- Stevens J.M.
- Ulrich R.L.
- Taylor L.A.
- Wood M.W.
- Deshazer D.
- Stevens M.P.
- Galyov E.E.
- Burtnick M.N.
- Brett P.J.
- Harding S.V.
- Ngugi S.A.
- Ribot W.J.
- Chantratita N.
- Scorpio A.
- Milne T.S.
- Dean R.E.
- Fritz D.L.
- Peacock S.J.
- Prior J.L.
- Atkins T.P.
- Deshazer D.
- Shanks J.
- Burtnick M.N.
- Brett P.J.
- Waag D.M.
- Spurgers K.B.
- Ribot W.J.
- Schell M.A.
- Panchal R.G.
- Gherardini F.C.
- Wilkinson K.D.
- Deshazer D.
EXPERIMENTAL PROCEDURES
Comparative Genomics
- Brinkac L.M.
- Davidsen T.
- Beck E.
- Ganapathy A.
- Caler E.
- Dodson R.J.
- Durkin A.S.
- Harkins D.M.
- Lorenzi H.
- Madupu R.
- Sebastian Y.
- Shrivastava S.
- Thiagarajan M.
- Orvis J.
- Sundaram J.P.
- Crabtree J.
- Galens K.
- Zhao Y.
- Inman J.M.
- Montgomery R.
- Schobel S.
- Galinsky K.
- Tanenbaum D.M.
- Resnick A.
- Zafar N.
- White O.
- Sutton G.
Ab Initio Prediction of Type 3 Secretion System Proteins
Y2H Screens to Identify Host–Pathogen Protein-Protein Interactions (PPIs)
Mapping of Host Proteins to Pathways and Networks
Protein–Protein Interaction Data
- Sayers E.W.
- Barrett T.
- Benson D.A.
- Bolton E.
- Bryant S.H.
- Canese K.
- Chetvernin V.
- Church D.M.
- Dicuccio M.
- Federhen S.
- Feolo M.
- Fingerman I.M.
- Geer L.Y.
- Helmberg W.
- Kapustin Y.
- Krasnov S.
- Landsman D.
- Lipman D.J.
- Lu Z.
- Madden T.L.
- Madej T.
- Maglott D.R.
- Marchler-Bauer A.
- Miller V.
- Karsch-Mizrachi I.
- Ostell J.
- Panchenko A.
- Phan L.
- Pruitt K.D.
- Schuler G.D.
- Sequeira E.
- Sherry S.T.
- Shumway M.
- Sirotkin K.
- Slotta D.
- Souvorov A.
- Starchenko G.
- Tatusova T.A.
- Wagner L.
- Wang Y.
- Wilbur W.J.
- Yaschenko E.
- Ye J.
- Wheeler D.L.
- Barrett T.
- Benson D.A.
- Bryant S.H.
- Canese K.
- Church D.M.
- DiCuccio M.
- Edgar R.
- Federhen S.
- Helmberg W.
- Kenton D.L.
- Khovayko O.
- Lipman D.J.
- Madden T.L.
- Maglott D.R.
- Ostell J.
- Pontius J.U.
- Pruitt K.D.
- Schuler G.D.
- Schriml L.M.
- Sequeira E.
- Sherry S.T.
- Sirotkin K.
- Starchenko G.
- Suzek T.O.
- Tatusov R.
- Tatusova T.A.
- Wagner L.
- Yaschenko E.
Gene Ontology (GO) Enrichment Analysis
where n represents the number of host proteins interacting with B. mallei proteins annotated with any GO term and k denotes the number of host proteins interacting with B. mallei proteins annotated with g. For the total number of human proteins, we used the set of all human and murine proteins available in Bioconductor and BioMart (
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Enrichment Analysis
Next, we defined the adjusted population size of all host proteins in KEGG (AN) as follows:
where the summation runs over all NKEGG host proteins that appear in at least one KEGG pathway. We then defined the adjusted number of genes in a pathway P (Am) as:
where the summation runs over all nP host proteins that appear in pathway P. The adjusted total number of interacting host proteins found in KEGG pathways (An) was defined as:
where the summation runs over all nH host proteins that interact with any B. mallei protein and appears in any pathway. Finally, the adjusted number of host proteins interacting with B. mallei proteins in pathway P (Ak) was defined as:
where the summation runs over all nHP interacting host proteins in pathway P.
Bacterial Strains, Plasmids, and Growth Conditions
Primer, plasmid, or strain | Relevant characteristics | Source or reference |
---|---|---|
Primers | ||
0728-up | 5′-GCGGCCGCACACATCCGGCACGCAACAG-3′ | This study |
0728-dn | 5′-GCGGCCGCTCTCCAAAAGAATCCACAAC-3′ | This study |
1865-up | 5′-GAATTCATCGACGAAATTCCCCGA-3′ | This study |
1865-dn | 5′-GAATTCGAGCTTGGCGATCTCGAC-3′ | This study |
0553-up | 5′-GAATTCGAAGCCGTCGAGCTTTC-3′ | This study |
0553-dn | 5′-GAATTCCGAATAGTTCGCGCTGC-3′ | This study |
Plasmids | ||
pCR2.1-TOPO | 3,931-bp TA vector; pMB1 oriR; Kmr | Invitrogen |
pCR2.1-0728 | pCR2.1-TOPO containing 298-bp PCR product generated with 0728-up and 0728-dn | This study |
pCR2.1-1865 | pCR2.1-TOPO containing 297-bp PCR product generated with 1865-up and 1865-dn | This study |
pCR2.1-0553 | pCR2.1-TOPO containing 535-bp PCR product generated with 0553-up and 0553-dn | This study |
pEXKm5 | Mobilizabile Kmr suicide vector | ( 46 ) |
pEXKm5-0728 | pEXKm5 derivative containing NotI insert from pCR2.1-0728 | This study |
pEXKm5-1865 | pEXKm5 derivative containing EcoRI insert from pCR2.1-1865 | This study |
pEXKm5-0553 | pEXKm5 derivative containing EcoRI insert from pCR2.1-0553 | This study |
E. coli | ||
TOP10 | General cloning and blue/white screening | Invitrogen |
S17-1 | Mobilizing strain with transfer genes of RP4 integrated on chromosome; Kms, Pms | ( 47 ) |
B. mallei | ||
ATCC 23344 | Type strain, isolated in 1944 from a human case of glanders; Kms, Pmr | ( 48 )
Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 14246-14251 |
DDA0728 | ATCC 23344 derivative with pEXKm5–0728 integrated into the chromosome; BMAA0728− | This study |
DDA1865 | ATCC 23344 derivative with pEXKm5–1865 integrated into the chromosome; BMAA1865− | This study |
DDA0553 | ATCC 23344 derivative with pEXKm5–0553 integrated into the chromosome; BMAA0553− | This study |
PCR of Internal Gene Fragments
DNA Manipulation and Plasmid Conjugation
Animal Experiments
Survival Analysis
where pi represents the proportion of animals surviving period i. Here, pi was defined as follows:
where ri and di denote the number of alive mice at the beginning of time period i and the number of deaths within period i, respectively.
where 1 and 2 represent the set of mice infected with B. mallei mutant (set 1) and the set of mice infected with wild-type B. mallei (set 2), r1i and r2i represent the number of alive mice from sets 1 and 2 at time period i, respectively, and O1 and O2 represent the total number of observed events in each of the two sets, respectively.
Biosafety and Biosecurity
RESULTS

In Silico Identification of Putative Virulent Factors
- Brinkac L.M.
- Davidsen T.
- Beck E.
- Ganapathy A.
- Caler E.
- Dodson R.J.
- Durkin A.S.
- Harkins D.M.
- Lorenzi H.
- Madupu R.
- Sebastian Y.
- Shrivastava S.
- Thiagarajan M.
- Orvis J.
- Sundaram J.P.
- Crabtree J.
- Galens K.
- Zhao Y.
- Inman J.M.
- Montgomery R.
- Schobel S.
- Galinsky K.
- Tanenbaum D.M.
- Resnick A.
- Zafar N.
- White O.
- Sutton G.
- Losada L.
- Ronning C.M.
- DeShazer D.
- Woods D.
- Fedorova N.
- Kim H.S.
- Shabalina S.A.
- Pearson T.R.
- Brinkac L.
- Tan P.
- Nandi T.
- Crabtree J.
- Badger J.
- Beckstrom-Sternberg S.
- Saqib M.
- Schutzer S.E.
- Keim P.
- Nierman W.C.
Genome | Size, Mb | PATRIC coding sequences | RefSeq coding sequences | Finished | Pathogenic |
---|---|---|---|---|---|
B. mallei ATCC 23344 | 5.83 | 5724 | 5024 | Yes | Yes |
B. mallei NCTC 10229 | 5.74 | 5591 | 5510 | Yes | Yes |
B. mallei ATCC 10399 | 5.88 | 5850 | 5276 | No | Yes |
B. mallei PRL-20 | 5.62 | 5614 | 5456 | No | Yes |
B. mallei SAVP1 | 5.23 | 5095 | 5189 | Yes | No |
B. mallei 2002721280 | 5.51 | 5590 | 4847 | No | No |
B. mallei NCTC 10247 | 5.84 | 5717 | 5852 | Yes | Attenuated |
- Gillespie J.J.
- Wattam A.R.
- Cammer S.A.
- Gabbard J.L.
- Shukla M.P.
- Dalay O.
- Driscoll T.
- Hix D.
- Mane S.P.
- Mao C.
- Nordberg E.K.
- Scott M.
- Schulman J.R.
- Snyder E.E.
- Sullivan D.E.
- Wang C.
- Warren A.
- Williams K.P.
- Xue T.
- Yoo H.S.
- Zhang C.
- Zhang Y.
- Will R.
- Kenyon R.W.
- Sobral B.W.
- Burtnick M.N.
- Brett P.J.
- Harding S.V.
- Ngugi S.A.
- Ribot W.J.
- Chantratita N.
- Scorpio A.
- Milne T.S.
- Dean R.E.
- Fritz D.L.
- Peacock S.J.
- Prior J.L.
- Atkins T.P.
- Deshazer D.
- Burtnick M.N.
- Brett P.J.
- Harding S.V.
- Ngugi S.A.
- Ribot W.J.
- Chantratita N.
- Scorpio A.
- Milne T.S.
- Dean R.E.
- Fritz D.L.
- Peacock S.J.
- Prior J.L.
- Atkins T.P.
- Deshazer D.
- Nierman W.C.
- DeShazer D.
- Kim H.S.
- Tettelin H.
- Nelson K.E.
- Feldblyum T.
- Ulrich R.L.
- Ronning C.M.
- Brinkac L.M.
- Daugherty S.C.
- Davidsen T.D.
- Deboy R.T.
- Dimitrov G.
- Dodson R.J.
- Durkin A.S.
- Gwinn M.L.
- Haft D.H.
- Khouri H.
- Kolonay J.F.
- Madupu R.
- Mohammoud Y.
- Nelson W.C.
- Radune D.
- Romero C.M.
- Sarria S.
- Selengut J.
- Shamblin C.
- Sullivan S.A.
- White O.
- Yu Y.
- Zafar N.
- Zhou L.
- Fraser C.M.
- Drevinek P.
- Holden M.T.
- Ge Z.
- Jones A.M.
- Ketchell I.
- Gill R.T.
- Mahenthiralingam E.
Group | Locus tag | Protein name | Secretion system | Successfully cloned | Number of PPIs detected | ||
---|---|---|---|---|---|---|---|
Human | Murine | Conserved | |||||
1 | BMAA0410* | VgrG | 6/c3 | Yes | |||
1 | BMAA0445* | VgrG | 6/c2 | Yes | 2 | 1 | |
1 | BMAA0446* | VgrG | 6/c2 | Yes | 7 | 7 | |
1 | BMAA0737* | VgrG | 6/c1 | No | |||
1 | BMAA1901* | VgrG | 6/c4 | Yes | |||
1 | BMAA0749* | BimA | 5 | Yes | 80 | 199 | 5 |
1 | BMA0278* | PilA | - | Yes | 42 | 64 | 2 |
1 | BMAA0079* | PlcN | 2 | Yes | |||
1 | BMAA1521* | BopA | 3 | Yes | 1 | 1 | |
1 | BMAA1523* | BopE | 3 | Yes | 27 | ||
1 | BMAA1525* | BapB | 3 | Yes | 9 | 13 | |
1 | BMAA1528* | BipD | 3 | Yes | 41 | 49 | 3 |
1 | BMAA1530* | BipC | 3 | Yes | 2 | ||
1 | BMAA1531* | BipB | 3 | Yes | 24 | 25 | 1 |
1 | BMA0855* | VgrG Rhs domain | 6 | No | |||
1 | BMAA1269 | VgrG | 6 | Yes | 1 | 1 | |
1 | BMAA1538* | BsaU | 3 | Yes | 14 | 42 | 1 |
1 | BMAA0729* | TssM | 6/c1 | Yes | 2 | ||
2 | BMA2097 | Hypothetical protein | 3 | Yes | |||
2 | BMAA1865 | Hypothetical protein | 3 | Yes | 61 | 89 | 6 |
2 | BMAA1899 | Hypothetical protein | 3 | No | |||
2 | BMA0666 | CysD-1 | 3 | Yes | 3 | ||
2 | BMAA1487 | Methyl-accepting chemotaxis protein | 3 | No | |||
2 | BMA3281 | FliF | 3 | Yes | 42 | 43 | 1 |
2 | BMA1750 | HrpA | 3 | Yes | |||
2 | BMAA0728 | TssN | 3 | Yes | 72 | 87 | 3 |
2 | BMA2787 | IpgF | 3 | Yes | |||
2 | BMA0267 | Pseudogene | - | Yes | 10 | 4 | 1 |
2 | BMAA0038 | Hypothetical protein | - | Yes | |||
2 | BMAA1662 | Response regulator | 3 | Yes | 19 | ||
2 | BMA0429 | Cmk | 3 | Yes | 63 | 58 | 4 |
2 | BMA2469 | Tkt | 3 | Yes | 24 | 6 | |
2 | BMAA0238 | Hypothetical protein | 2 | Yes | 25 | 28 | 2 |
2 | BMAA1173 | Hypothetical protein | - | Yes | |||
2 | BMA0886 | AcpA | 2 | No | |||
3 | BMAA1618 | Hypothetical protein | 3 | Yes | |||
3 | BMAA1619 | Hypothetical protein | 3 | Yes | 14 | 9 | 1 |
3 | BMAA0679 | Chemotaxis protein CheC | - | Yes | 7 | ||
3 | BMAA0553 | Ser/Thr protein phosphatase | 2 | Yes | 59 | 60 | 3 |
3 | BMAA1559 | Thermolysin metallopeptidase | 2 | Yes | |||
3 | BMAA0582 | Hypothetical protein | 3 | Yes | |||
4 | BMAA1566 | Serine-type carboxypeptidase | 3 | Yes | |||
4 | BMAA1641 | Hypothetical protein | 3 | Yes | |||
4 | BMAA0605 | Hypothetical protein | 3 | Yes | |||
4 | BMAA1111 | Hypothetical protein | 3 | No | |||
4 | BMAA1648 | Hypothetical protein | 3 | Yes | 9 | ||
4 | BMAA1997 | Phosphatidylserine decarboxylase | 3 | Yes | |||
4 | BMAA2052 | Polysaccharide deacetylase | 3 | Yes | |||
4 | BMAA0418 | NAD-dependent deacetylase | 3 | Yes |
Y2H Screening Results and Data Analysis

Selection of Proteins for Animal-model Experiments
Mutants Showed Attenuated Virulence in a BALB/c Aerosol Challenge Model

DISCUSSION
- Konig R.
- Stertz S.
- Zhou Y.
- Inoue A.
- Hoffmann H.H.
- Bhattacharyya S.
- Alamares J.G.
- Tscherne D.M.
- Ortigoza M.B.
- Liang Y.
- Gao Q.
- Andrews S.E.
- Bandyopadhyay S.
- De Jesus P.
- Tu B.P.
- Pache L.
- Shih C.
- Orth A.
- Bonamy G.
- Miraglia L.
- Ideker T.
- Garcia-Sastre A.
- Young J.A.
- Palese P.
- Shaw M.L.
- Chanda S.K.
- Li R.
- Zhu J.
- Xie Z.
- Liao G.
- Liu J.
- Chen M.R.
- Hu S.
- Woodard C.
- Lin J.
- Taverna S.D.
- Desai P.
- Ambinder R.F.
- Hayward G.S.
- Qian J.
- Zhu H.
- Hayward S.D.
- Li R.
- Zhu J.
- Xie Z.
- Liao G.
- Liu J.
- Chen M.R.
- Hu S.
- Woodard C.
- Lin J.
- Taverna S.D.
- Desai P.
- Ambinder R.F.
- Hayward G.S.
- Qian J.
- Zhu H.
- Hayward S.D.
In Vitro Approaches to Study B. mallei Pathogenesis
Y2H Detection of Host Interactions
- Yu H.
- Braun P.
- Yildirim M.A.
- Lemmens I.
- Venkatesan K.
- Sahalie J.
- Hirozane-Kishikawa T.
- Gebreab F.
- Li N.
- Simonis N.
- Hao T.
- Rual J.F.
- Dricot A.
- Vazquez A.
- Murray R.R.
- Simon C.
- Tardivo L.
- Tam S.
- Svrzikapa N.
- Fan C.
- de Smet A.S.
- Motyl A.
- Hudson M.E.
- Park J.
- Xin X.
- Cusick M.E.
- Moore T.
- Boone C.
- Snyder M.
- Roth F.P.
- Barabasi A.L.
- Tavernier J.
- Hill D.E.
- Vidal M.
Known Virulence Factors and Their Virulence Phenotypes
- Burtnick M.N.
- Brett P.J.
- Harding S.V.
- Ngugi S.A.
- Ribot W.J.
- Chantratita N.
- Scorpio A.
- Milne T.S.
- Dean R.E.
- Fritz D.L.
- Peacock S.J.
- Prior J.L.
- Atkins T.P.
- Deshazer D.
Novel Virulence Factors and Their Host Protein Interactions

Pathogen Targeting Ubiquitin-related Processes
- Shanks J.
- Burtnick M.N.
- Brett P.J.
- Waag D.M.
- Spurgers K.B.
- Ribot W.J.
- Schell M.A.
- Panchal R.G.
- Gherardini F.C.
- Wilkinson K.D.
- Deshazer D.
- Shanks J.
- Burtnick M.N.
- Brett P.J.
- Waag D.M.
- Spurgers K.B.
- Ribot W.J.
- Schell M.A.
- Panchal R.G.
- Gherardini F.C.
- Wilkinson K.D.
- Deshazer D.
Pathogen Targeting Host Entry Mechanisms
Pathogen Targeting Phosphorylation Signaling
Understanding Host-Pathogen Interactions
CONCLUSIONS
Acknowledgments
Supplementary Material
REFERENCES
- Present and future therapeutic strategies for melioidosis and glanders.Expert Rev. Anti-Infective Ther. 2010; 8: 325-338
- Progress toward development of vaccines against melioidosis: A review.Clin. Therap. 2010; 32: 1437-1445
- Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei Burkholderia mallei.J. Clin. Microbiol. 2003; 41: 2068-2079
- Molecular insights into Burkholderia pseudomallei Burkholderia mallei pathogenesis.Ann. Rev. Microbiol. 2010; 64: 495-517
- Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei.J. Med. Microbiol. 2004; 53: 1053-1064
- Quorum sensing: A transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei.Infection Immunity. 2004; 72: 6589-6596
- The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model.Infection Immunity. 2007; 75: 3027-3032
- Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant.Microb. Pathogen. 2001; 30: 253-269
- Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages.Infection Immunity. 2010; 78: 88-99
- Actin-binding proteins from Burkholderia mallei Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant.J. Bacteriol. 2005; 187: 7857-7862
- The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei.Infection Immunity. 2011; 79: 1512-1525
- Autotransporters and their role in the virulence of Burkholderia pseudomallei Burkholderia mallei.Frontiers Microbiol. 2011; 2: 151
- Type VI secretion is a major virulence determinant in Burkholderia mallei.Mol. Microbiol. 2007; 64: 1466-1485
- Type III secretion: A virulence factor delivery system essential for the pathogenicity of Burkholderia mallei.Infection Immunity. 2004; 72: 1150-1154
- Ubiquitin signalling in the NF-kappaB pathway.Nat. Cell Biol. 2005; 7: 758-765
- Prevalence and sequence diversity of a factor required for actin-based motility in natural populations of Burkholderia species.J. Clin. Microbiol. 2008; 46: 2418-2422
- Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages.Infection Immunity. 2009; 77: 1636-1648
- Burkholderia mallei cellular interactions in a respiratory cell model.J. Med. Microbiol. 2009; 58: 554-562
- Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB.J. Bacteriol. 2005; 187: 6556-6560
- Distinctive bacterial communities in the rhizoplane of four tropical tree species.Microbial Ecol. 2012; 64: 1018-1027
- Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis.J. Infect. Dis. 2011; 203: 1002-1011
- Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis.Infection Immunity. 2006; 74: 5465-5476
- A model of immunity to Burkholderia pseudomallei: Unique responses following immunization and acute lethal infection.Microbes Infect. 2005; 7: 1263-1275
- QuartetS-DB: a large-scale orthology database for prokaryotes and eukaryotes inferred by evolutionary evidence.BMC Bioinformatics. 2012; 13: 143
- QuartetS: A fast and accurate algorithm for large-scale orthology detection.Nucleic Acids Res. 2011; 39: e88
- GenBank. Nucleic Acids Res. 2012; 40: D48-D53
- Pathema: A clade-specific bioinformatics resource center for pathogen research.Nucleic Acids Res. 2010; 38: D408-D414
- The development of PIPA: An integrated and automated pipeline for genome-wide protein function annotation.BMC Bioinformatics. 2008; 9: 52
- Sequence-based prediction of type III secreted proteins.PLOS Pathogens. 2009; 5: e1000376
- Prediction of type III secretion signals in genomes of gram-negative bacteria.PLOS ONE. 2009; 4: e5917
- Computational prediction of type III and IV secreted effectors in gram-negative bacteria.Inf. Immunity. 2011; 79: 23-32
- Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems.PLOS Pathogens. 2009; 5: e1000375
- Improving the yeast two-hybrid system with permutated fusions proteins: The Varicella zoster virus interactome.Proteome Sci. 2010; 8: 8
- GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes.Methods Enzymol. 2000; 328: 575-592
- Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast.Genetics. 1996; 144: 1425-1436
- Analysis of protein-protein interactions using high-throughput yeast two-hybrid screens.Methods Mol. Biol. 2011; 781: 1-29
- BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis.Bioinformatics. 2005; 21: 3439-3440
- Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.Nat. Protocols. 2009; 4: 1184-1191
- Cytoscape Web: An interactive web-based network browser.Bioinformatics. 2010; 26: 2347-2348
- Database resources of the National Center for Biotechnology Information.Nucleic Acids Res. 2012; 40: D13-D25
- Database resources of the National Center for Biotechnology Information.Nucleic Acids Res. 2005; 33: D39-D45
- Inferring high-confidence human protein-protein interactions.BMC Bioinformatics. 2012; 13: 79
- The Pfam protein families database.Nucleic Acids Res. 2012; 40: D290-D301
- Controlling the false discovery rate: A practical and powerful approach to multiple testing.J. Roy. Statist. Soc. 1995; 57: 289-300
- PathNet: A tool for pathway analysis using topological information.Source Code Biology Med. 2012; 7: 10
- Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei.Appl. Environmental Microbiol. 2009; 75: 6496-6503
- A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria.Nat. Biotechnol. 1983; 1: 784-791
- Structural flexibility in the Burkholderia mallei genome.Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 14246-14251
- Preparation of genomic DNA from bacteria.Current Protocols in Molecular Biology Chapter 2, Unit 2.4. 2001;
- Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice.Inhalation Toxicol. 2003; 15: 619-638
- Statistics review 12: Survival analysis.Crit. Care. 2004; 8: 389-394
- Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements.Genome Biol. Evol. 2010; 2: 102-116
- PATRIC: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species.Infection Immunity. 2011; 79: 4286-4298
- NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy.Nucleic Acids Res. 2012; 40: D130-D135
- Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology.BMC Microbiol. 2009; 9: S2
- Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei.Trends Microbiol. 2010; 18: 561-568
- Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum.BMC Infectious Dis. 2008; 8: 121
- Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei.Infection Immunity. 2008; 76: 5402-5411
- In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages.Microbiology. 2007; 153: 2689-2699
- Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei.J. Bacteriol. 1999; 181: 4661-4664
- Glanders: Off to the races with Burkholderia mallei.FEMS Microbiol. Lett. 2007; 277: 115-122
- Biodefense-driven murine model of pneumonic melioidosis.Infection Immunity. 2003; 71: 584-587
- BALB/c and C57Bl/6 mice infected with virulent Burkholderia pseudomallei provide contrasting animal models for the acute and chronic forms of human melioidosis.Microbial Pathogenesis. 1998; 24: 269-275
- Strategies for intracellular survival of Burkholderia pseudomallei.Frontiers Microbiol. 2011; 2: 170
- A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo.Infection Immunity. 2005; 73: 1260-1264
- The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis.PLOS ONE. 2011; 6: e17852
- Exploitation of host cells by Burkholderia pseudomallei.Int. J. Med. Microbiol. 2004; 293: 549-555
- Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei.Mol. Microbiol. 2005; 56: 40-53
- Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants.Genome Res. 2009; 19: 2308-2316
- Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment.Proteomics. 2011; 11: 3203-3211
- Microarray analysis of bacterial pathogenicity.Adv. Microbial Physiol. 2002; 46: 1-45
- Microarray technology as a universal tool for high-throughput analysis of biological systems.Combinatorial Chem. High Throughput Screening. 2006; 9: 365-380
- The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.Cell. 2009; 139: 1243-1254
- Epstein-Barr virus and virus human protein interaction maps.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 7606-7611
- Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication.Nature. 2010; 463: 818-822
- Human host factors required for influenza virus replication.Nature. 2010; 463: 813-817
- Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication.Cell Host Microbe. 2011; 10: 390-400
- A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection.Cell. 2009; 139: 1255-1267
- Quorum sensing affects virulence-associated proteins F1, LcrV, KatY and pH6 etc. of Yersinia pestis as revealed by protein microarray-based antibody profiling.Microbes Infection. 2006; 8: 2501-2508
- Extensive antibody cross-reactivity among infectious gram-negative bacteria revealed by proteome microarray analysis.Mol. Cell. Proteomics. 2009; 8: 924-935
- Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid.Sci. Reports. 2013; 3: 1043
- Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.Infection Immunity. 2011; 79: 4413-4424
- Categorizing biases in high-confidence high-throughput protein-protein interaction data sets.Mol. Cell. Proteomics. 2011; 10 (M111 012500)
- High-quality binary protein interaction map of the yeast interactome network.Science. 2008; 322: 104-110
- The type VI secretion system: Translocation of effectors and effector-domains.Curr. Opinion Microbiol. 2009; 12: 11-17
- Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.PLOS Pathogens. 2010; 6: e1001068
- Yeast genetic methods for the detection of membrane protein interactions: Potential use in drug discovery.BioDrugs: Clin. Immunotherapeut., Biopharmaceut. Gene Therapy. 2003; 17: 413-424
- Five mechanisms of manipulation by bacterial effectors: A ubiquitous theme.PLOS Pathogens. 2012; 8: e1002823
- Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems.PLOS Pathogens. 2007; 3: e3
- Bacteria and the ubiquitin pathway.Curr. Opinion Microbiol. 2007; 10: 39-46
- Interactions of bacterial proteins with host eukaryotic ubiquitin pathways.Frontiers Microbiol. 2011; 2: 143
- Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM.J. Immunol. 2010; 184: 5160-5171
- The role of Atg proteins in autophagosome formation.Ann. Rev. Cell Development. Biol. 2011; 27: 107-132
- Molecular basis of canonical and bactericidal autophagy.Int. Immunol. 2009; 21: 1199-1204
- Pathogens and polymers: Microbe-host interactions illuminate the cytoskeleton.J. Cell Biol. 2011; 195: 7-17
- Bacteria-host-cell interactions at the plasma membrane: Stories on actin cytoskeleton subversion.Development. Cell. 2005; 9: 3-17
- Manipulation of host-cell pathways by bacterial pathogens.Nature. 2007; 449: 827-834
- Manipulation of host membranes by bacterial effectors.Nat. Rev. Microbiol. 2011; 9: 635-646
- A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity.J. Bacteriol. 2003; 185: 4992-4996
- Functional atlas of the integrin adhesome.Nat. Cell Biol. 2007; 9: 858-867
Article info
Publication history
Footnotes
Author contributions: N.Z., R.P., D.DS., J.R., and A.W. designed research; V.M., N.Z., R.P., S.V.R., K.K., K.T., and D.DS. performed research; V.M., N.Z., R.P., C.Y., X.Y., and D.DS. analyzed data; and V.M., N.Z., R.P., D.DS., J.R. and A.W. wrote the paper.
Conflict of interest: The authors declare no conflict of interest.
Disclaimer: The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the U.S. Army or the U.S. Department of Defense. This paper has been approved for public release with unlimited distribution.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy