatory demyelinating polyneuropathy.J. Neurol. Neurosurg. Psychiatry. 2015; 87: 275-279
- Clinical severity of visceral leishmaniasis is associated with changes in immunoglobulin g fc N-glycosylation.MBio. 2014; 5: e01844
- Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity.J. Clin. Invest. 2013; 123: 2183-2192
- Aberrant serum immunoglobulin G glycosylation in chronic hepatitis B is associated with histological liver damage and reversible by antiviral therapy.J. Infect. Dis. 2015; 211: 115-124
- Change in IgG1 Fc N-linked glycosylation in human lung cancer: age- and sex-related diagnostic potential.Electrophoresis. 2013; 34: 2407-2416
- Serum immunoglobulin G Fc region N-glycosylation profiling by matrix-assisted laser desorption/ionization mass spectrometry can distinguish breast cancer patients from cancer-free controls.Biochem. Biophys. Res. Commun. 2015; 469: 1140-1145
- N-glycosylation of serum IgG and total glycoproteins in MAN1B1 deficiency.J. Proteome Res. 2015; 14: 4402-4412
- Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis.Eur. J. Hum. Genet. 2016;
- Oligosaccharide sequencing technology.Nature. 1997; 388: 205-207
- Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent.J. Chromatogr. B. 2010; 878: 403-408
- High-Throughput Glycomics: Optimization of Sample Preparation.Biochemistry. 2015; 80: 934-942
- Ultrahigh throughput, ultrafiltration-based n-glycomics platform for ultraperformance liquid chromatography (ULTRA(3)).Anal. Chem. 2015; 87: 8316-8322
- Glycans are a novel biomarker of chronological and biological ages.J. Gerontol. A. 2014; 69: 779-789
- DNA sequence variability of IGHG3 alleles associated to the main G3m haplotypes in human populations.Eur. J. Hum. Genet. 2001; 9: 765-772
- Glycoforms of immunoglobulin G based biopharmaceuticals are differentially cleaved by trypsin due to the glycoform influence on higher-order structure.J. Proteome Res. 2015; 14: 4019-4028
- One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides.Anal. Chim. Acta. 2014; 841: 99-105
- A dextran-bonded stationary phase for saccharide separation.J. Chromatogr. A. 2014; 1345: 57-67
- Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography.Analyst. 2014; 139: 4987-4993
- Preparation of phenyl-functionalized magnetic mesoporous silica microspheres for the fast separation and selective enrichment of phenyl-containing peptides.J. Sep. Sci. 2015; 38: 3954-3960
- Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides.Talanta. 2016; 146: 225-230
- Application of a strong anion exchange material in electrostatic repulsion-hydrophilic interaction chromatography for selective enrichment of glycopeptides.J. Chromatogr. A. 2013; 1299: 18-24
- Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies.Anal. Biochem. 2009; 395: 178-188
- A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica.Chem. Commun. 2011; 47: 4550-4552
- Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides.Anal. Chim. Acta. 2014; 809: 61-68
- Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides.Nanoscale. 2015; 7: 3100-3108
- Applications of multiple reaction monitoring to clinical glycomics.Chromatographia. 2015; 78: 335-342
- A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins.J. Proteome Res. 2015; 14: 5179-5192
- Absolute quantitation of immunoglobulin G and its glycoforms using multiple reaction monitoring.Anal. Chem. 2013; 85: 8585-8593
- Quantitative analysis of immunoglobulin subclasses and subclass specific glycosylation by LC-MS-MRM in liver disease.J. Proteomics. 2015; 116: 24-33
- Coupling porous sheathless interface MS with transient-ITP in neutral capillaries for improved sensitivity in glycopeptide analysis.Electrophoresis. 2013; 34: 383-387
- In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry.Anal. Chem. 2014; 86: 5360-5369
- A systematic study of glycopeptide esterification for the semi-quantitative determination of sialylation in antibodies.Rapid Commun. Mass Spectrom. 2015; 29: 1817-1826
- High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification.Anal. Chem. 2014; 86: 5784-5793
- Derivatization with 1-pyrenyldiazomethane enhances ionization of glycopeptides but not peptides in matrix-assisted laser desorption/ionization mass spectrometry.Anal. Chem. 2010; 82: 8738-8743
- Negative-ion MALDI-MS2 for discrimination of alpha2,3- and alpha2,6-sialylation on glycopeptides labeled with a pyrene derivative.J. Chromatogr. B. 2011; 879: 1419-1428
- Differential isotope labeling of glycopeptides for accurate determination of differences in site-specific glycosylation.J. Proteome Res. 2016; 15: 326-331
- Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics.Proteomics. 2015; 15: 2756-2765
- A new tool for monoclonal antibody analysis: application of IdeS proteolysis in IgG domain-specific characterization.MAbs. 2014; 6: 879-893
- Rapid Fc glycosylation analysis of Fc fusions with IdeS and liquid chromatography mass spectrometry.MAbs. 2013; 5: 641-645
- Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques.J. Proteomics. 2015; 134: 93-101
- Direct identification of rituximab main isoforms and subunit analysis by online selective comprehensive two-dimensional liquid chromatography-mass spectrometry.Anal. Chem. 2015; 87: 8307-8315
- Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry.Anal. Chem. 2014; 86: 5376-5382
- Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry.Nat. Protoc. 2014; 9: 967-976
- Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies.FEBS Lett. 2014; 588: 308-317
- Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis.Biochim. Biophys. Acta. 2006; 1760: 669-677
- Analytical and functional aspects of antibody sialylation.J. Clin. Immunol. 2010; 30: S15-19
- Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor.J. Biol. Chem. 2007; 282: 7405-7415
- Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins.Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 18587-18592
- Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity.Proc. Natl. Acad. Sci. U.S.A. 2014; 111: E2567-2575
- A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis.J. Immunol. Methods. 2015; 417: 34-44
- Alterations of serum protein N-glycosylation in two mouse models of chronic liver disease are hepatocyte and not B cell driven.Am. J. Physiol. Gastrointest Liver Physiol. 2011; 300: G833-842
- Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics.Glycobiology. 2000; 10: 477-486
- Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides.Anal. Chem. 2015; 87: 11691-11699
- In-gel nonspecific proteolysis for elucidating glycoproteins: a method for targeted protein-specific glycosylation analysis in complex protein mixtures.Anal. Chem. 2013; 85: 956-963
- Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics.J. Proteome Res. 2009; 8: 502-512
- Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid.Arthritis Rheum. 2010; 62: 1620-1629
- Immunoglobulin 1 (IgG1) Fc-glycosylation profiling of anti-citrullinated peptide antibodies from human serum.Proteomics Clin. Appl. 2009; 3: 106-115
- Microscale purification of antigen-specific antibodies.J. Immunol. Methods. 2015; 425: 27-36
- Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy.Cell. 2015; 162: 160-169
- Prophylactic anti-D preparations display variable decreases in Fc-fucosylation of anti-D.Transfusion. 2015; 55: 553-562
- Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn.Br. J. Haematol. 2014; 166: 936-945
- A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy.Blood. 2014; 123: 471-480