- Davidsson P.
- Folkesson S.
- Christiansson M.
- Lindbjer M.
- Dellheden B.
- Blennow K.
- Westman-Brinkmalm A.
- Catalona W.J.
- Richie J.P.
- Ahmann F.R.
- Hudson M.A.
- Scardino P.T.
- Flanigan R.C.
- Dekernion J.B.
- Ratliff T.L.
- Kavoussi L.R.
- Dalkin B.L.
- Waters W.B.
- MacFarlane M.T.
- Southwick P.C.
EXPERIMENTAL PROCEDURES

Biological Samples
- Teunissen C.
- Menge T.
- Altintas A.
- Alvarez-Cermeno J.C.
- Bertolotto A.
- Berven F.S.
- Brundin L.
- Comabella M.
- Degn M.
- Deisenhammer F.
- Fazekas F.
- Franciotta D.
- Frederiksen J.L.
- Galimberti D.
- Gnanapavan S.
- Hegen H.
- Hemmer B.
- Hintzen R.
- Hughes S.
- Iacobaeus E.
- Kroksveen A.C.
- Kuhle J.
- Richert J.
- Tumani H.
- Villar L.M.
- Drulovic J.
- Dujmovic I.
- Khalil M.
- Bartos A.
- Teunissen C.E.
- Petzold A.
- Bennett J.L.
- Berven F.S.
- Brundin L.
- Comabella M.
- Franciotta D.
- Frederiksen J.L.
- Fleming J.O.
- Furlan R.
- Hintzen R.Q.
- Hughes S.G.
- Johnson M.H.
- Krasulova E.
- Kuhle J.
- Magnone M.C.
- Rajda C.
- Rejdak K.
- Schmidt H.K.
- van Pesch V.
- Waubant E.
- Wolf C.
- Giovannoni G.
- Hemmer B.
- Tumani H.
- Deisenhammer F.
Chemicals
Sample Preparation of CSF for SDS-PAGE
Sample Preparation of CSF for Mixed Mode Fractionation
- Kroksveen A.C.
- Aasebo E.
- Vethe H.
- Van Pesch V.
- Franciotta D.
- Teunissen C.E.
- Ulvik R.J.
- Vedeler C.
- Myhr K.M.
- Barsnes H.
- Berven F.S.
Sample Preparation of Plasma for Mixed Mode Fractionation
Preparation of CSF and Isolation of Glycopeptides by Solid-phase Extraction of N-linked Glycopeptides
MS Analysis
Analysis of LC-MS/MS Data
- Chambers M.C.
- Maclean B.
- Burke R.
- Amodei D.
- Ruderman D.L.
- Neumann S.
- Gatto L.
- Fischer B.
- Pratt B.
- Egertson J.
- Hoff K.
- Kessner D.
- Tasman N.
- Shulman N.
- Frewen B.
- Baker T.A.
- Brusniak M.Y.
- Paulse C.
- Creasy D.
- Flashner L.
- Kani K.
- Moulding C.
- Seymour S.L.
- Nuwaysir L.M.
- Lefebvre B.
- Kuhlmann F.
- Roark J.
- Rainer P.
- Detlev S.
- Hemenway T.
- Huhmer A.
- Langridge J.
- Connolly B.
- Chadick T.
- Holly K.
- Eckels J.
- Deutsch E.W.
- Moritz R.L.
- Katz J.E.
- Agus D.B.
- MacCoss M.
- Tabb D.L.
- Mallick P.
Analysis of Glyco-data
RESULTS AND DISCUSSION
Data set | Maximal Protein Set | Protein groups | Peptides | Spectra |
---|---|---|---|---|
Mixed-Mode | 2779 | 2632 | 21,003 | 170,400 |
SDS-PAGE | 1883 | 1718 | 18,955 | 266,826 |
SPEG | 679 | 598 | 2594 | 14,213 |
Glyco | 520 | 508 | 1121 | 4631 |
CSF Total | 3081 | 2875 | 28,811 | 451,439 |
Plasma | 1050 | 946 | 9739 | 126,164 |
CSF MM Glyco Mapping
CSF SDS-PAGE Global Mapping
Protein Distribution on the SDS-PAGE Gel and Observed and Theoretical MW

- Ottervald J.
- Franzén B.
- Nilsson K.
- Andersson L.
- Khademi M.
- Eriksson B.
- Kjellström S.
- Marko-Varga G.
- Végvári A.
- Harris R.
- Laurell T.
- Miliotis T.
- Matusevicius D.
- Salter H.
- Ferm M.
- Olsson T.
- Abdi F.
- Quinn J.F.
- Jankovic J.
- McIntosh M.
- Leverenz J.B.
- Peskind E.
- Nixon R.
- Nutt J.
- Chung K.
- Zabetian C.
- Samii A.
- Lin M.
- Hattan S.
- Pan C.
- Wang Y.
- Jin J.
- Zhu D.
- Li G.J.
- Liu Y.
- Waichunas D.
- Montine T.J.
- Zhang J.
- Kroksveen A.C.
- Aasebo E.
- Vethe H.
- Van Pesch V.
- Franciotta D.
- Teunissen C.E.
- Ulvik R.J.
- Vedeler C.
- Myhr K.M.
- Barsnes H.
- Berven F.S.

Nontryptic Peptides
CSF Mixed-mode Global Mapping
Three Proteome Mapping Strategies
The Normal Cerebrospinal Fluid Proteome
- Teunissen C.
- Menge T.
- Altintas A.
- Alvarez-Cermeno J.C.
- Bertolotto A.
- Berven F.S.
- Brundin L.
- Comabella M.
- Degn M.
- Deisenhammer F.
- Fazekas F.
- Franciotta D.
- Frederiksen J.L.
- Galimberti D.
- Gnanapavan S.
- Hegen H.
- Hemmer B.
- Hintzen R.
- Hughes S.
- Iacobaeus E.
- Kroksveen A.C.
- Kuhle J.
- Richert J.
- Tumani H.
- Villar L.M.
- Drulovic J.
- Dujmovic I.
- Khalil M.
- Bartos A.
- Kroksveen A.C.
- Aasebo E.
- Vethe H.
- Van Pesch V.
- Franciotta D.
- Teunissen C.E.
- Ulvik R.J.
- Vedeler C.
- Myhr K.M.
- Barsnes H.
- Berven F.S.
- Abdi F.
- Quinn J.F.
- Jankovic J.
- McIntosh M.
- Leverenz J.B.
- Peskind E.
- Nixon R.
- Nutt J.
- Chung K.
- Zabetian C.
- Samii A.
- Lin M.
- Hattan S.
- Pan C.
- Wang Y.
- Jin J.
- Zhu D.
- Li G.J.
- Liu Y.
- Waichunas D.
- Montine T.J.
- Zhang J.
Possible Sample Contaminants
Plasma Mixed Mode Mapping
CSF Proteome Resource


CONCLUSION
Supplementary Material
REFERENCES
- Extracellular and cerebrospinal fluids.J. Inherit. Metab. Dis. 1993; 16: 617-638
- Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics.J. Proteomics. 2011; 74: 371-388
- Recent research into the nature of cerebrospinal fluid formation and absorption.J. Neurosurg. 1983; 59: 369-383
- A modern approach to CSF analysis: pathophysiology, clinical application, proof of concept, and laboratory reporting.Clin. Neurol. Neurosurg. 2009; 111: 313-318
- Establishing the proteome of normal human cerebrospinal fluid.PLoS One. 2010; 5: e10980
- Integrated analysis of the cerebrospinal fluid peptidome and proteome.J. Proteome Res. 2008; 7: 386-399
- Proteomics analysis of prefractionated human lumbar cerebrospinal fluid.Proteomics. 2005; 5: 541-550
- Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach.J. Proteome Res. 2006; 5: 2769-2779
- Lumbar cerebrospinal fluid proteome in multiple sclerosis: characterization by ultrafiltration, liquid chromatography, and mass spectrometry.J. Proteome Res. 2006; 5: 1647-1657
- Identification of proteins from human cerebrospinal fluid, separated by two-dimensional polyacrylamide gel electrophoresis.Electrophoresis. 2000; 21: 2721-2728
- Mining the human cerebrospinal fluid proteome by immunodepletion and shotgun mass spectrometry.Electrophoresis. 2004; 25: 2402-2412
- Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry.Rapid Commun. Mass Spectrom. 2002; 16: 2083-2088
- Evaluation of protein depletion methods for the analysis of total-, phospho- and glycoproteins in lumbar cerebrospinal fluid.J. Proteome Res. 2005; 4: 837-845
- Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS.J. Proteome Res. 2004; 3: 97-103
- Characterization of proteome of human cerebrospinal fluid.Int. Rev. Neurobiol. 2006; 73: 29-98
- A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry.Proteomics. 2007; 7: 469-473
- Sys-BodyFluid: a systematical database for human body fluid proteome research.Nucleic Acids Res. 2009; 37: D907-912
- PRIDE: the proteomics identifications database.Proteomics. 2005; 5: 3537-3545
- Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading.Cancer Res. 1988; 48: 1238-1243
- Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells.Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 7159-7163
- Acute changes of alpha-fetoprotein and human chorionic gonadotropin during induction chemotherapy of germ cell tumors.Cancer Res. 1982; 42: 4855-4861
- Human chorionic gonadotropin and alphafetoprotein in the staging of nonseminomatous testicular cancer.Cancer. 1981; 47: 328-332
- Serial monitoring of serum alpha-fetoprotein and chorionic gonadotropin in males with germ cell tumors.Cancer. 1979; 43: 1820-1829
- Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6630 men.J. Urol. 1994; 151: 1283-1290
- Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker.Br. J. Cancer. 1984; 50: 765-769
- Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions.Chem. Rev. 2002; 102: 285-303
- Alteration of brain glycoproteins during aging.Geriatr. Gerontol. Int. 2010; 1: S32-40
- Enrichment of glycopeptides for glycan structure and attachment site identification.Nat. Methods. 2009; 6: 809-811
- Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis.Mult. Scler. 2013;
- A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking.Neurology. 2009; 73: 1914-1922
- Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM.J. Proteomics. 2012; 78: 312-325
- Shotgun proteome analysis utilizing mixed mode (reversed phase-anion exchange chromatography) in conjunction with reversed phase liquid chromatography mass spectrometry analysis.Proteomics. 2010; 10: 2950-2960
- Solid-phase extraction of N-linked glycopeptides.Nat. Protoc. 2007; 2: 334-339
- Optimizing performance of glycopeptide capture for plasma proteomics.J. Proteome Res. 2010; 9: 1706-1715
- SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches.Proteomics. 2011; 11: 996-999
- Open mass spectrometry search algorithm.J. Proteome Res. 2004; 3: 958-964
- A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes.Anal. Chem. 2003; 75: 768-774
- Compomics-utilities: an open-source Java library for computational proteomics.BMC Bioinformatics. 2011; 12: 70
- A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics.J. Proteomics. 2010; 73: 2092-2123
- A cross-platform toolkit for mass spectrometry and proteomics.Nat. Biotechnol. 2012; 30: 918-920
- PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees.Nucleic Acids Res. 2013; 41: D377-386
- A probability-based approach for high-throughput protein phosphorylation analysis and site localization.Nat. Biotechnol. 2006; 24: 1285-1292
- D-score: a search engine independent MD-score.Proteomics. 2013; 13: 1036-1041
- Protocadherins.Curr. Opin. Cell Biol. 2002; 14: 557-562
- Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls.Acta Neurol. Scand. 2012; 126: 90-96
- Multiple sclerosis: identification and clinical evaluation of novel CSF biomarkers.J. Proteomics. 2010; 73: 1117-1132
- Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders.J. Alzheimer's Dis. 2006; 9: 293-348
- Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer's disease.Neurobiol. Aging. 2008; 29: 961-968
- Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.Neuroreport. 2002; 13: 611-615
- Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment.Arch. Neurol. 2007; 64: 366-370
- Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics.J. Proteomics. 2011; 74: 371-388
- Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM.J. Proteomics. 2013; 78: 312-325
- Chromogranin B (secretogranin I), a putative precursor of two novel pituitary peptides through processing at paired basic residues.FEBS Lett. 1987; 224: 142-148
- Chromogranins A and B and secretogranin II as prohormones for regulatory peptides from the diffuse neuroendocrine system.Results Probl. Cell Differ. 2010; 50: 21-44
- Plasma vitamin D-binding protein (Gc-globulin): multiple tasks.J. Steroid Biochem. Mol. Biol. 1995; 53: 579-582
- In-source fragmentation and the sources of partially tryptic peptides in shotgun proteomics.J. Proteome Res. 2013; 12: 910-916
- Improvements in the Protein Identifier Cross-Reference service.Nucleic Acids Res. 2012; 40: W276-280
- Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia.J. Psychiatr. Res. 2010; 44: 1176-1189
- Proteomic profiling of cerebrospinal fluid in parkinsonian disorders.Parkinsonism Relat. Disord. 2010; 16: 545-549
- Cerebrospinal fluid and lumbar puncture: a practical review.J. Neurol. 2012; 259: 1530-1545
- Effects of blood contamination and the rostro-caudal gradient on the human cerebrospinal fluid proteome.PLoS One. 2014; 9: e90429
- Interpretation of shotgun proteomic data: the protein inference problem.Mol. Cell. Proteomics. 2005; 4: 1419-1440
- The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.Nucleic Acids Res. 2013; 41: D1063-1069
Article info
Publication history
Footnotes
Author contributions: A.G., H.V., E.O., K.M., J.A.O., H.B., and F.S.B. designed research; A.G., H.V., and H.G. performed research; Y.F., M.B., H.B., and F.S.B. contributed new reagents or analytic tools; A.G., H.V., Y.F., E.O., J.A.O., H.B., and F.S.B. analyzed data; A.G., H.V., E.O., M.B., K.M., J.A.O., H.B., and F.S.B. wrote the paper; Y.F. main resource developer; M.B. provided the samples.
SUPPORTING INFORMATION: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (
- Vizcaino J.A.
- Cote R.G.
- Csordas A.
- Dianes J.A.
- Fabregat A.
- Foster J.M.
- Griss J.
- Alpi E.
- Birim M.
- Contell J.
- O'Kelly G.
- Schoenegger A.
- Ovelleiro D.
- Perez-Riverol Y.
- Reisinger F.
- Rios D.
- Wang R.
- Hermjakob H.
All data about proteins and peptides identified in this study, including accession numbers, number of distinct peptides for identified proteins, precursor charges, modifications, score, confidence etc. is available through CSF-PR at http://probe.uib.no/csf-pr and through PRIDE. The Supplemental Files (S1A–S1C) contain detailed descriptions for some of the methods. Supplemental File S1A and S1B gives a description of in-gel and in-solution digestion, respectively, and Supplemental File S1C gives a detailed description of the analysis of the glycopeptide data. Supplemental Table S1 includes information about the 21 subjects who donated the CSF and plasma used in this study. Supplemental Table S2 lists all the peptides where new glycosylation sites have been identified. Supplemental Table S3 lists the 24 most widespread proteins in the gel in the depleted and gel separated experiment. Supplemental Table S4 lists the 18 proteins which were identified only in the glycopeptide enrichment experiment. Supplemental Table S5 lists the 148 peptides which were identified both by the global and the glyco approach (true glycopeptides), indicating partial occupancy of glycosylation sites.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy