EXPERIMENTAL PROCEDURES
Cell Culture and Animals
Plasmids, Reagents, and Transfection
Affinity Purification and LC-MS/MS
Processing of Mass Spectrometric Data
Network Analysis

Co-immunoprecipitation and Western Blot
HTRF Measurement of Protein–Protein Interaction
Immunofluorescence
Glucose-stimulated Insulin Secretion, Total Insulin Content, and Quantitative RT-PCR
cAMP and Calcium Imaging
Statistics
RESULTS
AP-MS Identified Potential GLP-1R Interacting Proteins in CHO Cells and MIN6 Cells

- Thomas P.
- Pang Y.
- Dong J.
Co-IP and Western Blot Validated Selected GLP-1R Interacting Proteins in MIN6 Cells

HTRF Measurement Demonstrates Interactions between Selected Interactors and GLP-1R

Immunofluorescence Supports Colocalization of Selected Interactors and GLP-1R in MIN6 Cells

Overexpression of GLP-1R Interactors Affected Insulin Secretion in INS1 832/3 Cells

- Basford C.L.
- Prentice K.J.
- Hardy A.B.
- Sarangi F.
- Micallef S.J.
- Li X.
- Guo Q.
- Elefanty A.G.
- Stanley E.G.
- Keller G.
- Allister E.M.
- Nostro M.C.
- Wheeler M.B.
PGRMC1 Modulates GLP-1-induced Glucose-stimulated Insulin Secretion
- Peluso J.J.
- Romak J.
- Liu X.
Effects of PGRMC1 Activator and Inhibitor on GIIS

PGRMC1 May Potentiate GIIS through cAMP, EGFR, and PI3K Signaling

DISCUSSION
Affinity Purification and Mass Spectrometry Revealed Potential GLP-1R Interactors
The Role of PGRMC1 in Modulating Insulin Secretion in Pancreatic β Cells
- Thomas P.
- Pang Y.
- Dong J.
- Peluso J.J.
- Romak J.
- Liu X.
- Thomas P.
- Pang Y.
- Dong J.
PGRMC1 Increased GIIS by Regulating cAMP, EGFR and PI3K Pathways
- Thomas P.
- Pang Y.
- Dong J.
- MacDonald P.E.
- Sewing S.
- Wang J.
- Joseph J.W.
- Smukler S.R.
- Sakellaropoulos G.
- Wang J.
- Saleh M.C.
- Chan C.B.
- Tsushima R.G.
- Salapatek A.M.
- Wheeler M.B.
- MacDonald P.E.
- Sewing S.
- Wang J.
- Joseph J.W.
- Smukler S.R.
- Sakellaropoulos G.
- Wang J.
- Saleh M.C.
- Chan C.B.
- Tsushima R.G.
- Salapatek A.M.
- Wheeler M.B.

CONCLUSION
Acknowledgments
Supplementary Material
REFERENCES
- Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.J. Clin. Invest. 1993; 91: 301-307
- Targeting incretins in type 2 diabetes: role of GLP-1 receptor agonists and DPP-4 inhibitors.Rev. Diabetic Studies. 2008; 5: 73-94
- Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls.Diabetes. 2013; 62: 3316-3323
- Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells.Endocrinology. 1992; 130: 159-166
- The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness.J. Neurosci. 2002; 22: 10470-10476
- Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans.Am. J. Physiol. 1997; 273: E981-E988
- GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery.Am. J. Physiol. 1993; 265: L374-L381
- Renal effects of glucagon-like peptide in rats.Eur. J. Pharmacol. 2002; 434: 163-167
- Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons.J. Clin. Invest. 2002; 110: 43-52
- Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model.Diabetes. 2014; 63: 1224-1233
- Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor.Endocrinology. 1996; 137: 2968-2978
- Glucagon like peptide-1 receptor expression in the human thyroid gland.J. Clin. Endocrinol. Metab. 2012; 97: 121-131
- Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype.Mol. Endocrinol. 2005; 19: 812-823
- Beta-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 6614-6619
- Caveolin-1 regulates cellular trafficking and function of the glucagon-like Peptide 1 receptor.Mol. Endocrinol. 2006; 20: 3400-3411
- Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation.Mol. Pharmacol. 2012; 81: 309-318
- The identification of novel proteins that interact with the GLP-1 receptor and restrain its activity.Mol. Endocrinol. 2013; 27: 1550-1563
- Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system.Methods Mol. Biol. 2009; 548: 247-271
- Tandem affinity purification and identification of heterotrimeric g protein-associated proteins.Methods Mol. Biol. 2011; 756: 357-370
- Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases.Methods. 2007; 42: 298-305
- A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression.Oncogene. 2012; 31: 3696-3708
- UCP2 regulates the glucagon response to fasting and starvation.Diabetes. 2013; 62: 1623-1633
- ProHits: integrated software for mass spectrometry-based interaction proteomics.Nat. Biotechnol. 2010; 28: 1015-1017
- A proteomic perspective of SIRT6 phosphorylation and interactions, and their dependence on its catalytic activity.Mol. Cell. Proteomics. 2014; 13: 168-183
- STRING: a database of predicted functional associations between proteins.Nucleic Acids Res. 2003; 31: 258-261
- A travel guide to Cytoscape plugins.Nat. Methods. 2012; 9: 1069-1076
- Characterization of Erg K+ channels in alpha- and beta-cells of mouse and human islets.J. Biol. Chem. 2009; 284: 30441-30452
- The neuronal Ca2+ sensor protein visinin-like protein-1 is expressed in pancreatic islets and regulates insulin secretion.J. Biol. Chem. 2006; 281: 21942-21953
- Enhancement of cell surface expression and receptor functions of membrane progestin receptor alpha (mPRalpha) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors.Endocrinology. 2014; 155: 1107-1119
- Trafficking of G protein-coupled receptors.Circulat. Res. 2006; 99: 570-582
- Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain.Genome Biol. 2002; 3 (RESEARCH0068)
- Progesterone receptor membrane component 1 and its role in ovarian follicle growth.Front. Neurosci. 2013; 7: 99
- Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions.Front. Neuroendocrinol. 2008; 29: 292-312
- Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.Endocrinology. 2008; 149: 534-543
- Antagonism of rat beta-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways.J. Biol. Chem. 2003; 278: 52446-52453
- Proteomic analysis of NMDA receptor-adhesion protein signaling complexes.Nat. Neurosci. 2000; 3: 661-669
- Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach.EMBO J. 2002; 21: 2332-2342
- Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome.Brain. 2006; 129: 3270-3276
- Novel progesterone receptors: neural localization and possible functions.Front. Neurosci. 2013; 7: 164
- Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site.Nat. Commun. 2011; 2: 380
- Progesterone receptor membrane component 1: an integrative review.J. Steroid Biochem. Mol. Biol. 2007; 105: 16-36
- Progesterone activates a progesterone receptor membrane component 1-dependent mechanism that promotes human granulosa/luteal cell survival but not progesterone secretion.J. Clin. Endocrinol. Metab. 2009; 94: 2644-2649
- Effect of progesterone on insulin secretion in the rat.J. Endocrinol. 1978; 76: 479-486
- Relative effects of pregnancy, estradiol, and progesterone on plasma insulin and pancreatic islet insulin secretion.J. Clin. Invest. 1971; 50: 992-999
- Activation of enteroendocrine membrane progesterone receptors promotes incretin secretion and improves glucose tolerance in mice.Diabetes. 2013; 62: 283-290
- Reversal of progesterone-enhanced insulin production by human chorionic somatommammotropin.Endocrinology. 1970; 87: 311-315
- Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor.Exp. Diabetes Res. 2012; 2012: 470851
- Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell.Diabetes. 2004; 53: 5-13
- Pgrmc1 (progesterone receptor membrane component 1) associates with epidermal growth factor receptor and regulates erlotinib sensitivity.J. Biol. Chem. 2010; 285: 24775-24782
- Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor.Diabetes. 2003; 52: 124-132
- Epidermal growth factor increases insulin secretion and lowers blood glucose in diabetic mice.J. Cell. Mol. Med. 2008; 12: 1593-1604
- Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion.J. Biol. Chem. 2002; 277: 44938-44945
- The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells.Diabetologia. 2012; 55: 358-371
- mTOR links incretin signaling to HIF induction in pancreatic beta cells.Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 16876-16882
- The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction.Cell Metab. 2014; 19: 653-666
Article info
Publication history
Footnotes
Author contributions: M.Z., K.W.S., and M.B.W. designed research; M.Z., M.R., A.D.S., X.H., Y.L., A.B., F.S.W., and J.H. performed research; M.Z., M.R., A.D.S., X.H., H.Y.G., S.A., K.W.S., and M.B.W. contributed new reagents or analytic tools; M.Z., M.R., A.D.S., X.H., F.F.D., and M.B.W. analyzed data; M.Z., F.F.D., and M.B.W. wrote the paper; M.R., A.D.S., F.S.W., S.F., L.W., K.W.S., F.F.D., and M.B.W. revised the paper; S.A. helped to design the experiment.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy