Graphical Abstract

Current Approaches in Spatial Proteomics

Major Databases with Subcellular Localization Information
- Ouyang W.
- Winsnes C.F.
- Hjelmare M.
- Cesnik A.J.
- Åkesson L.
- Xu H.
- Sullivan D.P.
- Dai S.
- Lan J.
- Jinmo P.
- Galib S.M.
- Henkel C.
- Hwang K.
- Poplavskiy D.
- Tunguz B.
- Wolfinger R.D.
- Gu Y.
- Li C.
- Xie J.
- Buslov D.
- Fironov S.
- Kiselev A.
- Panchenko D.
- Cao X.
- Wei R.
- Wu Y.
- Zhu X.
- Tseng K.L.
- Gao Z.
- Ju C.
- Yi X.
- Zheng H.
- Kappel C.
- Lundberg E.
- Thul P.J.
- Åkesson Wiking L.M.
- Mahdessian D.
- Geladaki A.
- Ait Blal H.
- Alm T.
- Asplund A.
- Björk L.
- Breckels L.M.
- Bäckström A.
- Danielsson F.
- Fagerberg L.
- Fall J.
- Gatto L.
- Gnann C.
- Hober S.
- Hjelmare M.
- Johansson F.
- Lee S.
- Lindskog C.
- Mulder J.
- Mulvey C.M.
- Nilsson P.
- Oksvold P.
- Rockberg J.
- Schutten R.
- Schwenk J.M.
- Sivertsson Å
- Sjöstedt E.
- Skogs M.
- Stadler C.
- Sullivan D.P.
- Tegel H.
- Winsnes C.
- Zhang C.
- Zwahlen M.
- Mardinoglu A.
- Pontén F.
- von Feilitzen K.
- Lilley K.S.
- Uhlén M.
- Lundberg E.
- Go C.D.
- Knight J.D.R.
- Rajasekharan A.
- Rathod B.
- Hesketh G.G.
- Abe K.T.
- Youn J.Y.
- Samavarchi-Tehrani P.
- Zhang H.
- Zhu L.Y.
- Popiel E.
- Lambert J.P.
- Coyaud E.
- Cheung S.W.T.
- Rajendran D.
- Wong C.J.
- Antonicka H.
- Pelletier L.
- Raught B.
- Palazzo A.F.
- Shoubridge E.A.
- Gingras A.C.
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Profiling method/Lab | Separation technique | Quantification strategy | Clustering method | Visualization | Cell type/tissue | Refs | Localization data available from |
---|---|---|---|---|---|---|---|
Protein Correlation Profiling (PCP) (Mann Lab) | Velocity gradient centrifugation | Label-free | HC, PCP, SVM | HC | Mouse liver | ( 18 )
Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev. Cell. 2018; 47: 205-221.e7 | http://nafld-organellemap.org/ |
HyperLOPIT (Lilley Lab) | Density gradient centrifugation | TMT | SVM | PCA | Mouse ES cells | ( 20 ) | http://spatialmap.org/ |
SVM | PCA | U2OS (human) | ( 15 )
A subcellular map of the human proteome. Science. 2017; 26 (356.eaal3321) | Supplemental Data of Ref. | |||
SVM | PCA, t-SNE | Arabdidopsis thaliana callus | ( 22 ) | Supplemental Data of Ref. | |||
SVM | PCA | Saccharomyces cerevisiae | ( 24 ) | https://proteome.shinyapps.io/yeast2018/ | |||
SVM | PCA | Cyanobacterium synechocystis | ( 23 ) | https://lgatto.shinyapps.io/synechocystis/ | |||
LOPIT variant (Cristea Lab) | Density gradient centrifugation | TMT | RF, NN, SVM | t-SNE | Human fibroblasts | ( 25 ) | Supplemental Data of Ref. |
Dynamic Organellar Maps (Borner Lab) | Differential centrifugation | SILAC | SVM | PCA | HeLa (human) | ( 12 ) | www.mapofthecell.org |
Label-free; SILAC; TMT | SVM | PCA | Mouse primary neurons | ( 17 ) | Supplemental Data of Ref. | ||
SILAC | SVM | PCA | MutuDC (mouse) | ( 26 ) | http://dc-biology.mrc-lmb.cam.ac.uk | ||
LOPIT-DC (Lilley Lab) | Differential centrifugation | TMT | SVM | PCA | U2OS (human) | ( 27 ) | https://proteome.shinyapps.io/lopitdc-u2os2018/ |
Prolocate (Lobel Lab) | Differential and density gradient centrifugation | iTRAQ, TMT | PCP | PCA | Rat liver | ( 19 ) | http://prolocate.cabm.rutgers.edu/index.cgi |
SubCellBarCode (Lehtiö Lab) | Differential centrifugation and detergent extraction | TMT | SVM | t-SNE | A431, U251, MCF7, NCIH322, HCC827 (human) | ( 21 ) | https://www.subcellbarcode.org/ |
Choosing the Best Spatial Proteomics Approach
Research Question | Method | Strength | |||
---|---|---|---|---|---|
Single protein | Static | Where is protein X? | Localization database (Table I) | Fast, multiple sources for cross-referencing | |
Static/Dynamic | Where is protein X? | [Microscopy] | Multi-compartment localizations and transient interactions captured | ||
Is protein X associated with compartment Y? | Proximity labelling (APEX, BioID with protein X as bait) | ||||
Single subcellular compartment/location | Static/Dynamic | What is the composition of compartment Y? | Proximity labelling (APEX, BioID using organelle-specific markers as baits) | Very sensitive | |
Single organelle profiling | No constructs/cell lines | ||||
Global–all compartments and locations, the complete spatial proteome | Static | What is the composition of all organelles in a given cell type? | Multi organelle profiling (gradient centrifugation; long gradients for high resolution; differential centrifugation for higher throughput) | No labelling reagents, no tagging/cell line generation; relatively rapid; a single experiment covers thousands of proteins; peptide level data. | |
Proximity labelling (multiple baits for every compartment) | Very sensitive, multi-compartment localizations | ||||
Imaging (one cell line or antibody per protein) | Direct visualization, also in relation to other structures/proteins; multi-compartment localizations | ||||
Dynamic | Which proteins change subcellular localization upon a specific perturbation, drug treatment, genetic alteration etc? Which organelles change composition upon perturbation? | Low Resolution | Membrane-nucleus-cytosol split | Simple, robust, deep coverage from one experiment, little MS measurement time | |
High Resolution | Multi organelle profiling (most robust by differential centrifugation) (Proximity labelling) – no global study yet (Imaging–global studies with yeast GFP library) | Sensitive, deep coverage from one experiment |
Evolution and Current Performance of Organellar Profiling Approaches
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Refs | Profiling method | Cell type | Organelles | Other compartments |
---|---|---|---|---|
( 20 ) | HyperLOPIT | Mouse ES cells | Endo; ER/Golgi; Lys; Mito; Nuc; Pex; PM | Cyt; ribosome; proteasome; actin cytoskeleton; extracellular matrix |
( 12 ) | Dynamic Organellar Maps | HeLa (human) | Endo; ER; ERGIC; ER_HC; Golgi; Lys; Mito; Nuc; Pex; PM | Cyt; large protein complexes; actin binding proteins |
( 25 ) | LOPIT variant | Fibroblasts (human) | ER; Golgi; Lys; Mito; Pex; PM | Cyt |
( 19 ) | Prolocate | Rat liver cells | ER; Golgi; Lys; Mito; Nuc; Pex; PM | Cyt |
( 18 )
Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev. Cell. 2018; 47: 205-221.e7 | PCP | Mouse liver cells | Endo; ER; Golgi; Lys; Mito; Nuc; Pex; PM | Cyt; lipid droplets |
( 27 ) | LOPIT-DC | U2OS (human) | ER; Golgi; Lys; Mito; Nuc; Pex; PM | Cyt; ribosome; proteasome |
( 21 ) | SubCellBarCode | A431, U251, MCF7, NCIH322, HCC827 (human) | Secretory 1 (Golgi, Endo/Lys); Secretory 2 (ER, Pex); Secretory 3 (ER, Mito); Secretory 4 (PM); Nuc; Mito | Cyt/cytoskeleton |
Recent Applications of Comparative Organellar Profiling
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Method | Research Question/Application | Reference |
---|---|---|
Dynamic Organellar Maps | EGF signaling | ( 12 ,17 ) |
Disease mechanism of AP-4 deficiency syndrome | ( 37 ) | |
AP-5 mediated protein transport | ( 39 ) | |
Characterization of drug action to enhance cross presentation in dendritic cells | ( 26 ) | |
LOPIT variant | HCMV infection | ( 25 ) |
LOPIT-DC | Tethering complexes of the Golgi | ( 38 ) |
PCP | Non-alcoholic fatty liver disease in mice | ( 18 )
Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev. Cell. 2018; 47: 205-221.e7 |
SubCellBarCode | EGF signaling | ( 21 ) |
Choosing the Best Design for Organellar Profiling Experiments—
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Cell Lysis
Separation of Organelles and Fractionation Schemes
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
MS Analysis and Quantification Strategy
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.

Data Analysis
Visualization of Organellar Maps
Marker Proteins and Compartment Assignments
Multiorganelle Associations—The Bane of Profiling Based Organellar Maps
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Microclustering and Protein Complex Prediction
Detection of Protein Translocations
- Krahmer N.
- Najafi B.
- Schueder F.
- Quagliarini F.
- Steger M.
- Seitz S.
- Kasper R.
- Salinas F.
- Cox J.
- Uhlenhaut N.H.
- Walther T.C.
- Jungmann R.
- Zeigerer A.
- Borner G.H.H.
- Mann M.
Interpretation of Profile Shifts, Orthogonal Validation
Perspective—
Acknowledgments
Supplementary Material
REFERENCES
- Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins.Elife. 2018; 7 (pii): e31872
- Converging cellular themes for the hereditary spastic paraplegias.Curr. Opin. Neurobiol. 2018; 51: 139-146
- Regulation of cargo export and sorting at the trans-Golgi network.FEBS Lett. 2019; 593: 2306-2318
- Axonal transport and neurological disease.Nat. Rev. Neurol. 2019; 15: 691-703
- Spatial proteomics: a powerful discovery tool for cell biology.Nat. Rev. Mol. Cell Biol. 2019; 20: 285-302
- The human protein atlas: A spatial map of the human proteome.Protein Sci. 2018; 27: 233-244
- Global analysis of protein localization in budding yeast.Nature. 2003; 16: 425, 686-691
- A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism.Cell. 2017; 171: 133-147.e14
- Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles.Curr. Opin. Chem. Biol. 2019; 48: 44-54
- Proximity labeling: spatially resolved proteomic mapping for neurobiology.Curr. Opin. Neurobiol. 2018; 50: 17-23
- Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches.Mol. Cell. Proteomics. 2020; 3 (pii: mcp.R120.001941)
- Global, quantitative and dynamic mapping of protein subcellular localization.Elife. 2016; 5 (pii): e16950
- A scalable strategy for high-throughput GFP tagging of endogenous human proteins.Proc. Natl. Acad. Sci. U.S.A. 2016; 113: E3501-8
- Analysis of the human protein atlas image classification competition.Nat. Methods. 2019; 16: 1254-1261
- A subcellular map of the human proteome.Science. 2017; 26 (356.eaal3321)
- A proximity biotinylation map of a human cell.bioRxiv. 2019; : 796391
- A mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons.Cell Rep. 2017; 20: 2706-2718
- Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis.Dev. Cell. 2018; 47: 205-221.e7
- Accounting for protein subcellular localization: a compartmental map of the rat liver proteome.Mol. Cell. Proteomics. 2017; 16: 194-212
- A draft map of the mouse pluripotent stem cell spatial proteome.Nat. Commun. 2016; 7: 8992
- SubCellBarCode: proteome-wide mapping of protein localization and relocalization.Mol. Cell. 2019; 73: 166-182.e7
- Separating golgi proteins from cis to trans reveals underlying properties of cisternal localization.Plant Cell. 2019; 31: 2010-2034
- Proteome mapping of a cyanobacterium reveals distinct compartment organization and cell-dispersed metabolism.Plant Physiol. 2019; 181: 1721-1738
- Mapping the Saccharomyces cerevisiae spatial proteome with high resolution using hyperLOPIT.Methods Mol. Biol. 2019; 2049: 165-190
- A portrait of the human organelle proteome in space and time during cytomegalovirus infection.Cell Syst. 2016; 3: 361-373.e6
- Small molecule enhancers of endosome-to-cytosol import augment anti-tumour immunity.bioRxiv. 2020; (2020.05.05.079491)
- Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.Nat. Commun. 2019; 10: 331
- Dynamic organellar maps for spatial proteomics.Curr. Protoc. Cell Biol. 2019; 83: 81
- Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.Nat. Protoc. 2017; 12: 1110-1135
- The Perseus computational platform for comprehensive analysis of (prote)omics data.Nat. Methods. 2016; 13: 731-740
- A Bioconductor workflow for the Bayesian analysis of spatial proteomics.F1000Res. 2019; 11: 446
- Principles of tissue fractionation.J. Theor. Biol. 1964; 6: 33-59
- Proteomic characterization of the human centrosome by protein correlation profiling.Nature. 2003; 426: 570-574
- Localization of organelle proteins by isotope tagging (LOPIT).Mol. Cell. Proteomics. 2004; 3: 1128-1134
- Mapping the Arabidopsis organelle proteome.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 6518-6523
- A mammalian organelle map by protein correlation profiling.Cell. 2006; 125: 187-199
- AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A.Nat. Commun. 2018; 9: 3958
- Determining the content of vesicles captured by golgin tethers using LOPIT-DC.bioRxiv. 2019; : 841965
- Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.PLos Biol. 2018; 16: e2004411
- A foundation for reliable spatial proteomics data analysis.Mol. Cell. Proteomics. 2014; 13: 1937-1952
- A quantitative spatial proteomics analysis of proteome turnover in human cells.Mol. Cell. Proteomics. 2012; 11
- TcellSubC: An Atlas of the Subcellular Proteome of Human T Cells.Front. Immunol. 2019; 10: 2708
- Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.Mol. Cell. Proteomics. 2014; 13: 2513-2526
- Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Mol. Cell. Proteomics. 2002; 1: 376-386
- Comparative analysis of quantitative mass spectrometric methods for subcellular proteomics.J. Proteome Res. 2020;
- EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification.Nat. Methods. 2018; 15: 527-530
- MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes.Anal. Chem. 2014; 86: 7150-7158
- Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows.J. Proteome Res. 2019; 18: 1299-1306
- MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.Nat. Biotechnol. 2008; 26: 1367-1372
- Visualization of proteomics data using R and bioconductor.Proteomics. 2015; 15: 1375-1389
- Nonnegative matrix factorization: an analytical and interpretive tool in computational biology.PLoS Comput. Biol. 2008; 4: e1000029
- Visualizing data using t-SNE.J. Machine Learning Res. 2008; 9: 2579-2605
- UMAP: Uniform manifold approximation and projection for dimension reduction.arXiv. 2018; (preprint arXiv:1802.03426)
- “How to Use t-SNE Effectively”. 2016; (https://distill.pub/2016/misread-tsne/)
- The functional universe of membrane contact sites.Nat. Rev. Mol. Cell Biol. 2020; 21: 7-24
- A Bayesian mixture modelling approach for spatial proteomics.PLoS Comput. Biol. 2018; 14: e1006516
- MetaMass, a tool for meta-analysis of subcellular proteomics data.Nat. Methods. 2016; 13: 837-840
- Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein-protein interactions.Mol. Biol. Cell. 2014; 25: 3178-3194
Article info
Publication history
Footnotes
This article contains supplemental data.
Funding and additional information—This work was funded by the German Research Foundation (DFG/Gottfried Wilhelm Leibniz Prize) and the Max Planck Society for the Advancement of Science.
Author contributions—G. H. H. B. wrote the paper.
Conflict of interest—Authors declare no competing interests.
Abbreviations—The abbreviations used are:
FDR
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy