- Baiet B.
- Burel C.
- Saint-Jean B.
- Louvet R.
- Menu-Bouaouiche L.
- Kiefer-Meyer M.-C.
- Rivet E.
- Castel H.
- Lefebvre T.
- Carlier A.
- Cadoret J.-P.
- Lerouge P.
- Bardor M.
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Terry A.
- Salamov A.
- Fritz-Laylin L.K.
- Maréchal-Drouard L.
- Marshall W.F.
- Qu L.H.
- Nelson D.R.
- Sanderfoot A.A.
- Spalding M.H.
- Kapitonov V.V.
- Ren Q.
- Ferris P
- Lindquist E.
- Shapiro H.
- Lucas S.M.
- Grimwood J.
- Schmutz J.
- Cardol P.
- Cerutti H.
- Chanfreau G.
- Chen C.L.
- Cognat V.
- Croft M.T.
- Dent R.
- Dutcher S.
- Fernández E.
- Fukuzawa H.
- González-Ballester D.
- González-Halphen D.
- Hallmann A.
- Hanikenne M.
- Hippler M.
- Inwood W.
- Jabbari K.
- Kalanon M.
- Kuras R.
- Lefebvre P.A.
- Lemaire S.D.
- Lobanov A.V.
- Lohr M.
- Manuell A.
- Meier I.
- Mets L.
- Mittag M.
- Mittelmeier T.
- Moroney J.V.
- Moseley J.
- Napoli C.
- Nedelcu A.M.
- Niyogi K.
- Novoselov S.V.
- Paulsen I.T.
- Pazour G.
- Purton S.
- Ral J.P.
- Riaño-Pachón D.M.
- Riekhof W.
- Rymarquis L.
- Schroda M.
- Stern D.
- Umen J.
- Willows R.
- Wilson N.
- Zimmer S.L.
- Allmer J.
- Balk J.
- Bisova K.
- Chen C.J.
- Elias M.
- Gendler K.
- Hauser C.
- Lamb M.R.
- Ledford H.
- Long J.C.
- Minagawa J.
- Page M.D.
- Pan J.
- Pootakham W.
- Roje S.
- Rose A.
- Stahlberg E.
- Terauchi A.M.
- Yang P.
- Ball S.
- Bowler C.
- Dieckmann C.L.
- Gladyshev V.N.
- Green P.
- Jorgensen R.
- Mayfield S.
- Mueller-Roeber B.
- Rajamani S.
- Sayre R.T.
- Brokstein P.
- Dubchak I.
- Goodstein D.
- Hornick L.
- Huang Y.W.
- Jhaveri J.
- Luo Y.
- Martínez D.
- Ngau W.C.
- Otillar B.
- Poliakov A.
- Porter A.
- Szajkowski L.
- Werner G.
- Zhou K.
- Grigoriev I.V.
- Rokhsar D.S.
- Grossman A.R.
EXPERIMENTAL PROCEDURES
Strains and Growth Conditions
In Silico Genome Analysis
Soluble and Membrane-bound Protein Preparation
Isolation of N-glycans from C. Reinhardtii Proteins
In-gel Trypsin Digestion
Peptide N-glycosidase A Digestion
Peptide N-glycosidase F Digestion
- Baiet B.
- Burel C.
- Saint-Jean B.
- Louvet R.
- Menu-Bouaouiche L.
- Kiefer-Meyer M.-C.
- Rivet E.
- Castel H.
- Lefebvre T.
- Carlier A.
- Cadoret J.-P.
- Lerouge P.
- Bardor M.
2-AB Labeling of N-glycans
Permethylation
MALDI-TOF-MS Analysis
- Wada Y.
- Azadi P.
- Costello C.E.
- Dell A.
- Dwek R.A.
- Geyer H.
- Geyer R.
- Kakehi K.
- Karlsson N.G.
- Kato K.
- Kawasaki N.
- Khoo K.H.
- Kim S.
- Kondo A.
- Lattova E.
- Mechref Y.
- Miyoshi E.
- Nakamura K.
- Novotny M.V.
- Packer N.H.
- Perreault H.
- Peter-Katalinic J.
- Pohlentz G.
- Reinhold V.N.
- Rudd P.M.
- Suzuki A.
- Taniguchi N.





α-Mannosidase Treatment
HPAEC-PAD Analysis of N-glycans
Monosaccharide Composition of 2-AB-labeled N-glycans by GC-EIMS
Sialic Acid Release and HPAEC-PAD Analysis
Affino- and Immunoblotting Analyses
Identification of Glycopeptides Using a Proteomic Approach Combined with Liquid Chromatography–Electrospray Ionization–Fourier Transform Mass Spectrometry
Culture Conditions and Protein Isolation
Glycopeptide Enrichment and PNGase F Treatment
Glycoprotein Enrichment for In-source Collision-induced Dissociation Analyses
LC-MS Analysis of 18O-labeled Peptides
LC-MS Analysis of Intact Glycopeptides
Glycopeptide Identification
Additional Variable Modifications Used for the Identification of 18O-labeled Peptides
Additional Variable Modifications Used for the Identification of Intact Glycopeptides via IS-CID
RESULTS
Soluble and Membrane N-glycoproteins from C. Reinhardtii Bear Mainly Oligomannoside N-glycans
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Terry A.
- Salamov A.
- Fritz-Laylin L.K.
- Maréchal-Drouard L.
- Marshall W.F.
- Qu L.H.
- Nelson D.R.
- Sanderfoot A.A.
- Spalding M.H.
- Kapitonov V.V.
- Ren Q.
- Ferris P
- Lindquist E.
- Shapiro H.
- Lucas S.M.
- Grimwood J.
- Schmutz J.
- Cardol P.
- Cerutti H.
- Chanfreau G.
- Chen C.L.
- Cognat V.
- Croft M.T.
- Dent R.
- Dutcher S.
- Fernández E.
- Fukuzawa H.
- González-Ballester D.
- González-Halphen D.
- Hallmann A.
- Hanikenne M.
- Hippler M.
- Inwood W.
- Jabbari K.
- Kalanon M.
- Kuras R.
- Lefebvre P.A.
- Lemaire S.D.
- Lobanov A.V.
- Lohr M.
- Manuell A.
- Meier I.
- Mets L.
- Mittag M.
- Mittelmeier T.
- Moroney J.V.
- Moseley J.
- Napoli C.
- Nedelcu A.M.
- Niyogi K.
- Novoselov S.V.
- Paulsen I.T.
- Pazour G.
- Purton S.
- Ral J.P.
- Riaño-Pachón D.M.
- Riekhof W.
- Rymarquis L.
- Schroda M.
- Stern D.
- Umen J.
- Willows R.
- Wilson N.
- Zimmer S.L.
- Allmer J.
- Balk J.
- Bisova K.
- Chen C.J.
- Elias M.
- Gendler K.
- Hauser C.
- Lamb M.R.
- Ledford H.
- Long J.C.
- Minagawa J.
- Page M.D.
- Pan J.
- Pootakham W.
- Roje S.
- Rose A.
- Stahlberg E.
- Terauchi A.M.
- Yang P.
- Ball S.
- Bowler C.
- Dieckmann C.L.
- Gladyshev V.N.
- Green P.
- Jorgensen R.
- Mayfield S.
- Mueller-Roeber B.
- Rajamani S.
- Sayre R.T.
- Brokstein P.
- Dubchak I.
- Goodstein D.
- Hornick L.
- Huang Y.W.
- Jhaveri J.
- Luo Y.
- Martínez D.
- Ngau W.C.
- Otillar B.
- Poliakov A.
- Porter A.
- Szajkowski L.
- Werner G.
- Zhou K.
- Grigoriev I.V.
- Rokhsar D.S.
- Grossman A.R.

- Brooks S.
Complex N-glycans in C. Reinhardtii Carry Xylose Residues and Are Partially Methylated

Xylose Residues Are Located on a Terminal Mannose Residue and on the Core β-mannose of the Complex N-glycans
- Bardor M.
- Burel C.
- Villarejo A.
- Cadoret J.P.
- Carlier A.
- Lerouge P.

Terminal Mannose Residues Are Methylated in Complex N-glycans
Glycoproteomic Analyses Led to the Identification of 135 Glycopeptides and Confirmed Hexose Methylation
Identifier (JGI 4.3 Augustus10.2) | Protein name or conserved domain | Peptide | Source | Method | m/z {# HexNAc} | z | E-value |
---|---|---|---|---|---|---|---|
Cre07.g340450.t1.2 {PKHD1–1} | G8 domain (found in disease proteins PKHD1 and KIAA1199) | TSWSATWSNGSSAEYFIK | SN | 18O | 1012.9609 | 2 | 1.2e-14 |
IS | 1113.0093 {1} | 2 | Man | ||||
GVEYEFYNVSLSGVSNLWR | SN | 18O | 1111.5408 | 2 | 6.3e-10 | ||
FYMQADDIGQLNITYTDTNNQVVTR | SN | 18O | 1462.1926 | 2 | 5.8e-12 | ||
FTQMVQFSNNTAHSNMFYGLR | SN | 18O | 832.7168 | 3 | 1.5e-03 | ||
TITVANNGTHSTATILK | SN | IS | 973.0201 {1} | 2 | 1.6e-03 | ||
TSGGPSGIAGNNTVIGSAR | SN | IS | 959.9818 {1} | 2 | 4.9e-08 | ||
YLYGAGANTTAK | SN | IS | 818.3947 {2} | 2 | 5.5e-03 | ||
TSDALLNTDTTPATFWITNPNNTVR | SN | 18O | 1383.6801 | 2 | 1.9e-09 | ||
IS | 1483.7289 {1} | 2 | 2.1e-07 | ||||
Cre06.g279700.t1.2 | G8 domain (found in disease proteins PKHD1 and KIAA1199) | STFDPTDPANSSLPVK | SN | 18O | 839.9061 | 2 | 1.6e-11 |
Cre16.g676150.t1.1 {MSD3/MnSOD3} | Mn superoxide dismutase | WGNATALLDSLR | SN | 18O | 660.3435 | 2 | 4.5e-04 |
Cre17.g718500.t1.2 {MMP1} | Matrix metalloproteinase, gamete lytic enzyme (G-lysin) | IKNTTAGGYDSGLTLDFHK | SN | 18O | 1021.0128 | 2 | 3.3e-15 |
IS | 1121.0601 {1} | 2 | 3.8e-07 | ||||
NTTAGGYDSGLTLDFHK | SN | 18O | 900.4224 | 2 | 2.6e-14 | ||
IS | 1000.47 {1} | 2 | 1.6e-08 | ||||
RNDTYDDWWDLSK | SN | 18O | 858.8741 | 2 | 5.4e-08 | ||
IS | 958.9223 {1} | 2 | 1.9e-07 | ||||
Cre17.g718468.t1.1 {MMP2} | Peptidase M11 superfamily domain (Gametolysin) | IKNTTAGGYDSGLTTDFHK | SN | 18O | 676.9949 | 3 | 1.0e-05 |
NTTAGGYDSGLTTDFHK | SN | 18O | 894.4036 | 2 | 9.3e-10 | ||
Cre09.g388350.t1.2 {MMP11} | Peptidase M11 superfamily domain (Gametolysin) | LLVHEVNATMDNNLQLYR | SN | 18O | 1073.5469 | 2 | 9.4e-15 |
Cre07.g324500.t1.1 | Peptidase M11 superfamily domain (Gametolysin) | TMVLVHSYNGTAVSSYQR | SN | 18O | 672.6630 | 3 | 5.9e-04 |
Cre02.g133500.t1.2 | Peptidase M11 superfamily domain (Gametolysin) | VLVHFFNGSASER | SN | 18O | 733.3726 | 2 | 1.5e-07 |
Cre13.g596600.t1.1 | Peptidase M11 superfamily domain (Gametolysin) | VFVHEFNETADNKPSDQDNPPLIMAVLDVK | SN | 18O | 1129.2257 | 3 | 9.3e-10 |
Cre13.g596550.t1.2 | Peptidase M11 superfamily domain (Gametolysin) | IFIHEFNETADNNPTDDSYPPLIR | SN | 18O | 941.1145 | 3 | 8.4e-03 |
Cre14.g625850.t1.2 | Peptidase M11 superfamily domain (Gametolysin) | IYIHNFNATLR | SN | 18O | 682.8665 | 2 | 6.0e-05 |
Cre60.g792000.t1.1 | Matrix metalloproteinase | VWVHEYNETANGLTANLK | SN | 18O | 1031.5098 | 2 | 1.5e-11 |
IS | 1131.5579 {1} | 2 | 3.0e-08 | ||||
Cre01.g011300.t1.1 | Serine carboxypeptidase domain | GFITNATGIATMFDTR | SN | 18O | 859.9225 | 2 | 8.8e-09 |
Cre05.g242750.t1.2 | Multiple peptidase S8 family domains | NPDSIAFIAAGNNGSDALTPGGSIGTPATAK | SN | 18O | 1444.7141 | 2 | 6.8e-11 |
Cre12.g513400.t1.2 | Multiple glycosyl hydrolase family 81 domains | NISITAAEGFVSR | SN | 18O | 684.3572 | 2 | 5.5e-10 |
LNAAGTGNNASLVYDTTWGGLIVYK | SN | 18O | 1301.1613 | 2 | 1.3e-09 | ||
Cre09.g400850.t1.2 | Carbohydrate binding domains (F5/8 type C, WSC, C- and H-type lectin) | LTLNMSDIVGMR | SN | 18O | 676.8456 | 2 | 2.8e-06 |
Cre06.g309950.t1.2 | Multiple C-type lectin (CTL)/C-type lectin-like (CTLD) domains | YLVTIFDNATYAR | SN | 18O | 775.3936 | 2 | 5.1e-09 |
Cre05.g245259.t1.1 | Multiple C-type lectin-like domain (CTLD), GH18 chitinase-like domains | TFTQLSPWLDLAGSPFYIDTSNTTTR | SN | 18O | 1468.2206 | 2 | 1.0e-15 |
QVFVTVGSGNDTIR | SN | 18O | 748.3880 | 2 | 3.4e-05 | ||
SGAVFGGDSIPVNDTSLIQPPASIGR | SN | 18O | 1279.6560 | 2 | 6.8e-10 | ||
(a) Cre14.g631100.t1.2 (b) Cre14.g631150.t1.2 | (a) Carbohydrate binding domains (F5/8 type C, WSC, C-type lectin), scavenger receptor Cys-rich domain, peptidase C1A domain (b) Peptidase C1 superfamily domain, WSC domain | VGNASVTSTSDSLYGNTLVWK | SN | 18O | 1101.5472 | 2 | 2.1e-11 |
LALQPSSLFFNGSAEWK, | SN | 18O | 949.4857 | 2 | 2.4e-03 | ||
Cre04.g226050.t1.2 | Sulfatase superfamily domain | LNQLFNLSSDEAEVNDLLLK | SN | 18O | 1139.5939 | 2 | 1.8e-13 |
Cre04.g226600.t1.2 | Sulfatase superfamily domain | SDKPNFIVIITDDQDDILNSTHPYYMPALNR | SN | 18O | 902.9440 | 4 | 4.0e-05 |
Cre10.g432600.t1.2 | Sulfatase superfamily domain | YTHNNNVTSNIEPHGSFWK | SN | 18O | 750.0142 | 3 | 1.2e-04 |
ALPNATLGWGDTFFGTAAR | SN | 18O | 984.9886 | 2 | 1.4e-07 | ||
Cre10.g431800.t1.1. | Sulfatase | LTHNHNVTSNQAPQGGWK | SN | 18O | 664.6580 | 3 | 9.7e-06 |
Cre02.g097000.t1.1 | Dihydropyrimidinase domain | VIGEPVASGLALDESPVWDSNFTR | SN | 18O | 1281.6359 | 2 | 3.4e-14 |
ALASGVLQLVATDHAVFNSSQK | SN | 18O | 753.7356 | 3 | 1.7e-06 | ||
LLAANVTGPEGHPLSRPPALEGEATGR | SN | 18O | 905.1431 | 3 | 5.1e-07 | ||
Cre01.g028850.t1.1 | Rhodanese homology domain (RHOD) | NTTFLDIR | SN | 18O | 491.7594 | 2 | 9.8e-05 |
TEANFTASHIAGAVNIPK | SN | 18O | 615.3191 | 3 | 3.5e-07 | ||
IS | 1022.5206 {1} | 2 | 3.3e-06 | ||||
APDVLTVSAADALALLDGKNTTFLDIR | SN | 18O | 935.1729 | 3 | 7.4e-04 | ||
SGVYAGAVQLTRPNITLR | SN | 18O | 640.3583 | 3 | 2.7e-05 | ||
GGQVHAGPVGIFTPNLTLMTDPR | SN | 18O | 794.4139 | 3 | 3.4e-07 | ||
Cre02.g077750.t1.1 {FAP211} | Flagellar associated protein | NMTGQGTLLPAGPLIWYDSPNFAANNK | SN | 18O | 1447.2091 | 2 | 4.9e-13 |
(a) Cre02.g077850.t1.1 {FAP212} (b) Cre02.g077800.t1.1 | (a) No conserved domains (b) No conserved domains | NQTAINSLVDDIQNTYAK, | SN | IS | 1106.0414 {1} | 2 | 9.7e-14 |
VVEDFVVTYQNQTIGDQDPADLQK, | SN | IS | 1463.2085 {1} | 2 | Man | ||
ALGVNATAIVVR, | SN | 18O | 593.8557 | 2 | 1.6e-08 | ||
ANDSMVTVPLFFK | SN | 18O | 736.3755 | 2 | 4.5e-05 | ||
IS | 836.4227 {1} | 2 | 1.8e-04 | ||||
(a) Cre16.g661750.t1.1 (b) Cre16.g661850.t1.2 | (a) CaMK II association domain (b) CaMK II association domain | WLIVEHHSSAMPENEAALVMDAFVQWNDALATLNASK | SN | 18O | 1028.7544 | 4 | 5.2e-03 |
Cre13.g569550.t1.2 | Polycystin cation channel protein domain, leucine-rich repeat receptor-like protein kinase domain | NTSHTDYAAALANVTAR | SN | 18O | 891.4289 | 2 | 1.3e-11 |
(a) Cre08.g383400.t1.2 (b) Cre08.g383600.t1.2 | Multiple scavenger receptor cysteine-rich domains | LVSSGNQTALDAAAR | SN | 18O IS | 738.8793 940.4707 {2} | 2 2 | 5.6e-07 Man |
Cre17.g706700.t1.2 | TRP superfamily domain, galactose oxidase (central domain) | DSLWVFGGLDNFTR | SN | 18O | 815.3929 | 2 | 5.9e-09 |
Cre01.g052750.t1.2 | TRP superfamily domain | SGHTALPYNESVLVFGGSVINK.T | SN | 18O | 765.7286 | 3 | 4.6e-05 |
Cre45.g788400.t1.1 | DUF3707 (Pherophorin) domain | ETSQAFNVTLQLNR | SN | 18O | 812.4184 | 2 | 7.1e-05 |
Cre11.g476250.t1.1 | C3HC4-type RING-finger domain | GAQPNVTYSGGGVYYAPPR | SN | 18O | 978.9732 | 2 | 2.3e-12 |
Cre06.g260650.t1.2 | DUF288 family domain | GFPLTQITNVTTR | SN | 18O | 725.8926 | 2 | 2.2e-09 |
Cre13.g596800.t1.1 {FAS7} | Multiple fasciclin domains | QVVETALPGYNLTITK | SN | 18O | 875.4777 | 2 | 1.8e-07 |
Cre16.g694200.t1.2 | No conserved domains | VWVHESNETATGAPAAPGSHTLIR | SN | 18O | 835.4196 | 3 | 3.8e-07 |
Cre09.g398900.t1.2 {GP1} | No conserved domains | TVGSVANVTIR | SN | 18O | 560.3170 | 2 | 5.1e-04 |
Cre06.g258800.t1.2 {GP2} | No conserved domains | NTTWTAPAGTTVR | SN | IS | 891.4330 {2} | 2 | 5.4e-04 |
Cre12.g487950.t1.2 | No conserved domains | ISDGVSTNYSEPFDIR | SN | 18O | 901.9235 | 2 | 1.2e-08 |
Cre09.g401050.t1.2 | No conserved domains | AGNVTFSNCEMYNTGAR | SN | 18O | 947.9026 | 2 | 2.7e-04 |
Cre02.g080150.t1.2 | No conserved domains | VLGELNATSWTEAAGAELAALPLEAVATAAR | SN | 18O | 1535.3008 | 2 | 3.8e-10 |
Cre02.g122550.t1.1 | No conserved domains | FYFNNGTNYR | SN | 18O | 649.7910 | 2 | 7.3e-04 |
Cre06.g308050.t1.1 | No conserved domains | LANGTTVDGPAYFSR | SN | 18O | 786.3850 | 2 | 4.4e-05 |
Cre17.g700700.t1.2 | No conserved domains | RPPDNATAGLAVDGLYHDNR | SN | 18O | 719.0178 | 3 | 1.4e-05 |
Cre07.g333100.t1.2 | No conserved domains | VDLGDSYYLNNSFK | SN | 18O | 819.3798 | 2 | 5.5e-09 |
Cre17.g708750.t1.1 | No conserved domains | GGAIVLNQTTDSTK | SN | IS | 905.9520 {2} | 2 | Man |
Cre02.g121650.t1.2 {CrSTT3A} | Oligosaccharyltransferase STT3 subunit | TVIVDNNTWNTSHIATVGR | TCE | 18O | 1051.0349 | 2 | 1.5e-10 |
VASWWDYGYQTTAMANR.T | TCE | 18O | 1011.9531 | 2 | 7.3e-15 | ||
Cre07.g330100.t1.1 {CrSTT3B} | COG1287 (uncharacterized membrane protein, required for N-linked glycosylation) | IMSWWDYGYQITAMGNR.T | TCE | 18O | 1047.9698 | 2 | 6.7e-11 |
TVIVDNNTWNNTHIATVGR | TCE | 18O | 710.0291 | 3 | 3.3e-03 | ||
Cre05.g233250.t1.2 {CrUGGC} | UDP-glucose:glycoprotein glucosyltransferase | FNATSYLLEALEFLAEEEPALVWK | TCE | 18O | 1393.7101 | 2 | 3.0e-09 |
Cre07.g330750.t1.2 | DUF3707 (Pherophorin) domain | ATIAASTFGNVSK | TCE | 18O | 635.3322 | 2 | 4.2e-07 |
Cre17.g705500.t1.2 | DUF3707 (Pherophorin) domain | LYVLPEIANSAAITSVMFNNK.T | TCE | 18O | 1149.6047 | 2 | 5.3e-13 |
Cre07.g326600.t1.1 | Thioredoxin (TRX)-like domain | QLSGNVSAELAALDAR | TCE | 18O | 809.4216 | 2 | 1.2e-07 |
Cre17.g722500.t1.1 | Lysosomal cystine transporter domain, PQ loop repeat domain | Acetyl-ADLLNTTSVVLK | TCE | 18O | 659.8724 | 2 | 1.2e-04 |
Cre14.g611850.t1.1 | Endomembraneprotein 70 (EMP70) | IIQVNLTTADPVPVAPGAK | TCE | 18O | 954.0396 | 2 | 1.6e-08 |
Cre10.g463300.t1.1 | No conserved domains | GGVNSSHVVAQEAGYLYR | TCE | 18O | 637.3177 | 3 | 1.8e-03 |
Cre16.g656050.t1.1 | No conserved domains | AVNTTATAPPPAPSVRPQAPAPDVTGG…LEGLEEAATTVAAAASAAASVVDAAAK | TCE | 18O | 1246.3956 | 4 | 3.8e-03 |
Cre49.g789700.t1.1 | No conserved domains | GPYNVTVVLK | TCE | 18O | 546.8153 | 2 | 1.1e-03 |
(a) Cre12.g516600.t1.2 (b) Cre12.g517000.t1.2 {MAPKKK7} (c) Cre12.g516650.t1.2 {STPK6} | (a) Protein kinases (PKs), catalytic domain (b) Protein kinases (PKs), catalytic domain (c) Serine/threonine protein kinase | LENCTLVVSAEELR | PM | 18O | 818.4133 | 2 | 2.6e-05 |
Cre05.g238100.t1.1 | Protein tyrosine kinase | NMTISGPLDSPIK | PM | 18O | 688.3521 | 2 | 1.4e-04 |
Cre02.g090050.t1.2 | Flagellar associated protein | ISLASDGGFVNATYTNGTAYILGAK | PM | 18O | 1255.6277 | 2 | 1.0e-15 |
Cre17.g712900.t1.1 | No conserved domains | NVTAAQLGGNDFDINPTAVNR.T | PM | 18O | 1097.0371 | 2 | 3.7e-11 |
Cre03.g152250.t1.2 | No conserved domains | IYPNYSDPSIYLQLR | PM | 18O | 922.9720 | 2 | 3.6e-05 |
Cre05.g241350.t1.2 | Eye pigment and drug resistance transporter subfamily domain (ABCG_EPDR), ABC-type cobalt transport system (CbiO) | LNSSAPADALPR | CP | 18O | 607.8179 | 2 | 1.1e-04 |
Cre09.g409900.t1.2 | DUF3707 (Pherophorin) domain | TNCSVSEVDQLELFIAPETLNSVYK | CP | 18O | 953.8032 | 3 | 2.3e-05 |
(a) Cre29.g778950.t1.1 {FMG1-1} (b) Cre31.g780700.t1.2 {FMG1-2} | (a) Flagella membrane glycoprotein, major form (b) Flagella membrane glycoprotein, minor form | LFGVPVNASAYGTAVQLLAYDYYVK | PM | 18O | 1363.2107 | 2 | 1.1e-12 |
IS | 1463.2527 {1} | 2 | 1.3e-10 | ||||
LLSAGNFSAGDTVNIKPEQAELR | PM, SN | IS | 1317.1770 {1} | 2 | 3.9e-08 | ||
LLGNNSDVYTGGDTFNFK | PM, SN | 18O | 982.9630 | 2 | 1.6e-12 | ||
IS | 1083.0070 {1} | 2 | 9.5e-08 | ||||
FFDGLNTSVAGR | PM | 18O | 643.8174 | 2 | 4.7e-10 | ||
IS | 743.8636 {1} | 2 | 8.8e-04 | ||||
ADCDAVFVFSGAGNTTK | PM | 18O | 881.8932 | 2 | 1.0e-08 | ||
LAAQVVNPALFANANLTSATAITVR, | TCE, PM, SN | 18O | 1265.2036 | 2 | 1.0e-15 | ||
NAFSYFDLNNGTK | TCE | 18O | 747.3456 | 2 | 1.5e-07 | ||
LLGNTTDVYASGDTFNFK | TCE, SN | 18O | 983.4730 | 2 | 5.0e-11 | ||
Cre12.g546550.t1.1 {FEA1} | Fe-assimilating protein | FASYITANGSVEPLHDSILAGK | TCE, SN | 18O | 1147.0874 | 2 | 5.7e-08 |
IS | 1247.1337 {1} | 2 | Man | ||||
AAMAAGNFTEALSIYSTGK | SN | 18O | 953.4623 | 2 | 1.0e-15 | ||
IS | 1053.5095 {1} | 2 | 7.7e-14 | ||||
Cre12.g546600.t1.2 {FEA2} | Fe-assimilating protein | DNGTLSSAVYNASR | TCE | 18O | 730.8359 | 2 | 1.4e-09 |
KDNGTLSSAVYNASR | SN | 18O | 794.8843 | 2 | 1.5e-08 | ||
IS | 994.9776 {2} | 2 | 1.1e-04 | ||||
Cre09.g393150.t1.1 {FOX1} | Multicopper ferroxidase | GVDLMVPLYWQVVDENSSPFLDLNVEAAQLNVTK | PM | 18O | 1269.6463 | 3 | 5.8e-09 |
LGDGGALAAQLAANATEMTALVTDPVFMEHMLK | TCE | 18O | 1130.5664 | 3 | 7.1e-06 | ||
Cre10.g439900.t1.1 {HSP70G} | ER-located HSP110/SSE-like protein | YNTSGQISLR | TCE | 18O | 571.2894 | 2 | 1.7e-06 |
HLDADEAVALGAGLFAANLSTSFR | TCE | 18O | 1225.1179 | 2 | 1.0e-15 | ||
FSLAYNASTHHGLPPGVK | TCE, SN | 18O | 949.9884 | 2 | 1.6e-09 | ||
IIEVPVNETDTATGAEGAGADADTK | TCE, SN, CP | 18O | 1224.5840 | 2 | 1.0e-15 | ||
IIEVPVNETDTATGAEGAGADADTKAEK | TCE, SN, CP | IS | 1488.7189 {1} | 2 | 6.6e-09 | ||
AGGDKAEEAEGEAKEGADAGAGSANATNASNSTA…NAKPATVIK | SN | 18O | 1002.7274 | 2 | 4.1e-08 | ||
(a) Cre06.g272250.t1.1 (b) Cre03.g155300.t1.1 | (a), (b) DUF3707 (Pherophorin) domain | IMAFNTTPATDYSK | TCE | 18O | 781.8712 | 2 | 1.3e-04 |
KLNYSYPDFDGPEK, | TCE | 18O | 838.3884 | 2 | 6.1e-09 | ||
LGYQLSGVAPNQTMFNFDLAK | TCE | 18O | 1159.0795 | 2 | 1.3e-11 | ||
VVNVTGIDYDLEEEALCDR, | CP | 18O | 1107.0132 | 2 | 3.1e-11 | ||
Cre17.g741000.t1.1 {TRAPA1} | Translocon-associated protein (TRAP), alpha subunit | YNISAVMGSLNNAQDFR | TCE, SN, CP | 18O IS | 951.9520 1051.9949 {1} | 2 2 | 3.1e-11 man |
Cre17.g715300.t1.1 {PKD2} | Polycystin cation channel protein | GTTLYNPDYDDVNGTK | TCE, PM, SN | 18O | 888.3962 | 2 | 6.7e-12 |
Cre13.g592050.t1.1 {DAL1} | Allantoinase | IVAVSDNTTVDSPHMLNFK | TCE | 18O | 697.6844 | 3 | 1.5e-03 |
VEWEGIWNGTR | TCE, SN | 18O | 675.3238 | 2 | 3.8e-04 | ||
Cre06.g294400.t1.2 | Nicastrin | TLHSLAGSPETPALEVNR.T | PM | 18O | 632.3325 | 3 | 1.4e-03 |
FVYNYLGNLTAAPLPADR | TCE, PM | 18O | 999.5161 | 2 | 4.6e-06 | ||
(a) Cre01.g067150.t1.1 (b) Cre01.g067059.t1.1 | (a), (b) EGF-like domain | NTTEWSLDPLDSFPAPNFLTDK | TCE, SN | 18O IS | 1256.0959 1356.1448 {1} | 2 2 | 8.6e-13 2.3e-04 |
Cre45.g788350.t1.2 {GAS31} | Hydroxyproline-rich cell wall protein pherophorin | LSYVNTSSLVGVR | TCE, SN | 18O | 699.3804 | 2 | 6.9e-10 |
Cre06.g304500.t1.1 {ZYS3–2} | Zygote-specific protein | LNVSQIEKPHEVPEAMLADIEK | TCE, SN | 18O | 1247.1454 | 2 | 1.0e-10 |
IS | 1347.1940 {1} | 2 | 6.1e-08 | ||||
Cre15.g635079.t1.1 | Periplasmic binding protein (PBP) superfamily domain | NLTGYGYSGPLLR | TCE, PM | 18O | 707.3672 | 2 | 1.3e-07 |
Cre05.g244950.t1.1 | Translocon-associated protein beta (TRAPB) domain | YTDVLPENATLVEGSLEVDFGK | TCE, CP | 18O | 1200.0963 | 2 | 1.0e-15 |
Cre01.g042550.t1.1 | DUF1620 | QTLFVDLPANGTALK | TCE, CP | 18O | 795.9345 | 2 | 1.5e-04 |
Cre07.g321400.t1.2 {FAP113} | Flagellar associated protein | KNVITVPTQISNITIEFK | SN | 18O | 1024.5787 | 2 | 1.7e-07 |
IS | 1124.6289 {1} | 2 | 1.9e-12 | ||||
ITYATTAAAVTNANLSSYK | SN, PM | IS | 1082.0464 {1} | 2 | 2.2e-10 | ||
Cre09.g394200.t1.2 {FAP102} | Flagellar associated protein | SSNLANATFWVASK | TCE | 18O | 749.8744 | 2 | 1.8e-10 |
MTSNITIADIPVQR | TCE, SN | 18O | 781.4117 | 2 | 1.5e-03 | ||
IS | 982.9952 {2} | 2 | Man | ||||
Cre14.g612650.t1.2 | No conserved domains | VLDYVAYGNDSANPLPAGSVSLVPLDGPAK | TCE, SN | 18O | 1501.7690 | 2 | 5.2e-10 |
IS | 1601.8141 | 2 | 2.0e-05 | ||||
Cre06.g283200.t1.1 | No conserved domains | DINQLGNSSTVDLVAGK | TCE, SN | 18O | 867.4476 | 2 | 9.7e-11 |
Cre02.g138500.t1.1 | No conserved domains | LPIANATAFTDGLR | TCE, SN | 18O | 731.8951 | 2 | 4.8e-08 |


Identifier (JGI 4.3 Augustus 10.2) | Best BLASTp hit (human) | Accession number | BLASTp E-value | Conserved glycosylation sites |
---|---|---|---|---|
Cre07.g340450.t1.2 {PKHD1-1} | Polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 | EAW91931.1 | 0.0 | 4 out of 8 |
Cre01.g011300.t1.1 | Vitellogenic carboxypeptidase-like protein (CPVL) | AAG37991.2 | 4e-52 | 1 out of 1 |
Cre04.g226600.t1.2 | N-acetylglucosamine-6-sulfatase precursor | NP_002067.1 | 4e-52 | - |
Cre10.g431800.t1.1 | N-acetylglucosamine-6-sulfatase precursor | NP_002067.1 | 4e-53 | - |
Cre02.g097000.t1.1 | Dihydropyrimidinase (DPYS) | NP_001376.1 | 1e-141 | - |
(a) Cre08.g383400.t1.2 (b) Cre08.g383600.t1.2 | (a) Deleted in malignant brain tumor 1 protein isoform (b) DMBT1/8kb.2 protein | (a) NP_015568.2 (b) CAB56155.1 | (a) 6e-47 (b) 3e-48 | - |
Cre02.g121650.t1.2 {CrSTT3A} | STT3A/STT3B | NP_689926.1/NP_849193.1 | 0.0/0.0 | 2 out of 2 |
Cre07.g330100.t1.1 {CrSTT3B} | STT3A/STT3B | NP_689926.1/NP_849193.1 | 0.0/0.0 | 2 out of 2 |
Cre09.g397900.t1.1 | Cleft lip and palate 1 (CLPT1) | NP_001285.1 | 4e-140 | - |
Cre14.g611850.t1.1 | SM-11044 binding protein/transmembrane 9 superfamily member 3 (TM9SF3) | NP_004818.2 | 0.0 | 1 out of 1 |
Cre05.g241350.t1.2 | ABC transporter (ABCG2) | AAG52982.1 | 7e-41 | - |
Cre09.g393150.t1.1 {FOX1} | Hephaestin | NP_001124332.1 | 2e-147 | - |
Cre10.g439900.t1.1 {HSP70G} | Hypoxia upregulated 1 (HYOU1) | NP_006380.1 | 1e-111 | - |
Cre06.g279700.t1.2 | Fibrocystin L | NP_803875.2 | 6e-38 | - |
Cre01.g042550.t1.1 | ER membrane protein complex subunit 1 | NP_001258357.1 | 4e-69 | - |
Putative function | Protein name | Gene name (JGI v4.3) | Gene location | Best hit in A. thaliana | SignalP prediction | TMHMN prediction | Predicted domains |
---|---|---|---|---|---|---|---|
ER cytosolic enzymes | |||||||
N-acetylglucosamine phosphostransferase | CrALG7 | Cre16g663100 | Chromosome_16: 1990552–1993342 | At3g57220 (43%) | Signal peptide | 10 TMD | PF00953 |
β-1,4-N-acetylglucosaminyl transferase | CrALG13 | Cre13g585850 | Chromosome_13: 3255029–3257117 | At4g16710 (44%) | None | None | PF04101 |
β-1,4-N-acetylglucosaminyl transferase | CrALG14 | Cre16g669950 | Chromosome_16: 3067735–3069662 | At4g18230 (40%) | Signal peptide | 1 TMD | PF08660 |
β-1,4-mannosyl transferase | CrALG1 | Cre12g516550 | Chromosome_12: 3825477–3826903 | At1g16570 (44%) | Signal anchor | None | PF00534 |
α-1,3-mannosyltransferase | CrALG2 | Cre11g474450 | Chromosome_11: 1150916–1152886 | At1g78800 (46%) | None | None | PF00534 |
α-1,2-mannosyltransferase | CrALG11 | Cre23g767350 | Scaffold_23: 188138–193311 | At2g40190 (40%) | Signal anchor | 2 TMD | PF00534 |
Flippase | CrRFT | Cre22g765100 | Scaffold_22: 349328–353741 | At5g07630 (22%) | Signal peptide | 9 TMD | PF04506 |
ER lumenal enzymes | |||||||
α-1,3-glucosyltransferase | CrALG6 | Cre16g690150 | Chromosome_16: 5766199–5770411 | At5g28460 (34%) | Signal peptide | 11 TMD | PF03155 |
α-1,3-glucosyltransferase | CrALG8 | Cre09g414250 | Chromosome_9: 4322467–4325535 | At2g44660 (44%) | None | 10 TMD | PF03155 |
Calnexin | CrCLNX | Cre07g357900 | Chromosome_7: 6143630–6147986 | At5g61790 (35%) | Signal peptide | 1 TMD | PF00262 |
Calreticulin | CrCLRT | Cre01g038400 | Chromosome_1: 5293813–5297125 | At1g09210 (59%) | Signal peptide | None | PF00262 |
Dolichol-phosphate mannosyltransferase | CrDPM1 | Cre03g150950 | Chromosome_3: 438314–439077 | At1g20575 (52%) | None | None | PF00535 |
Dolichol-phosphate glucosyltransferase | CrALG5 | Cr16g652850 | Chromosome_16: 679141–682477 | At2g29630 (38%) | Signal peptide | 1 TMD | PF00535 |
Glucosidase I | CrGSI | Cre13g579750 | Chromosome_13: 2459268–2461989 | At1g67490 (36%) | None | None | PF03200 |
Glucosidase II, α-subunit | CrGSIIA | Cre03g190500 | Chromosome_3: 4955490–4962655 | At5g63840 (49%) | Signal peptide | 1 TMD | PF01055 |
Glucosidase II, β-subunit | CrGSIIB | Cre17g725350 | Chromosome_17: 3554839–3558301 | At5g56360 (25%) | None | None | PF07915 |
UDP-glucose:glycoprotein glucosyltransferase | CrUGGC | Cre05g233250 | Chromosome_5: 672374–689328 | At1g71220 (15%) | Signal peptide | None | PF06427 |
Oligosaccharyltransferase complex subunits | |||||||
DDPGT subunit | CrDGL1 | Cre14g614100 | Chromosome_14: 987242–990915 | At5g66680 (43%) | Signal peptide | 2 TMD | PF03345 |
Ribophorin I | CrRPN1 | Cre12g523300 | Chromosome_12: 4550885–4555389 | At1g76400 (38%) | Signal peptide | 1 TMD | PF04597 |
Ribophorin II | CrRPN2 | Cre08g368450 | Chromosome_8: 1593746–1596364 | At4g21150 (10%) | Signal peptide | 1 TMD | PF05817 |
DDPGT subunit | CrDAD1 | Cre02g108400 | Chromosome_2: 4617959–4619399 | At1g32210 (48%) | Signal anchor | 3 TMD | PF02109 |
DDPGT subunit | CrSTT3B | Cre07g330100 | Chromosome_7: 2282859–2291158 | At1g34130 (57%) | None | 11 TMD | PF02516 |
DDPGT subunit | CrSTT3A | Cre02g121650 | Chromosome_2: 6262471–6270238 | At5g19960 (27%) | Signal peptide | 3 TMD | PF02516 |
DDPGT subunit | CrOST3 | Cre01g063500 | Chromosome_1: 8748501–8751480 | At1g61790 (28%) | Signal peptide | 4 TMD | PF04756 |
Golgi enzymes | |||||||
Endomannosidase | CrEMAN | Cre03g189050 | Chromosome_3: 4795688–4801485 | - | None | 1 TMD | PF03659 |
α-1,2-mannosidase I | CrMANI | Cre07g336600 | Chromosome_7: 3304731–3311367 | At1g30000 (28%) | Signal peptide | None | PF01532 |
β-1,2-xylosyltransferase | CrXYLT | Cre02g126700 | Chromosome_2: 6833318–6837848 | At5g55500 (17%) | Signal peptide | None | DUF563 (PF04577) |
α-1,3-fucosyltransferase | CrFUT1 | Cre31g780450 | Scaffold_31: 155613–159255 | At3g19280 (20%) | Signal anchor | 1 TMD | PF00852 |
In Silico Analysis of the Chlamydomonas Reinhardtii Genome
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Terry A.
- Salamov A.
- Fritz-Laylin L.K.
- Maréchal-Drouard L.
- Marshall W.F.
- Qu L.H.
- Nelson D.R.
- Sanderfoot A.A.
- Spalding M.H.
- Kapitonov V.V.
- Ren Q.
- Ferris P
- Lindquist E.
- Shapiro H.
- Lucas S.M.
- Grimwood J.
- Schmutz J.
- Cardol P.
- Cerutti H.
- Chanfreau G.
- Chen C.L.
- Cognat V.
- Croft M.T.
- Dent R.
- Dutcher S.
- Fernández E.
- Fukuzawa H.
- González-Ballester D.
- González-Halphen D.
- Hallmann A.
- Hanikenne M.
- Hippler M.
- Inwood W.
- Jabbari K.
- Kalanon M.
- Kuras R.
- Lefebvre P.A.
- Lemaire S.D.
- Lobanov A.V.
- Lohr M.
- Manuell A.
- Meier I.
- Mets L.
- Mittag M.
- Mittelmeier T.
- Moroney J.V.
- Moseley J.
- Napoli C.
- Nedelcu A.M.
- Niyogi K.
- Novoselov S.V.
- Paulsen I.T.
- Pazour G.
- Purton S.
- Ral J.P.
- Riaño-Pachón D.M.
- Riekhof W.
- Rymarquis L.
- Schroda M.
- Stern D.
- Umen J.
- Willows R.
- Wilson N.
- Zimmer S.L.
- Allmer J.
- Balk J.
- Bisova K.
- Chen C.J.
- Elias M.
- Gendler K.
- Hauser C.
- Lamb M.R.
- Ledford H.
- Long J.C.
- Minagawa J.
- Page M.D.
- Pan J.
- Pootakham W.
- Roje S.
- Rose A.
- Stahlberg E.
- Terauchi A.M.
- Yang P.
- Ball S.
- Bowler C.
- Dieckmann C.L.
- Gladyshev V.N.
- Green P.
- Jorgensen R.
- Mayfield S.
- Mueller-Roeber B.
- Rajamani S.
- Sayre R.T.
- Brokstein P.
- Dubchak I.
- Goodstein D.
- Hornick L.
- Huang Y.W.
- Jhaveri J.
- Luo Y.
- Martínez D.
- Ngau W.C.
- Otillar B.
- Poliakov A.
- Porter A.
- Szajkowski L.
- Werner G.
- Zhou K.
- Grigoriev I.V.
- Rokhsar D.S.
- Grossman A.R.
- Kuokkanen E.
- Smith W.
- Mäkinen M.
- Tuominen H.
- Puhka M.
- Jokitalo E.
- Duvet S.
- Berg T.
- Heikinheimo P.
DISCUSSION

- Bardor M.
- Burel C.
- Villarejo A.
- Cadoret J.P.
- Carlier A.
- Lerouge P.
- Baiet B.
- Burel C.
- Saint-Jean B.
- Louvet R.
- Menu-Bouaouiche L.
- Kiefer-Meyer M.-C.
- Rivet E.
- Castel H.
- Lefebvre T.
- Carlier A.
- Cadoret J.-P.
- Lerouge P.
- Bardor M.
- Zhang M.-Z.
- Mai W.
- Li C.
- Cho S.
- Hao C.
- Moeckel G.
- Zhao R.
- Kim I.
- Wang J.
- Xiong H.
- Wang H.
- Sato Y.
- Wu Y.
- Nakanuma Y.
- Lilova M.
- Pei Y.
- Harris R.C.
- Li S.
- Coffey R.J.
- Sun L.
- Wu D.
- Chen X.-Z.
- Breyer M.D.
- Zhao Z.J.
- McKanna J.A.
- Wu G.
- Onuchic L.F.
- Furu L.
- Nagasawa Y.
- Hou X.
- Eggermann T.
- Ren Z.
- Bergmann C.
- Senderek J.
- Esquivel E.
- Zeltner R.
- Rudnik-Schöneborn S.
- Mrug M.
- Sweeney W.
- Avner E.D.
- Zerres K.
- Guay-Woodford L.M.
- Somlo S.
- Germino G.G.
- Yu L.-G.
- Andrews N.
- Weldon M.
- Gerasimenko O.V.
- Campbell B.J.
- Singh R.
- Grierson I.
- Petersen O.H.
- Rhodes J.M.
Acknowledgments
Supplementary Material
REFERENCES
- The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use. 2nd ed. Elsevier, Oxford, UK2008 (Vol. 1)
- The Chlamydomonas cell wall: characterization of the wall framework.J. Cell Biol. 1985; 101: 1599-1607
- Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins.Biochemistry. 2001; 40: 2978-2987
- Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii—conservation of the inner core in Chlamydomonas and land plants.Carbohydr. Res. 2007; 342: 2557-2566
- The dolichol pathway of N-linked glycosylation.Biochim. Biophys. Acta. 1999; 1426: 239-257
- Intracellular functions of N-linked glycans.Science. 2001; 291: 2364-2369
- Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells.Cold Spring Harb. Perspect. Biol. 2011; 2011: 1-14
- Isolation and characterization of the Golgi apparatus of a flagellate scaly green alga.Eur. J. Cell Biol. 1993; 61: 10-20
- Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) form high-molecular-weight complexes between the scale layers and the flagellar membrane.Planta. 1996; 199: 503-510
- The oligosaccharides of the glycoprotein pheromone of Volvox carteri f. nagariensis iyengar (Chlorophyceae).Eur. J. Biochem. 1990; 192: 231-237
- Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp.J. Biol. Chem. 2011; 286: 21340-21352
- N-glycans of Phaeodactylum tricornutum diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme.J. Biol. Chem. 2011; 286: 6152-6164
- Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide.J. Proteome Res. 2009; 8: 651-661
- Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins.Nat. Biotechnol. 2009; 27: 378-386
- Integrative analysis of N-linked human glycoproteomic data sets reveals PTPRF ectodomain as a novel plasma biomarker candidate for prostate cancer.J. Proteome Res. 2012; 11: 2653-2665
- Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints.Cell. 2010; 141: 897-907
- Glycoproteomic analysis of the secretome of human endothelial cells.Mol. Cell. Proteomics. 2013; 12: 956-978
- Combining various strategies to increase the coverage of the plant cell wall glycoproteome.Phytochemistry. 2011; 72: 1109-1123
- The secreted plant N-glycoproteome and associated secretory pathways.Front. Plant Sci. 2012; 3: 117
- The Chlamydomonas genome reveals the evolution of key animal and plant functions.Science. 2007; 318: 245-250
- Biopharmaceutical benchmarks 2010.Nat. Biotechnol. 2010; 28: 917-924
- Chlamydomonas reinhardtii chloroplasts as protein factories.Curr. Opin. Biotechnol. 2007; 18: 126-133
- Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii.Plant Biotechnol. J. 2010; 8: 719-733
- Expression and assembly of a fully active antibody in algae.Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 438-442
- Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts.Biotechnol. Bioeng. 2009; 104: 663-673
- Strategies to facilitate transgene expression in Chlamydomonas reinhardtii.Planta. 2009; 229: 873-883
- Post-translational modifications in the context of therapeutic proteins.Nat. Biotechnol. 2006; 24: 1241-1252
- Advances in the assessment and control of the effector functions of therapeutic antibodies.Nat. Rev. Drug Discov. 2011; 10: 101-111
- The sweet tooth of biopharmaceuticals: importance and analysis of recombinant protein glycosylation.Biotechnol. J. 2012; 7: 1462-1472
- Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core-xylose.Glycobiology. 2003; 13: 427-434
- Immune response, accommodation, and tolerance to transplantation carbohydrate antigens.Transplantation. 2004; 78: 1093-1098
- Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease.Glycobiology. 2008; 18: 818-830
- Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose.N. Engl. J. Med. 2008; 358: 1109-1117
- Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy.BioDrugs. 2010; 24: 9-21
- Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii.Proc. Natl. Acad. Sci. U.S.A. 1960; 46: 83-91
- Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus.EMBO J. 2002; 21: 6709-6720
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 1994; 22: 4673-4680
- Plant N-glycan profiling of minute amounts of material.Anal. Biochem. 2008; 379: 66-72
- A simple and rapid method for the permethylation of carbohydrates.Carbohydr. Res. 1984; 131: 209-217
- Mass spectrometry of carbohydrate-containing biopolymers.Methods Enzymol. 1994; 230: 108-132
- Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity.J. Biol. Chem. 2010; 285: 5759-5775
- Comparison of the methods for profiling glycoprotein glycans—HUPO human disease glycomics/proteome initiative multi-institutional study.Glycobiology. 2007; 17: 411-422
- Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells.J. Biol. Chem. 2005; 280: 4228-4237
- Analysis of the N-acetylneuraminc acid and N-glycolylneuraminic acid contents of glycoproteins by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD).Glycobiology. 1998; 8: 35-43
- Plant proteomics and glycosylation, in Plant Proteomics: Methods and Protocols.in: Thiellement H. Mehin V. Damerval C. Zivy M. Methods in Molecular Biology Series. Humana Press, Totowa, NJ2007: 317-342 (Vol. 355)
- N-terminal processing of Lhca3 is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii.J. Biol. Chem. 2005; 280: 20431-20441
- Is a ferroxidase involved in the high-affinity iron uptake in Chlamydomonas reinhardtii?.Plant Soil. 2002; 241: 1-10
- Pseudo-neutral-loss scan for selective detection of phosphopeptides and N-glycopeptides using liquid chromatography coupled with a hybrid linear ion-trap/orbitrap mass spectrometer.Proteomics. 2010; 10: 3916-3921
- TANDEM: matching proteins with tandem mass spectra.Bioinformatics. 2004; 20: 1466-1467
Specht, M., Kuhlgert, S., Fufezan, C., Hippler, M., Proteomics to go: Proteomatic enables the user-friendly creation of versatile MS/MS data evaluation workflows. Bioinformatics, 27, 1183–1184.
- Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry.Bioinformatics. 2008; 24: i42-i48
- A potential pitfall in site mapping O-based N-linked glycosylation.Rapid Commun. Mass Spectrom. 2007; 21: 674-682
- Chlamydomonas flagella: isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes.J. Cell Biol. 1972; 54: 507-539
- Species differences in protein glycosylation and their implication for biotechnology, in Glycosylation in Diverse Cell Systems: Challenges and New Frontiers in Experimental Glycobiology.in: Brooks S. Rudd P. Apelmelk B. Essential Reviews in Experimental Biology Series. The Society for Experimental Biology, London, UK2011: 1-24 (Vol. 4)
- A systematic nomenclature for carbohydrate fragmentation in FAB-MS/MS spectra of glycoconjugates.Glycoconj. J. 1988; 5: 253-257
- Plant N-glycosylation: an engineered pathway for the production of therapeutical plant-derived glycoproteins, in Glycosylation in Diverse Cell Systems: Challenges and New Frontiers in Experimental Glycobiology.in: Brooks S. Rudd P. Apelmelk B. Essential Reviews in Experimental Biology Series. The Society for Experimental Biology, London, United Kingdom2011: 93-118 (Vol. 4)
- 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching.Anal. Chem. 1999; 71: 1431-1440
- Protein and glycan analysis by capillary spectrometry.Anal. Chem. 2006; 78: 5384-5393
- Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency.Plant Physiol. 2007; 143: 263-277
- Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii.Plant Cell. 2012; 24: 2649-2665
- Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems.Glycobiology. 2006; 16: 91R-101R
- Processing enzyme glucosidase II: proposed catalytic residues and developmental regulation during the ontogeny of the mouse mammary gland.Glycobiology. 2004; 14: 909-921
- Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum.J. Biol. Chem. 2006; 281: 6325-6333
- Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains.Gene. 1995; 165: 219-222
- The UDP-glucose:glycoprotein glucosyltransferase is organized in at least two tightly bound domains from yeast to mammals.J. Biol. Chem. 2003; 278: 20540-20546
- Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme.J. Biol. Chem. 1987; 262: 3775-3781
- Golgi apparatus immunolocalization of endomannosidase suggests postendoplasmic reticulum glucose trimming: implications for quality control.Mol. Biol. Cell. 2000; 11: 4227-4240
- Structure of Penicillium citrinum alpha 1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and Golgi class I enzymes.J. Biol. Chem. 2002; 277: 5620-5630
- Structure of mouse Golgi alpha-mannosidase IA reveals the molecular basis for substrate specificity among class 1 (family 47 glycosylhydrolase) alpha1,2-mannosidases.J. Biol. Chem. 2004; 279: 29774-29778
- Characterization and subcellular localization of human neutral class II α-mannosidase cytosolic enzymes/free oligosaccharides/glycoside hydrolase family 38/M2C1/N-glycosylation.Glycobiology. 2007; 17: 1084-1093
- Free oligosaccharide regulation during mammalian protein N-glycosylation.Glycobiology. 2008; 18: 210-224
- Molecular cloning and functional expression of beta1,2-xylosyltransferase cDNA from Arabidopsis thaliana.FEBS Lett. 2000; 472: 105-108
- Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria.Glycobiology. 1999; 9: 323-334
- Distantly related plant and nematode core α1,3-fucosyltransferases display similar trends in structure-function relationships.Glycobiology. 2011; 21: 1401-1415
- Identification of core alpha 1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horse radish peroxidase epitope.J. Biol. Chem. 2001; 276: 28058-28067
- Human alpha 1,3/4 fucosyltransferases. Characterization of highly conserved cysteine residues and N-linked glycosylation sites.J. Biol. Chem. 2000; 275: 24237-24245
- Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-D-glucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I.Biochem. J. 2004; 382: 995-1001
- Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway.Glycobiology. 2006; 16: 748-756
- Discovery and structural characterization of fucosylated oligomannosidic N-glycans in mushrooms.J. Biol. Chem. 2011; 286: 5977-5984
- Plant secretome: unlocking secrets of the secreted proteins.Proteomics. 2010; 10: 799-827
- Induction of a high-CO2-inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii.Plant Cell Physiol. 2008; 48: 299-309
- Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases.Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 4693-4697
- Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall.J. Biol. Chem. 1985; 260: 6373-6377
- Two tandemly-located matrix metalloprotease genes with different expression patterns in the Chlamydomonas sexual cell cycle.Curr. Genet. 2001; 40: 136-143
- The Chlamydomonas hatching enzyme, sporangin, is expressed in specific phases of the cell cycle and is localized to the flagella of daughter cells within the sporangial cell wall.Plant Cell Physiol. 2009; 50: 572-583
- Studies on the N-glycosylation of the subunits of oligosaccharyl transferase in Saccharomyces cerevisiae.J. Biol. Chem. 2005; 280: 1864-1871
- Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process.J. Biol. Chem. 2002; 277: 47692-47700
- Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties.Mol. Cell. 2003; 12: 101-111
- Comprehensive profiling of N-linked glycosylation sites in HeLa cells using hydrazide enrichment.J. Proteome Res. 2013; 12: 248-259
- Epitope-tagged Pkhd1 tracks the processing, secretion, and localization of fibrocystin.J. Am. Soc. Nephrol. 2011; 22: 2266-2277
- PKHDL1, a homolog of the autosomal recessive polycystic kidney disease gene, encodes a receptor with inducible T lymphocyte expression.Hum. Mol. Genet. 2003; 12: 685-698
- Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia.Hum. Mol. Genet. 2003; 12: 2703-2710
- Proteomic analysis of a eukaryotic cilium.J. Cell Biol. 2005; 170: 103-113
- PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells.Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 2311-2316
- PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats.Am. J. Hum. Genet. 2002; 70: 1305-1317
- Chaperones and proteases.in: Stern D.B. The Chlamydomonas Sourcebook. 2nd ed. Elsevier, Oxford, UK2008: 671-729 (Vol. 2)
- Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.Mol. Cell. Proteomics. 2010; 9: 1514-1532
- Targeting of the molecular chaperone oxygen-regulated protein 150 (ORP150) to mitochondria and its induction by cellular stress.Am. J. Physiol. Cell Physiol. 2008; 294: C641-C650
- An N-terminal truncated form of Orp150 is a cytoplasmic ligand for the anti-proliferative mushroom Agaricus bisporus lectin and is required for nuclear localization sequence-dependent nuclear protein import.J. Biol. Chem. 2002; 277: 24538-24545
- Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast.Nat. Cell Biol. 2005; 7: 1224-1231
- Symbol nomenclature for glycan representation.Proteomics. 2009; 9: 5398-5399
Deleted in proof.
Deleted in proof.
Article info
Publication history
Footnotes
Author contributions: E.M.-R., C.A., F.D., F.L.M., G.T., M.S., S.S., A.K.H., A.B.R., C.L.-B., M.-C.K.-M., and C.B. performed sample preparations, glycan and glycoproteome analysis, analysis of monosaccharide composition, and bioinformatic analysis and generated the data. C.F. helped in bioinformatic analyses of the proteomic data. E.M.-R., F.D., F.L.M., P.L., M.B., M.S., and M.H. wrote the paper. P.L., M.B., F.M., and M.H. coordinated research efforts among authors. All authors read and approved the manuscript.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy