Advertisement

Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface

  • Leyuan Li
    Affiliations
    Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
    Search for articles by this author
  • Daniel Figeys
    Correspondence
    For correspondence: Daniel Figeys
    Affiliations
    Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
    Search for articles by this author
Open AccessPublished:June 24, 2020DOI:https://doi.org/10.1074/mcp.R120.002051
      Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.

      Graphical Abstract

      The human mucosal-luminal interface (MLI) is a complicated ecosystem where interactions between the mucosal and luminal communities, as well as between host and microbiome take place (
      • Van den Abbeele P.
      • Van de Wiele T.
      • Verstraete W.
      • Possemiers S.
      The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept.
      ,
      • Ashida H.
      • Ogawa M.
      • Kim M.
      • Mimuro H.
      • Sasakawa C.
      Bacteria and host interactions in the gut epithelial barrier.
      ). Longitudinal surveys showed that healthy individual gut microbiomes are dynamically stable over time (
      • Turroni S.
      • Rampelli S.
      • Biagi E.
      • Consolandi C.
      • Severgnini M.
      • Peano C.
      • Quercia S.
      • Soverini M.
      • Carbonero F.G.
      • Bianconi G.
      • Rettberg P.
      • Canganella F.
      • Brigidi P.
      • Candela M.
      Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500.
      ,
      • Faith J.J.
      • Guruge J.L.
      • Charbonneau M.
      • Subramanian S.
      • Seedorf H.
      • Goodman A.L.
      • Clemente J.C.
      • Knight R.
      • Heath A.C.
      • Leibel R.L.
      • Rosenbaum M.
      • Gordon J.I.
      The long-term stability of the human gut microbiota.
      ). The ecological principles behind the maintenance of microbiome diversity, stability and host-microbiome homeostasis remains largely unexplored. A better understanding of these ecological principles might lead to novel approaches to treat diseases.
      The MLI possesses strong spatial and temporal heterogeneity, forming different niches along both longitudinal and transverse axes (
      • Donaldson G.P.
      • Ladinsky M.S.
      • Yu K.B.
      • Sanders J.G.
      • Yoo B.B.
      • Chou W.-C.
      • Conner M.E.
      • Earl A.M.
      • Knight R.
      • Bjorkman P.J.
      • Mazmanian S.K.
      Gut microbiota utilize immunoglobulin A for mucosal colonization.
      ) as well as displaying circadian rhythmicity (
      • Thaiss C.A.
      • Levy M.
      • Korem T.
      • Dohnalová L.
      • Shapiro H.
      • Jaitin D.A.
      • David E.
      • Winter D.R.
      • Gury-BenAri M.
      • Tatirovsky E.
      • Tuganbaev T.
      • Federici S.
      • Zmora N.
      • Zeevi D.
      • Dori-Bachash M.
      • Pevsner-Fischer M.
      • Kartvelishvily E.
      • Brandis A.
      • Harmelin A.
      • Shibolet O.
      • Halpern Z.
      • Honda K.
      • Amit I.
      • Segal E.
      • Elinav E.
      Microbiota diurnal rhythmicity programs host transcriptome oscillations.
      ). Niche partitioning results in diversity, structural and functional variability of microbial communities, and it is also a factor contributing to dynamically stable coexistence between these communities. Therefore, understanding the ecological mechanisms behind host-microbiome homeostasis requires characterization of the gut microbiome and the host factors according to the spatiotemporal attributes, which largely relies on a proper selection of analytical tools.
      Studying the functional ecology at the MLI can benefit from the use of different analytical approaches, such as high throughput-omics techniques. Compared with metagenomics and metatranscriptomics, proteomics and metaproteomics can provide additional valuable insights, including biomass, matter and energy flow, and functional expressions. In this Mini Review, we narrow down the topic from the broad sense of ‘ecology’ to the more specific discipline of theoretical ecology that uses models and simulations to study the community diversity, functionality, interaction, and dynamics of an ecosystem. We discuss questions that are involved in studying the MLI ecology in this scope, and review proteomics and metaproteomics methodologies that can generate adequate arrays of data for such studies.

      PROTEOMICS AND METAPROTEOMICS TECHNIQUES AT a GLANCE

      Proteomics identifies and quantifies proteins in a single-species sample, e.g. cells, tissues, secreted host proteome in stool, etc. Metaproteomics extends proteomics to study a multi-species microbial community, e.g. gut microbiome. Currently, most proteomics and metaproteomics approaches are based on liquid chromatography coupled to tandem MS (LC–MS/MS). In a typical proteomic analysis, a complex mixture of peptides, as a result of proteolytic enzyme digestion of a protein extract, is separated by LC and introduced to the MS, where peptides ions are separated based on mass/charge (m/z). With data-dependent acquisition (DDA), top N precursors are selected for fragmentation, and the resulting MS/MS spectra are then assigned to peptide sequences by database searching. More technical details have been reviewed by other researchers (
      • Hettich R.L.
      • Pan C.
      • Chourey K.
      • Giannone R.J.
      Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities.
      ,
      • Petriz B.A.
      • Franco O.L.
      Metaproteomics as a complementary approach to gut microbiota in health and disease.
      ). More recently, data-independent acquisition (DIA) has been developed and demonstrated as a promising approach in proteomics as well as metaproteomics, which improved reproducibility of peptide quantification between technical replicates, as well as proportion of shared peptides between different samples (
      • Aakko J.
      • Pietilä S.
      • Suomi T.
      • Mahmoudian M.
      • Toivonen R.
      • Kouvonen P.
      • Rokka A.
      • Hänninen A.
      • Elo L.L.
      Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota—implementation and computational analysis.
      ). Compared with classical proteomics, metaproteomics is more challenging in many aspects, including the higher sample complexity, larger size of database, and more complicated data processing/analysis. Nevertheless, the continuous evolutions of proteomics and metaproteomics have made a powerful impact on how we could use them to understand the host-microbiome ecology.

      STRUCTURE AND ECOLOGY OF THE MLI

      The gastrointestinal tract is spatially heterogeneous along both the longitudinal and cross-sectional axes. Levels of oxygen, pH, nutrient, and host immune activity vary along the longitudinal axis (
      • Donaldson G.P.
      • Ladinsky M.S.
      • Yu K.B.
      • Sanders J.G.
      • Yoo B.B.
      • Chou W.-C.
      • Conner M.E.
      • Earl A.M.
      • Knight R.
      • Bjorkman P.J.
      • Mazmanian S.K.
      Gut microbiota utilize immunoglobulin A for mucosal colonization.
      ,
      • Earle K.A.
      • Billings G.
      • Sigal M.
      • Lichtman J.S.
      • Hansson G.C.
      • Elias J.E.
      • Amieva M.R.
      • Huang K.C.
      • Sonnenburg J.L.
      Quantitative imaging of gut microbiota spatial organization.
      ). Along the transverse axis, the epithelial surface of the colon is coated with two different layers of mucus: the inner layer is firmly attached and is relatively sterile, providing a barrier for microbial invasion to the host; the outer layer is loose and harbors a diverse population of mucosal commensals (
      • Johansson M.E.V.
      • Larsson J.M.H.
      • Hansson G.C.
      The two mucus layers of colon are organized by the muc2 mucin, whereas the outer layer is a legislator of host–microbial interactions.
      ). The gut mucus layer is composed of host-secreted mucin O-glycans (
      • Van Herreweghen F.
      • De Paepe K.
      • Roume H.
      • Kerckhof F.-M.
      • Van de Wiele T.
      Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent.
      ), whereas nutrients in the gut lumen are present in the form of passing food bolus. Because of the niche differences, the mucosal and luminal portions harbor microbial communities that are distinct in composition, diversity, species abundance distributions (
      • Lu H.-P.
      • Lai Y.-C.
      • Huang S.-W.
      • Chen H.-C.
      • Hsieh C-H.
      • Yu H.-T.
      Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics.
      ,
      • Galley J.D.
      • Yu Z.
      • Kumar P.
      • Dowd S.E.
      • Lyte M.
      • Bailey M.T.
      The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor.
      ,
      • Li H.
      • Limenitakis J.P.
      • Fuhrer T.
      • Geuking M.B.
      • Lawson M.A.
      • Wyss M.
      • Brugiroux S.
      • Keller I.
      • Macpherson J.A.
      • Rupp S.
      • Stolp B.
      • Stein J.V.
      • Stecher B.
      • Sauer U.
      • McCoy K.D.
      • Macpherson A.J.
      The outer mucus layer hosts a distinct intestinal microbial niche.
      ). The mucus layer is featured with higher abundances of Firmicutes and the luminal contents are enriched in Bacteroidetes (
      • Li H.
      • Limenitakis J.P.
      • Fuhrer T.
      • Geuking M.B.
      • Lawson M.A.
      • Wyss M.
      • Brugiroux S.
      • Keller I.
      • Macpherson J.A.
      • Rupp S.
      • Stolp B.
      • Stein J.V.
      • Stecher B.
      • Sauer U.
      • McCoy K.D.
      • Macpherson A.J.
      The outer mucus layer hosts a distinct intestinal microbial niche.
      ). Mucosal and luminal communities show different responses to nutrient or other compounds that pass through the intestine (
      • Galley J.D.
      • Yu Z.
      • Kumar P.
      • Dowd S.E.
      • Lyte M.
      • Bailey M.T.
      The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor.
      ,
      • Bashir M.
      • Prietl B.
      • Tauschmann M.
      • Mautner S.I.
      • Kump P.K.
      • Treiber G.
      • Wurm P.
      • Gorkiewicz G.
      • Högenauer C.
      • Pieber T.R.
      Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.
      ) (Fig. 1A). In addition to spatial organizations, temporal change of the MLI is also a contributor to gut homeostasis. Host anti-microbial peptides, glucocorticoid hormones and mucus secretion are influenced by the circadian rhythm. And mucosal-adherent bacteria also show diurnal oscillations in composition and function (
      • Thaiss C.A.
      • Levy M.
      • Korem T.
      • Dohnalová L.
      • Shapiro H.
      • Jaitin D.A.
      • David E.
      • Winter D.R.
      • Gury-BenAri M.
      • Tatirovsky E.
      • Tuganbaev T.
      • Federici S.
      • Zmora N.
      • Zeevi D.
      • Dori-Bachash M.
      • Pevsner-Fischer M.
      • Kartvelishvily E.
      • Brandis A.
      • Harmelin A.
      • Shibolet O.
      • Halpern Z.
      • Honda K.
      • Amit I.
      • Segal E.
      • Elinav E.
      Microbiota diurnal rhythmicity programs host transcriptome oscillations.
      ).
      Figure thumbnail gr1
      Fig. 1Structure and ecology of the MLI. A, Spatiotemporal dynamics of the MLI ecosystem. B, Cross-feeding mechanism between intestinal species: an example of Akkermansia. C, Comparison between host-microbiome homeostasis and dysbiosis. Site-specific sampling can be performed using colonoscopy. D, An example of studying the MLI using mathematical modeling approach (see for details). E, Different biological components of the MLI can be extracted using a series of isolation/enrichment techniques for proteomics/metarpteomics analysis. F, Tracking material flow can be achieved by combining metaproteomics with metabolic labeling approaches.
      Only a subset of gut commensals can use mucin glycans in the mucus. Akkermansia is a major mucin degrader that can breakdown mucin glycosidic chains through extracellular β-galactosidases, and liberate oligosaccharides that are accessible for other members of the microbiome (
      • Chia L.W.
      • Hornung B.V.H.
      • Aalvink S.
      • Schaap P.J.
      • de Vos W.M.
      • Knol J.
      • Belzer C.
      Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach.
      ,
      • Kosciow K.
      • Deppenmeier U.
      Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation.
      ,
      • Kosciow K.
      • Deppenmeier U.
      Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation.
      ). In addition, Bifidobacteria can degrade dietary and host-produced glycans, and subsequent cross-feeding mechanisms enhanced formation of butyrate by other gut microbes (
      • Turroni F.
      • Milani C.
      • Duranti S.
      • Mahony J.
      • van Sinderen D.
      • Ventura M.
      Glycan utilization and cross-feeding activities by Bifidobacteria.
      ,
      • Falony G.
      • Vlachou A.
      • Verbrugghe K.
      • De Vuyst L.
      Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose.
      ,
      • Rios-Covian D.
      • Gueimonde M.
      • Duncan S.H.
      • Flint H.J.
      • de los Reyes-Gavilan C.G.
      Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.
      ). Under the condition of limited types of available nutrients and low amount of free short-chain carbohydrates in the gut, bacteria cross-feeding mechanisms (Fig. 1B) play important roles in maintaining microbiome diversity and dynamic stability.
      The host also plays an important role in maintaining the gut homeostasis. On one hand, the host secrets nutrients, such as mucin glycans, to harbor a reservoir of gut symbionts; on the other hand, it possesses mucosal surfaces that serve as a first line of defense against bacterial attack. The host immune system plays a crucial role in maintaining homeostasis at mucosal surfaces. The host resists invasion of pathogens partially through the expression of antimicrobial proteins and peptides regulated by cytokines of the innate and adaptive immune systems (
      • Kolls J.K.
      • McCray P.B.
      • Chan Y.R.
      Cytokine-mediated regulation of antimicrobial proteins.
      ). In addition to the host's role in pathogen clearance, adherence of commensal bacteria can be selectively promoted by IgA (IgA) antibody (
      • Donaldson G.P.
      • Ladinsky M.S.
      • Yu K.B.
      • Sanders J.G.
      • Yoo B.B.
      • Chou W.-C.
      • Conner M.E.
      • Earl A.M.
      • Knight R.
      • Bjorkman P.J.
      • Mazmanian S.K.
      Gut microbiota utilize immunoglobulin A for mucosal colonization.
      ). Such activities facilitate stable colonization of particular mucosal niches and exclude exogenous competitors. Compromised mucosal barrier and inappropriate immune activation by commensals mislocalized to the mucosa is associated with diseases such as inflammatory bowel diseases (IBD) (
      • Bergstrom K.
      • Fu J.
      • Johansson M.E.V.
      • Liu X.
      • Gao N.
      • Wu Q.
      • Song J.
      • McDaniel J.M.
      • McGee S.
      • Chen W.
      • Braun J.
      • Hansson G.C.
      • Xia L.
      Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice.
      ). Dysbiosis in IBD is observed with an increase in Proteobacteria and a decrease in Firmicutes (
      • Frank D.N.
      • St Amand A.L.
      • Feldman R.A.
      • Boedeker E.C.
      • Harpaz N.
      • Pace N.R.
      Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
      ) (Fig. 1C).
      Ecosystem modeling of the microbe-microbe and host-microbiome interactions at the MLI will provide a theoretical framework for gut microbiome-related health and disease. Classical ecological theories and hypothesis (
      • Loreau M.
      ) are worth referring for understanding the biodiversity, stable co-existence of species and their relationship with the spatiotemporal properties of the MLI. Compared with conventional environmental ecology studies, fewer ecological hypothesis have been examined in our gut ecosystem. The MLI possesses strong spatial heterogeneity, and spatial structure (nutrient niches) is an important factor for stable coexistence of species (
      • Cordero O.X.
      • Datta M.S.
      Microbial interactions and community assembly at microscales.
      ), because it allows the species to best adapt to particular environmental conditions and make best use of the available resources (
      • Macarthur R.
      • Levins R.
      The limiting similarity, convergence, and divergence of coexisting species.
      ,
      • Tilman D.
      Competition and biodiversity in spatially structured habitats.
      ). Verster et al. examined whether the competitive lottery model (a niche colonization theory) established for macro communities could apply to the gut microbiome. The study discovered lottery-like assembly pattern of bacterial species that are more functionally specialized than other members of the microbiome (
      • Verster A.J.
      • Borenstein E.
      Competitive lottery-based assembly of selected clades in the human gut microbiome.
      ). Organisms also tend to generate clusters of conspecifics, which also increases the potential for coexistence and maintains the biodiversity (
      • Loreau M.
      ). Another interesting question is how the gut diurnal rhythm contributes to MLI homeostasis. Niche theories may still be insufficient to explain the stable coexistence of the highly diverse gut species, because there are far less types of nutrients than the number of species in the gut. Shaani et al. showed that environmental change, such as food intake, could induce microbial niche modification and subsequently drive diurnal community assembly (
      • Shaani Y.
      • Zehavi T.
      • Eyal S.
      • Miron J.
      • Mizrahi I.
      Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects.
      ). A “nonequilibrium coexistence of competitors” theory states that temporal changes of environment may provide alternative competitive advantages to different species (
      • Huisman J.
      • Johansson A.M.
      • Folmer E.O.
      • Weissing F.J.
      Towards a solution of the plankton paradox: the importance of physiology and life history.
      ), which potentially could explain the stability and diversity of the microbiome.

      IMPORTANCE OF PROTEOMICS AND METAPROTEOMICS IN MLI STUDIES

      With ecological questions largely unexplored, it is crucial to select proper analytical tools to generate adequate data set for studying the MLI ecosystem. Current studies on the mucosal-luminal interface use numerous tools, including flow cytometry (
      • Kim H.J.
      • Li H.
      • Collins J.J.
      • Ingber D.E.
      Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
      ), 16S rRNA gene PCR amplification (
      • Bashir M.
      • Prietl B.
      • Tauschmann M.
      • Mautner S.I.
      • Kump P.K.
      • Treiber G.
      • Wurm P.
      • Gorkiewicz G.
      • Högenauer C.
      • Pieber T.R.
      Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.
      ,
      • Suez J.
      • Zmora N.
      • Zilberman-Schapira G.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Zur M.
      • Regev-Lehavi D.
      • Ben-Zeev Brik R.
      • Federici S.
      • Horn M.
      • Cohen Y.
      • Moor A.E.
      • Zeevi D.
      • Korem T.
      • Kotler E.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Pevsner-Fischer M.
      • Shapiro H.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
      ,
      • Zmora N.
      • Zilberman-Schapira G.
      • Suez J.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Kotler E.
      • Zur M.
      • Regev-Lehavi D.
      • Brik R.B.-Z.
      • Federici S.
      • Cohen Y.
      • Linevsky R.
      • Rothschild D.
      • Moor A.E.
      • Ben-Moshe S.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Shapiro H.
      • Pevsner-Fischer M.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
      ), qPCR (
      • Suez J.
      • Zmora N.
      • Zilberman-Schapira G.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Zur M.
      • Regev-Lehavi D.
      • Ben-Zeev Brik R.
      • Federici S.
      • Horn M.
      • Cohen Y.
      • Moor A.E.
      • Zeevi D.
      • Korem T.
      • Kotler E.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Pevsner-Fischer M.
      • Shapiro H.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
      ,
      • Zmora N.
      • Zilberman-Schapira G.
      • Suez J.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Kotler E.
      • Zur M.
      • Regev-Lehavi D.
      • Brik R.B.-Z.
      • Federici S.
      • Cohen Y.
      • Linevsky R.
      • Rothschild D.
      • Moor A.E.
      • Ben-Moshe S.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Shapiro H.
      • Pevsner-Fischer M.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
      ), transcriptomics (
      • Suez J.
      • Zmora N.
      • Zilberman-Schapira G.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Zur M.
      • Regev-Lehavi D.
      • Ben-Zeev Brik R.
      • Federici S.
      • Horn M.
      • Cohen Y.
      • Moor A.E.
      • Zeevi D.
      • Korem T.
      • Kotler E.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Pevsner-Fischer M.
      • Shapiro H.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
      ,
      • Zmora N.
      • Zilberman-Schapira G.
      • Suez J.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Kotler E.
      • Zur M.
      • Regev-Lehavi D.
      • Brik R.B.-Z.
      • Federici S.
      • Cohen Y.
      • Linevsky R.
      • Rothschild D.
      • Moor A.E.
      • Ben-Moshe S.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Shapiro H.
      • Pevsner-Fischer M.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
      ), contig‐based viral genotype profiling (
      • Kim M.-S.
      • Bae J.-W.
      Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.
      ), morphological analysis (
      • Earle K.A.
      • Billings G.
      • Sigal M.
      • Lichtman J.S.
      • Hansson G.C.
      • Elias J.E.
      • Amieva M.R.
      • Huang K.C.
      • Sonnenburg J.L.
      Quantitative imaging of gut microbiota spatial organization.
      ,
      • Kim H.J.
      • Li H.
      • Collins J.J.
      • Ingber D.E.
      Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
      ) and proteomics/metaproteomics (
      • Li X.
      • LeBlanc J.
      • Elashoff D.
      • McHardy I.
      • Tong M.
      • Roth B.
      • Ippoliti A.
      • Barron G.
      • McGovern D.
      • McDonald K.
      • Newberry R.
      • Graeber T.
      • Horvath S.
      • Goodglick L.
      • Braun J.
      Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease.
      ,
      • Li X.
      • LeBlanc J.
      • Truong A.
      • Vuthoori R.
      • Chen S.S.
      • Lustgarten J.L.
      • Roth B.
      • Allard J.
      • Ippoliti A.
      • Presley L.L.
      • Borneman J.
      • Bigbee W.L.
      • Gopalakrishnan V.
      • Graeber T.G.
      • Elashoff D.
      • Braun J.
      • Goodglick L.
      A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.
      ,
      • Zhang X.
      • Deeke S.A.
      • Ning Z.
      • Starr A.E.
      • Butcher J.
      • Li J.
      • Mayne J.
      • Cheng K.
      • Liao B.
      • Li L.
      • Singleton R.
      • Mack D.
      • Stintzi A.
      • Figeys D.
      Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
      ,
      • Presley L.L.
      • Ye J.
      • Li X.
      • Leblanc J.
      • Zhang Z.
      • Ruegger P.M.
      • Allard J.
      • McGovern D.
      • Ippoliti A.
      • Roth B.
      • Cui X.
      • Jeske D.R.
      • Elashoff D.
      • Goodglick L.
      • Braun J.
      • Borneman J.
      Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface.
      ). Finally, a comprehensive ecological systems biology approach is required to integrate theory and experiments to unveiling the complex MLI ecology. Among these tools, proteomics and metaproteomics are important experimental approaches for MLI ecology studies, for the following reasons:

      Functional Diversity is an Important Dimension of Biodiversity

      Recent research focus of community ecology has extended from explaining species diversity to elucidating the functional dimension of biodiversity (
      • Loreau M.
      ). Because of the complexity of functional capacity in different members of the microbiome, several recent studies have clustered microbial species into groups based on their ecological niches and component functional attributes, i.e. functional guilds (
      • Zhao L.
      • Zhang F.
      • Ding X.
      • Wu G.
      • Lam Y.Y.
      • Wang X.
      • Fu H.
      • Xue X.
      • Lu C.
      • Ma J.
      • Yu L.
      • Xu C.
      • Ren Z.
      • Xu Y.
      • Xu S.
      • Shen H.
      • Zhu X.
      • Shi Y.
      • Shen Q.
      • Dong W.
      • Liu R.
      • Ling Y.
      • Zeng Y.
      • Wang X.
      • Zhang Q.
      • Wang J.
      • Wang L.
      • Wu Y.
      • Zeng B.
      • Wei H.
      • Zhang M.
      • Peng Y.
      • Zhang C.
      Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
      ). Genome sequences represent functional potentials that are not representative of protein levels (
      • Mills R.H.
      • Vázquez-Baeza Y.
      • Zhu Q.
      • Jiang L.
      • Gaffney J.
      • Humphrey G.
      • Smarr L.
      • Knight R.
      • Gonzalez D.J.
      Evaluating metagenomic prediction of the metaproteome in a 4.5-year study of a patient with Crohn's disease.
      ), and RNA expression have limited correlation to the actual abundance of proteins (
      • Liu Y.
      • Beyer A.
      • Aebersold R.
      On the dependency of cellular protein levels on mRNA abundance.
      ). In contrast, shotgun protein sequencing techniques enable quantification of protein abundance and subsequent functional annotation (
      • Zhu L.
      • Zhang D.
      • Zhu H.
      • Zhu J.
      • Weng S.
      • Dong L.
      • Liu T.
      • Hu Y.
      • Shen X.
      Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice.
      ,
      • Zhang X.
      • Chen W.
      • Ning Z.
      • Mayne J.
      • Mack D.
      • Stintzi A.
      • Tian R.
      • Figeys D.
      Deep metaproteomics approach for the study of human microbiomes.
      ). The inverse of functional diversity is functional redundancy, which describes that organisms share overlapping ecological functions. Recent studies have started to explore the redundancy of the functional capacity in the gut microbiome (
      • Moya A.
      • Ferrer M.
      Functional redundancy-induced stability of gut microbiota subjected to disturbance.
      ). However, the extent of redundancy of expressed functions, and how such redundancy contributes to functional compensation between species remain unexplored. Metaproteomics can add a helpful dimension to such studies to reveal the relationship between the redundancy of the functional capacity, as well as the actual functional compensation that happens under different conditions.

      Matter and Energy Are Basis for Ecosystem Models

      Matter and/or energy are often the basis for community and ecosystem models (
      • Loreau M.
      ,
      • O'Connor M.I.
      • Pennell M.W.
      • Altermatt F.
      • Matthews B.
      • Melián C.J.
      • Gonzalez A.
      Principles of ecology revisited: integrating information and ecological theories for a more unified science.
      ), from population dynamics to mass and energy budgets models of a microbial community. For example, a simple model that describes the mucosal and luminal microbial communities at the MLI can be established using a finite element method based on biomass and nutrient flow in/out the finite element and between the mucosal and luminal communities (Fig. 1D and supplemental Information). The model consists of a luminal microbial community (size: C2), a mucosal microbial community (size: C1), a nutrient pool of the gut lumen (size: N), and a nutrient pool of the mucus (size: Mu). The biomass dynamics in microbial communities C1 and C2 could then be presented as a function of biomass increase (as functions of nutrient sizes), biomass exchange between C1 and C2 (syntrophic interactions and bacterial dispersals), metabolism and mortality, and biomass output. Experimental data are required to establish microbial growth models of the microbial communities and sizes of nutrient pools. Ecological properties of the microbial communities (e.g. carrying capacity, intrinsic rate of growth, etc.) could then be estimated by the models to understand the microbiome dynamics (supplemental Information). A few studies have been performed to describe the ecological dynamics of our gut microbiota. Stein et al. have described microbiota dynamics using generalized Lotka–Volterra model with the addition of external perturbations (
      • Stein R.R.
      • Bucci V.
      • Toussaint N.C.
      • Buffie C.G.
      • Rätsch G.
      • Pamer E.G.
      • Sander C.
      • Xavier J.B.
      Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.
      ). Subsequently, the Microbial Dynamical Systems INference Engine (MDSINE), an open source software package has been developed to facilitate its application (
      • Bucci V.
      • Tzen B.
      • Li N.
      • Simmons M.
      • Tanoue T.
      • Bogart E.
      • Deng L.
      • Yeliseyev V.
      • Delaney M.L.
      • Liu Q.
      • Olle B.
      • Stein R.R.
      • Honda K.
      • Bry L.
      • Gerber G.K.
      MDSINE: Microbial dynamical systems INference Engine for microbiome time-series analyses.
      ). However, because of the limitation of relative abundance measurements (for example, 16S rRNA or metagenomics sequencing), a measurement for overall microbial biomass was needed in addition to relative abundances (
      • Cao H.-T.
      • Gibson T.E.
      • Bashan A.
      • Liu Y.-Y.
      Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons.
      ). For example, in the reported study, universal 16S rRNA quantitative PCR (qPCR) was used to measure the microbiome biomass (
      • Bucci V.
      • Tzen B.
      • Li N.
      • Simmons M.
      • Tanoue T.
      • Bogart E.
      • Deng L.
      • Yeliseyev V.
      • Delaney M.L.
      • Liu Q.
      • Olle B.
      • Stein R.R.
      • Honda K.
      • Bry L.
      • Gerber G.K.
      MDSINE: Microbial dynamical systems INference Engine for microbiome time-series analyses.
      ). Taxonomic composition estimated by metagenomics and metaproteomics are considered generally comparable (
      • Mills R.H.
      • Vázquez-Baeza Y.
      • Zhu Q.
      • Jiang L.
      • Gaffney J.
      • Humphrey G.
      • Smarr L.
      • Knight R.
      • Gonzalez D.J.
      Evaluating metagenomic prediction of the metaproteome in a 4.5-year study of a patient with Crohn's disease.
      ,
      • Tanca A.
      • Abbondio M.
      • Palomba A.
      • Fraumene C.
      • Manghina V.
      • Cucca F.
      • Fiorillo E.
      • Uzzau S.
      Potential and active functions in the gut microbiota of a healthy human cohort.
      ). However, because different microbial members can differ by several orders of magnitude in biomass (
      • Milo R.
      What is the total number of protein molecules per cell volume? A call to rethink some published values.
      ), other studies have shown that metaproteomics is more accurate to assess biomass contributions of organisms in microbial communities (
      • Kleiner M.
      • Thorson E.
      • Sharp C.E.
      • Dong X.
      • Liu D.
      • Li C.
      • Strous M.
      Assessing species biomass contributions in microbial communities via metaproteomics.
      ,
      • Pible O.
      • Allain F.
      • Jouffret V.
      • Culotta K.
      • Miotello G.
      • Armengaud J.
      Estimating relative biomasses of organisms in microbiota using “phylopeptidomics”.
      ). Metaproteomics have been used to build growth functions of an in vitro gut microbiome (
      • Hao Z.
      • et al.
      Metaproteomics reveals growth phase-dependent responses of an in vitro gut microbiota to Metformin.
      ). In terms of matter and energy flow, metaproteomics-based technologies such as protein-SIF are developed to determine carbon and energy sources and metabolic pathways of individual species within a microbial community (
      • Kleiner M.
      • Dong X.
      • Hinzke T.
      • Wippler J.
      • Thorson E.
      • Mayer B.
      • Strous M.
      Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.
      ).

      Site-Specific Insight is Required for Host-Microbiome Interaction

      Moreover, comprehensive use of proteomics and metaproteomics can provide site-specific functional insight into host-microbiome interaction. Many studies on the gut microbiome are based on fecal samples, which are not representative of the microbiota at different intestinal regions. Studies have shown that combining site-specific sampling with proteomics and metaproteomics enables more comprehensive understanding of the MLI. Li et al. performed microgeographic studies on the mucosal-luminal interface in IBD and nonIBD subjects through collecting mucosal lavage samples on 1 cm diameter sites from different intestinal regions, and separately analyzed the bacterial pellets and soluble components in each sample using metaproteomics (
      • Li X.
      • LeBlanc J.
      • Elashoff D.
      • McHardy I.
      • Tong M.
      • Roth B.
      • Ippoliti A.
      • Barron G.
      • McGovern D.
      • McDonald K.
      • Newberry R.
      • Graeber T.
      • Horvath S.
      • Goodglick L.
      • Braun J.
      Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease.
      ,
      • Li X.
      • LeBlanc J.
      • Truong A.
      • Vuthoori R.
      • Chen S.S.
      • Lustgarten J.L.
      • Roth B.
      • Allard J.
      • Ippoliti A.
      • Presley L.L.
      • Borneman J.
      • Bigbee W.L.
      • Gopalakrishnan V.
      • Graeber T.G.
      • Elashoff D.
      • Braun J.
      • Goodglick L.
      A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.
      ). The studies identified proteins and functional protein networks that were biogeographically associated to different colon regions (
      • Huisman J.
      • Johansson A.M.
      • Folmer E.O.
      • Weissing F.J.
      Towards a solution of the plankton paradox: the importance of physiology and life history.
      ), and spatially-associated protein expressions related to IBD. Similarly, Presley et al. used endoscopic saline-lavage sampling to collect MLI samples from various regions of the intestine and examined the bacterial rRNA gene and metaproteomics composition in ulcerative colitis (UC), Crohn's disease (CD) and nonIBD individuals. Results showed greater difference of phylotypes and protein expressions between disease types in the sigmoid colon than in the cecum (
      • Presley L.L.
      • Ye J.
      • Li X.
      • Leblanc J.
      • Zhang Z.
      • Ruegger P.M.
      • Allard J.
      • McGovern D.
      • Ippoliti A.
      • Roth B.
      • Cui X.
      • Jeske D.R.
      • Elashoff D.
      • Goodglick L.
      • Braun J.
      • Borneman J.
      Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface.
      ). In terms of host proteins, Deeke et al. analyzed the host proteome of MLI aspirates from the ascending colon (AC) and descending colon (DC) of nonIBD and IBD children for the discovery of biomarkers. Multivariate analysis between IBD and nonIBD samples discovered higher number of differential proteins in the DC than in the AC (
      • Deeke S.A.
      • et al.
      Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.
      ). The above studies achieved site-specific proteomics or metaproteomics analysis, and a most recent approach comprehensively analyzed human-derived proteins, metaproteome of bacteria, fungi, archaea and viruses, as well as extracellular vesicles (EVs) from the AC, DC, or terminal ileum (TI) of IBD patients, and revealed the role of EVs in host-microbiome interactions in IBD (
      • Zhang X.
      • Deeke S.A.
      • Ning Z.
      • Starr A.E.
      • Butcher J.
      • Li J.
      • Mayne J.
      • Cheng K.
      • Liao B.
      • Li L.
      • Singleton R.
      • Mack D.
      • Stintzi A.
      • Figeys D.
      Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
      ).
      Proteomics and metaproteomics bring added dimensions, such as matter, energy, and functional dimensions, to studying the MLI ecology. Moreover, they provide site-specific insights on host, microbes, viruses, and extracellular proteins involved in host-microbiome interactions.

      PROTEOMICS AND METAPROTEOMICS APPROACHES TO DISSECT THE MLI ECOLOGY

      Isolating Different MLI Compartments

      There are various sources and types of samples that are used to study the MLI, e.g. patients that are undergoing colonoscopic diagnosis, animal models, and in vitro systems. The host proteome portion can be obtained through human colon biopsy, animal colonic segments, or by collecting the host cell portions from an in vitro host-microbiome model. For the metaproteome portions, samples need to be properly processed to isolate the mucosal and luminal components. In studies on human subjects, stool/luminal aspirate and mucosal biopsy are used to separate the mucosal and luminal portions (
      • Suez J.
      • Zmora N.
      • Zilberman-Schapira G.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Zur M.
      • Regev-Lehavi D.
      • Ben-Zeev Brik R.
      • Federici S.
      • Horn M.
      • Cohen Y.
      • Moor A.E.
      • Zeevi D.
      • Korem T.
      • Kotler E.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Pevsner-Fischer M.
      • Shapiro H.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
      ,
      • Zmora N.
      • Zilberman-Schapira G.
      • Suez J.
      • Mor U.
      • Dori-Bachash M.
      • Bashiardes S.
      • Kotler E.
      • Zur M.
      • Regev-Lehavi D.
      • Brik R.B.-Z.
      • Federici S.
      • Cohen Y.
      • Linevsky R.
      • Rothschild D.
      • Moor A.E.
      • Ben-Moshe S.
      • Harmelin A.
      • Itzkovitz S.
      • Maharshak N.
      • Shibolet O.
      • Shapiro H.
      • Pevsner-Fischer M.
      • Sharon I.
      • Halpern Z.
      • Segal E.
      • Elinav E.
      Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
      ,
      • Zhang X.
      • Deeke S.A.
      • Ning Z.
      • Starr A.E.
      • Butcher J.
      • Li J.
      • Mayne J.
      • Cheng K.
      • Liao B.
      • Li L.
      • Singleton R.
      • Mack D.
      • Stintzi A.
      • Figeys D.
      Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
      ,
      • Chen E.
      • Ajami N.
      • Chen L.
      • Plew S.
      • White D.
      • Wang Z.
      • El-Serag H.
      • Petrosino J.
      • Jiao L.
      Dairy Intake and Mucosa-Associated Gut Microbiome in Healthy Individuals: Presidential Poster Award: 235.
      ,
      • Jones R.B.
      • Zhu X.
      • Moan E.
      • Murff H.J.
      • Ness R.M.
      • Seidner D.L.
      • Sun S.
      • Yu C.
      • Dai Q.
      • Fodor A.A.
      • Azcarate-Peril M.A.
      • Shrubsole M.J.
      Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples.
      ). Mucosal and luminal content of animal colon are often separated by washing off the luminal content and then scraping off the mucosal content (
      • Kim M.-S.
      • Bae J.-W.
      Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.
      ,
      • Van den Abbeele P.
      • Gérard P.
      • Rabot S.
      • Bruneau A.
      • El Aidy S.
      • Derrien M.
      • Kleerebezem M.
      • Zoetendal E.G.
      • Smidt H.
      • Verstraete W.
      • Van de Wiele T.
      • Possemiers S.
      Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats.
      ,
      • Oberbach A.
      • Haange S.-B.
      • Schlichting N.
      • Heinrich M.
      • Lehmann S.
      • Till H.
      • Hugenholtz F.
      • Kullnick Y.
      • Smidt H.
      • Frank K.
      • Seifert J.
      • Jehmlich N.
      • von Bergen M.
      Metabolic in vivo labeling highlights differences of metabolically active microbes from the mucosal gastrointestinal microbiome between high-fat and normal chow diet.
      ). Besides in vivo studies, there are also in vitro systems that enable studying different components of the MLI. A mucosal-simulator of human intestinal microbial ecosystem (M-SHIME) has been developed to simulate the mucosal gut microbiota by creating a niche using microcosms submerged in mucin agar and combined in a polyethylene netting (
      • Van den Abbeele P.
      • Gérard P.
      • Rabot S.
      • Bruneau A.
      • El Aidy S.
      • Derrien M.
      • Kleerebezem M.
      • Zoetendal E.G.
      • Smidt H.
      • Verstraete W.
      • Van de Wiele T.
      • Possemiers S.
      Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats.
      ,
      • Van den Abbeele P.
      • Belzer C.
      • Goossens M.
      • Kleerebezem M.
      • De Vos W.M.
      • Thas O.
      • De Weirdt R.
      • Kerckhof F.-M.
      • Van de Wiele T.
      Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model.
      ). Furthermore, researchers have been developing in vitro systems to study host-microbiome interactions at the MLI. A microfluidics-based model for studying human–microbial cross-talk (HuMiX) has been designed for representative co-culture of human epithelial cells with gastrointestinal microbiota (
      • Eain M.M.G.
      • Baginska J.
      • Greenhalgh K.
      • Fritz J.V.
      • Zenhausern F.
      • Wilmes P.
      Engineering solutions for representative models of the gastrointestinal human-microbe interface.
      ,
      • Shah P.
      • Fritz J.V.
      • Glaab E.
      • Desai M.S.
      • Greenhalgh K.
      • Frachet A.
      • Niegowska M.
      • Estes M.
      • Jäger C.
      • Seguin-Devaux C.
      • Zenhausern F.
      • Wilmes P.
      A microfluidics-based in vitro model of the gastrointestinal human–microbe interface.
      ). This model involves a mucin-coated nanoporous membrane to provide a surface niche for the mucosal community. Recent development of the gut-on-a-chip models has achieved epithelial villus growth and lineage-dependent cyto-differentiation. The cultured intestinal epithelium can secrete mucus and thus provides a barrier function (
      • Kim H.J.
      • Li H.
      • Collins J.J.
      • Ingber D.E.
      Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
      ,
      • Shin W.
      • Kim H.J.
      Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip.
      ,
      • Shin W.
      • Wu A.
      • Massidda M.W.
      • Foster C.
      • Thomas N.
      • Lee D.-W.
      • Koh H.
      • Ju Y.
      • Kim J.
      • Kim H.J.
      A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip.
      ). Latest study showed that this model is also able to sustain a complex human intestinal microbiome in vitro (
      • Jalili-Firoozinezhad S.
      • Gazzaniga F.S.
      • Calamari E.L.
      • Camacho D.M.
      • Fadel C.W.
      • Bein A.
      • Swenor B.
      • Nestor B.
      • Cronce M.J.
      • Tovaglieri A.
      • Levy O.
      • Gregory K.E.
      • Breault D.T.
      • Cabral J.M.S.
      • Kasper D.L.
      • Novak R.
      • Ingber D.E.
      A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.
      ). These models provide reproducible systems of host-microbiome interface in which host and mucosal, luminal compartments are isolatable for downstream analysis.

      Capturing Desired Arrays of Proteins

      Following sample acquisition, selection of proteomic sample preparation method is important for capturing the desired arrays of proteins (Fig. 1E). Microbial community sample can be highly complex because of the existence of virome and exoproteins (microbial & host extracellular proteins) in addition to the presence of diverse bacteria and fungi with differing types of envelopes. Most widely adopted protein extraction procedure involves a microbial cell washing step, followed by microbial cell lysis and extraction of total proteins. However, conventional protein extraction methods can eliminate important components of host-microbiome interaction, such as the virome and exosome. Exosome proteins can be extracted by ultracentrifugation of the filtrate of debris- and bacteria-depleted supernatant (
      • Zhang X.
      • Deeke S.A.
      • Ning Z.
      • Starr A.E.
      • Butcher J.
      • Li J.
      • Mayne J.
      • Cheng K.
      • Liao B.
      • Li L.
      • Singleton R.
      • Mack D.
      • Stintzi A.
      • Figeys D.
      Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
      ). Virome proteins can be isolated by enrichment of viral-like particles where different type of enriching techniques may apply (
      • Garmaeva S.
      • Sinha T.
      • Kurilshikov A.
      • Fu J.
      • Wijmenga C.
      • Zhernakova A.
      Studying the gut virome in the metagenomic era: challenges and perspectives.
      ). In addition, conventional protein extraction from microbial cell pellets can miss the measurement of low-abundance species. Differential cell lysis approaches can be applied when necessary to selectively enrich Gram-negative bacteria and Gram-positive bacteria in a sample (
      • Wang J.
      • Zhang X.
      • Li L.
      • Ning Z.
      • Mayne J.
      • Schmitt-Ulms C.
      • Walker K.
      • Cheng K.
      • Figeys D.
      Differential lysis approach enables selective extraction of taxon-specific proteins for gut metaproteomics.
      ). Furthermore, deep metaproteomics can be achieved by sample fractionation before MS analysis. Through a comprehensive and deep proteomics-metaproteomics approach, Zhang et al. have realized quantification of microbial metaproteome, human proteome, and extracellular vesicles in individual MLI aspirate samples (
      • Zhang X.
      • Deeke S.A.
      • Ning Z.
      • Starr A.E.
      • Butcher J.
      • Li J.
      • Mayne J.
      • Cheng K.
      • Liao B.
      • Li L.
      • Singleton R.
      • Mack D.
      • Stintzi A.
      • Figeys D.
      Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
      ).

      Targeting Specific Pathways

      In addition to isolation and enrichment of different compartments at the MLI, labeling of targeted proteins can enable enrichment and quantification of diverse functional mechanisms in combination with proteomics and metaproteomics. In contrast to unbiased ‘omics‘-based approaches, activity-based probes (ABPs) can be designed based on the substrates of interest (
      • C W.
      • W A.T.
      Activity-based protein profiling—enabling multimodal functional studies of microbial communities.
      ), and ABP-labeled proteomes can be enriched based on fluorophore tag and gel electrophoresis, or by affinity purification using an affinity tag. The approach facilitates quantification of functionally active proteoforms of interested enzymes, which could have low abundances in a complicated protein mixture. Studies have used ABPs to target a wide range of enzymes such as hydrolases, proteases, kinases, phosphatases, and glycosidases. Recently, researchers started to apply ABP-based metaproteomics in gut microbiome studies. Mayers et al. have used a BioGlyCMK probe to target the subset of cysteine-based proteases in murine gut metaproteome and found that several proteases and hydrolases overrepresented in the IBD mice compared with the control (
      • Mayers M.D.
      • Moon C.
      • Stupp G.S.
      • Su A.I.
      • Wolan D.W.
      Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease.
      ). Using a Ch-AOMK probe targeting bile salt hydrolases (BSH), Parasar et al. have observed changes in gut microbiome-associated BSH activity in IBD mice, whereas these changes do not correlate with changes in gene abundance (
      • Parasar B.
      • Zhou H.
      • Xiao X.
      • Shi Q.
      • Brito I.L.
      • Chang P.V.
      Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity.
      ). Jariwala et al. have applied cyclophellitol-based probes to identify β-glucuronidases that are related to promotion of drug toxicity in human fecal samples (
      • Jariwala P.B.
      • Pellock S.J.
      • Goldfarb D.
      • Cloer E.W.
      • Artola M.
      • Simpson J.B.
      • Bhatt A.P.
      • Walton W.G.
      • Roberts L.R.
      • Major M.B.
      • Davies G.J.
      • Overkleeft H.S.
      • Redinbo M.R.
      Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling.
      ). β-glucuronidases belong to glycoside hydrolases (GHs), the biggest class in Carbohydrate Active enZymes (CAZymes) (
      • Lombard V.
      • Golaconda Ramulu H.
      • Drula E.
      • Coutinho P.M.
      • Henrissat B.
      The carbohydrate-active enzymes database (CAZy) in 2013.
      ). CAZymes are widely expressed by gut microbes to breakdown carbohydrates derived from both diet and the host, such as host-derived mucins (glycoproteins), oligosaccharides, and dietary fibers, etc. CAZymes in the gut are highly diverse because of substrate specificity, the application of a variety of CAZyme-ABPs is promising in determining the strategies of carbohydrate-degradation in the gut microbiome.

      Tracking Nutrient Flows

      Metabolic labeling of active microbial species can be achieved by protein-based stable isotope probing (SIP) techniques, which starts with supplying growth substrates labeled with heavy isotopes such as 13C, 15N, 18O, 2D, and 33/34/36S that can constitute the protein molecules in a live community (
      • Kleiner M.
      • Dong X.
      • Hinzke T.
      • Wippler J.
      • Thorson E.
      • Mayer B.
      • Strous M.
      Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.
      ,
      • Jehmlich N.
      • Kopinke F.-D.
      • Lenhard S.
      • Vogt C.
      • Herbst F.-A.
      • Seifert J.
      • Lissner U.
      • Völker U.
      • Schmidt F.
      • von Bergen M.
      Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ).
      ,
      • Justice N.B.
      • Li Z.
      • Wang Y.
      • Spaudling S.E.
      • Mosier A.C.
      • Hettich R.L.
      • Pan C.
      • Banfield J.F.
      15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.
      ,
      • Taubert M.
      • Stöckel S.
      • Geesink P.
      • Girnus S.
      • Jehmlich N.
      • von Bergen M.
      • Rösch P.
      • Popp J.
      • Küsel K.
      Tracking active groundwater microbes with D2O labelling to understand their ecosystem function.
      ,
      • Starke R.
      • Keller A.
      • Jehmlich N.
      • Vogt C.
      • Richnow H.H.
      • Kleinsteuber S.
      • von Bergen M.
      • Seifert J.
      Pulsed 13C2-acetate protein-SIP unveils epsilonproteobacteria as dominant acetate utilizers in a sulfate-reducing microbial community mineralizing benzene.
      ,
      • Zhang X.
      • Ning Z.
      • Mayne J.
      • Deeke S.A.
      • Li J.
      • Starr A.E.
      • Chen R.
      • Singleton R.
      • Butcher J.
      • Mack D.R.
      • Stintzi A.
      • Figeys D.
      In vitro metabolic labeling of intestinal microbiota for quantitative metaproteomics.
      ). Owing to the sensitivity of LC–MS/MS techniques in detecting heavy isotopes, degree of incorporation of these heavy isotopes into proteins can be determined accurately on the peptide level. Therefore, SIP in combination with metaproteomics provides in-depth characterization of key players in the microbiome by tracking down the uptake, degradation, cross-feeding and conversion of a labeled substrate (Fig. 1F). For example, in an environmental microbiome study, protein-SIP has been used to observe carbon flow and functional interactions within the benzene-degrading, sulfate-reducing community (
      • Starke R.
      • Keller A.
      • Jehmlich N.
      • Vogt C.
      • Richnow H.H.
      • Kleinsteuber S.
      • von Bergen M.
      • Seifert J.
      Pulsed 13C2-acetate protein-SIP unveils epsilonproteobacteria as dominant acetate utilizers in a sulfate-reducing microbial community mineralizing benzene.
      ). Kleiner et al. have developed a direct protein stable isotope fingerprint (SIF) technique and software packages to track the consumption of environmental carbon sources by microbial species in communities through determining their stable carbon isotope ratios (δ13C) (
      • Kleiner M.
      • Dong X.
      • Hinzke T.
      • Wippler J.
      • Thorson E.
      • Mayer B.
      • Strous M.
      Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.
      ). This approach can determine the nutrient flow of specific carbon source in individual species and subsequent pathways to assimilate the carbon source. In addition to carbon, nitrogen has been used to generate labeled gut microbial community both through in vitro culturing and through feeding animals using 15N-based substrates (
      • Mayers M.D.
      • Moon C.
      • Stupp G.S.
      • Su A.I.
      • Wolan D.W.
      Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease.
      ,
      • Zhang X.
      • Ning Z.
      • Mayne J.
      • Deeke S.A.
      • Li J.
      • Starr A.E.
      • Chen R.
      • Singleton R.
      • Butcher J.
      • Mack D.R.
      • Stintzi A.
      • Figeys D.
      In vitro metabolic labeling of intestinal microbiota for quantitative metaproteomics.
      ). By feeding mice using 15N spirulina diet, Mayers et al. showed that 95% 15N incorporation in peptides was attained within 4 weeks of feeding. In vitro culturing can achieve more rapid and efficient 15N incorporation. Zhang et al. have found that following a SILAMi approach, >95% 15N enrichment in an in vitro gut microbiome can be achieved within 3 days of culture (
      • Zhang X.
      • Ning Z.
      • Mayne J.
      • Deeke S.A.
      • Li J.
      • Starr A.E.
      • Chen R.
      • Singleton R.
      • Butcher J.
      • Mack D.R.
      • Stintzi A.
      • Figeys D.
      In vitro metabolic labeling of intestinal microbiota for quantitative metaproteomics.
      ). This metabolically stable isotopic labeling of microbiota was aimed as an internal standard for quantitative metaproteomics, yet it may be extendable to trace the nutrient flow of nitrogen sources in the environment between microbial species when observed through the time course.

      PERSPECTIVES

      Although the number of gut microbiome study grew exponentially over the past decade (Fig. 2), most studies are still focused on taxonomic composition and functional capacities based on 16S and metagenomics. Metaproteomics is emerging with an average increase of 30% more publications per year, helping to expand our understanding of the microbiome functional ecology. Interestingly, the number of microbiome publications that involves a discussion on “ecology” has been increasing with comparable number to metagenomics. However, in comparison, significantly less effort has been directed to practical ecosystem modeling, which mathematically describes the organization mechanism of our complex gut ecosystem. Furthermore, more attention needs to be paid to the role of functional diversity in our gut ecosystem.
      Figure thumbnail gr2
      Fig. 2Number of publications in the recent decade corresponding to different keywords (PubMed).
      Mathematically describing the dynamics of microbial communities have long been performed in other disciplines such as environmental and agricultural microbiomes. Similarly, it is important to explicitly describe the interaction between microbial species as well as between host and gut microbiota, so as to better understand our health and disease. Scientists engaged in modeling the gut microbiota found that it is important to build models based on function- and biomass- experimental data in addition to genomic sequencing (
      • Bucci V.
      • Tzen B.
      • Li N.
      • Simmons M.
      • Tanoue T.
      • Bogart E.
      • Deng L.
      • Yeliseyev V.
      • Delaney M.L.
      • Liu Q.
      • Olle B.
      • Stein R.R.
      • Honda K.
      • Bry L.
      • Gerber G.K.
      MDSINE: Microbial dynamical systems INference Engine for microbiome time-series analyses.
      ). It has been suggested that proteomics and metaproteomics are important approaches to generate mass and functional arrays based on proteins. In addition, to describe an ecosystem, we need to consider the spatiotemporal property of our host-microbiome ecosystem. Microgeographic differentiation and identification of proteins from different biological kingdom can be readily achieved by proteomics and metaproteomics sampling and enrichment techniques, and thus facilitates comprehensive data representation of the MLI. Finally, proteomics and metaproteomics in combination with in vitro models will provide efficient, reproducible and objective solution to future MLI ecology studies.
      It is notable that the technologies still face several challenges. Sample preparation remains complicated and usually many days are needed to perform protein extraction, digestion to desalting. Although rapid high-throughput proteomics and metaproteomics techniques have been developed, experiments are expensive and extensive experimental and bioinformatics expertise are still needed. In addition, current metaproteomics has a limited sequencing depth because of the high complexity of the gut microbiome. Nevertheless, experimental, instrumental and bioinformatic techniques for metaproteomics are evolving rapidly, and we expect more in-depth characterization of the gut metaproteome and broader applications.

      CONCLUSION

      We are still at the early stage of exploring the ecosystem principles that maintain the homeostasis of our gut microbial community and host-microbiome relationship. Recent development of proteomics and metaproteomics technologies can provide promising contribution to studying spatiotemporal host-microbiome interaction at the MLI. Important approaches facilitating such studies include isolation strategies for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, isotopic labeling for tracking nutrient flow, and the use of in vitro MLI models. Therefore proteomics and metaproteomics, based on properly selected protocols, can provide information on functional diversity, matter and energy flow, and site-specific insights that are suitable for mathematical modeling of the MLI ecosystem.

      Acknowledgments

      We thank Dr. Xu Zhang for his help on improving this manuscript.

      Supplementary Material

      REFERENCES

        • Van den Abbeele P.
        • Van de Wiele T.
        • Verstraete W.
        • Possemiers S.
        The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept.
        FEMS Microbiol. Rev. 2011; 35: 681-704
        • Ashida H.
        • Ogawa M.
        • Kim M.
        • Mimuro H.
        • Sasakawa C.
        Bacteria and host interactions in the gut epithelial barrier.
        Nat. Chem. Biol. 2011; 8: 36-45
        • Turroni S.
        • Rampelli S.
        • Biagi E.
        • Consolandi C.
        • Severgnini M.
        • Peano C.
        • Quercia S.
        • Soverini M.
        • Carbonero F.G.
        • Bianconi G.
        • Rettberg P.
        • Canganella F.
        • Brigidi P.
        • Candela M.
        Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500.
        Microbiome. 2017; 5: 39
        • Faith J.J.
        • Guruge J.L.
        • Charbonneau M.
        • Subramanian S.
        • Seedorf H.
        • Goodman A.L.
        • Clemente J.C.
        • Knight R.
        • Heath A.C.
        • Leibel R.L.
        • Rosenbaum M.
        • Gordon J.I.
        The long-term stability of the human gut microbiota.
        Science. 2013; 341: 1237439
        • Donaldson G.P.
        • Ladinsky M.S.
        • Yu K.B.
        • Sanders J.G.
        • Yoo B.B.
        • Chou W.-C.
        • Conner M.E.
        • Earl A.M.
        • Knight R.
        • Bjorkman P.J.
        • Mazmanian S.K.
        Gut microbiota utilize immunoglobulin A for mucosal colonization.
        Science. 2018; 360: 795-800
        • Thaiss C.A.
        • Levy M.
        • Korem T.
        • Dohnalová L.
        • Shapiro H.
        • Jaitin D.A.
        • David E.
        • Winter D.R.
        • Gury-BenAri M.
        • Tatirovsky E.
        • Tuganbaev T.
        • Federici S.
        • Zmora N.
        • Zeevi D.
        • Dori-Bachash M.
        • Pevsner-Fischer M.
        • Kartvelishvily E.
        • Brandis A.
        • Harmelin A.
        • Shibolet O.
        • Halpern Z.
        • Honda K.
        • Amit I.
        • Segal E.
        • Elinav E.
        Microbiota diurnal rhythmicity programs host transcriptome oscillations.
        Cell. 2016; 167: 1495-1510.e12
        • Hettich R.L.
        • Pan C.
        • Chourey K.
        • Giannone R.J.
        Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities.
        Anal. Chem. 2013; 85: 4203-4214
        • Petriz B.A.
        • Franco O.L.
        Metaproteomics as a complementary approach to gut microbiota in health and disease.
        Front. Chem. 2017; 5: 4
        • Aakko J.
        • Pietilä S.
        • Suomi T.
        • Mahmoudian M.
        • Toivonen R.
        • Kouvonen P.
        • Rokka A.
        • Hänninen A.
        • Elo L.L.
        Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota—implementation and computational analysis.
        J. Proteome Res. 2020; 19: 432-436
        • Earle K.A.
        • Billings G.
        • Sigal M.
        • Lichtman J.S.
        • Hansson G.C.
        • Elias J.E.
        • Amieva M.R.
        • Huang K.C.
        • Sonnenburg J.L.
        Quantitative imaging of gut microbiota spatial organization.
        Cell Host Microbe. 2015; 18: 478-488
        • Johansson M.E.V.
        • Larsson J.M.H.
        • Hansson G.C.
        The two mucus layers of colon are organized by the muc2 mucin, whereas the outer layer is a legislator of host–microbial interactions.
        Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 4659-4665
        • Van Herreweghen F.
        • De Paepe K.
        • Roume H.
        • Kerckhof F.-M.
        • Van de Wiele T.
        Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent.
        FEMS Microbiol. Ecol. 2018; 94
        • Lu H.-P.
        • Lai Y.-C.
        • Huang S.-W.
        • Chen H.-C.
        • Hsieh C-H.
        • Yu H.-T.
        Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics.
        Sci. Rep. 2014; 4: 6185
        • Galley J.D.
        • Yu Z.
        • Kumar P.
        • Dowd S.E.
        • Lyte M.
        • Bailey M.T.
        The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor.
        Gut Microbes. 2014; 5: 748-760
        • Li H.
        • Limenitakis J.P.
        • Fuhrer T.
        • Geuking M.B.
        • Lawson M.A.
        • Wyss M.
        • Brugiroux S.
        • Keller I.
        • Macpherson J.A.
        • Rupp S.
        • Stolp B.
        • Stein J.V.
        • Stecher B.
        • Sauer U.
        • McCoy K.D.
        • Macpherson A.J.
        The outer mucus layer hosts a distinct intestinal microbial niche.
        Nat. Commun. 2015; 6: 8292
        • Bashir M.
        • Prietl B.
        • Tauschmann M.
        • Mautner S.I.
        • Kump P.K.
        • Treiber G.
        • Wurm P.
        • Gorkiewicz G.
        • Högenauer C.
        • Pieber T.R.
        Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.
        Eur. J. Nutr. 2016; 55: 1479-1489
        • Chia L.W.
        • Hornung B.V.H.
        • Aalvink S.
        • Schaap P.J.
        • de Vos W.M.
        • Knol J.
        • Belzer C.
        Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach.
        Antonie van Leeuwenhoek. 2018; 111: 859-873
        • Kosciow K.
        • Deppenmeier U.
        Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation.
        Int. J. Biol. Macromol. 2020; 149: 331-340
        • Kosciow K.
        • Deppenmeier U.
        Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation.
        Microbiologyopen. 2019; 8: e00796
        • Turroni F.
        • Milani C.
        • Duranti S.
        • Mahony J.
        • van Sinderen D.
        • Ventura M.
        Glycan utilization and cross-feeding activities by Bifidobacteria.
        Trends Microbiol. 2018; 26: 339-350
        • Falony G.
        • Vlachou A.
        • Verbrugghe K.
        • De Vuyst L.
        Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose.
        Appl. Environ. Microbiol. 2006; 72: 7835-7841
        • Rios-Covian D.
        • Gueimonde M.
        • Duncan S.H.
        • Flint H.J.
        • de los Reyes-Gavilan C.G.
        Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.
        FEMS Microbiology Letters. 2015; 362: fnv176
        • Kolls J.K.
        • McCray P.B.
        • Chan Y.R.
        Cytokine-mediated regulation of antimicrobial proteins.
        Nat. Rev. Immunol. 2008; 8: 829-835
        • Bergstrom K.
        • Fu J.
        • Johansson M.E.V.
        • Liu X.
        • Gao N.
        • Wu Q.
        • Song J.
        • McDaniel J.M.
        • McGee S.
        • Chen W.
        • Braun J.
        • Hansson G.C.
        • Xia L.
        Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice.
        Mucosal Immunol. 2017; 10: 91-103
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • Boedeker E.C.
        • Harpaz N.
        • Pace N.R.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 13780-13785
        • Loreau M.
        From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis. Princeton University Press, Princeton, NJ, United States2010
        • Cordero O.X.
        • Datta M.S.
        Microbial interactions and community assembly at microscales.
        Curr. Opin. Microbiol. 2016; 31: 227-234
        • Macarthur R.
        • Levins R.
        The limiting similarity, convergence, and divergence of coexisting species.
        Am. Naturalist. 1967; 101: 377-385
        • Tilman D.
        Competition and biodiversity in spatially structured habitats.
        Ecology. 1994; 75: 2-16
        • Verster A.J.
        • Borenstein E.
        Competitive lottery-based assembly of selected clades in the human gut microbiome.
        Microbiome. 2018; 6: 186
        • Shaani Y.
        • Zehavi T.
        • Eyal S.
        • Miron J.
        • Mizrahi I.
        Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects.
        ISME J. 2018; 12: 2446-2457
        • Huisman J.
        • Johansson A.M.
        • Folmer E.O.
        • Weissing F.J.
        Towards a solution of the plankton paradox: the importance of physiology and life history.
        Ecol. Letters. 2001; 4: 408-411
        • Kim H.J.
        • Li H.
        • Collins J.J.
        • Ingber D.E.
        Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
        Proc. Natl. Acad. Sci. U.S.A. 2016; 113: E7-E15
        • Suez J.
        • Zmora N.
        • Zilberman-Schapira G.
        • Mor U.
        • Dori-Bachash M.
        • Bashiardes S.
        • Zur M.
        • Regev-Lehavi D.
        • Ben-Zeev Brik R.
        • Federici S.
        • Horn M.
        • Cohen Y.
        • Moor A.E.
        • Zeevi D.
        • Korem T.
        • Kotler E.
        • Harmelin A.
        • Itzkovitz S.
        • Maharshak N.
        • Shibolet O.
        • Pevsner-Fischer M.
        • Shapiro H.
        • Sharon I.
        • Halpern Z.
        • Segal E.
        • Elinav E.
        Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
        Cell. 2018; 174: 1406-1423.e16
        • Zmora N.
        • Zilberman-Schapira G.
        • Suez J.
        • Mor U.
        • Dori-Bachash M.
        • Bashiardes S.
        • Kotler E.
        • Zur M.
        • Regev-Lehavi D.
        • Brik R.B.-Z.
        • Federici S.
        • Cohen Y.
        • Linevsky R.
        • Rothschild D.
        • Moor A.E.
        • Ben-Moshe S.
        • Harmelin A.
        • Itzkovitz S.
        • Maharshak N.
        • Shibolet O.
        • Shapiro H.
        • Pevsner-Fischer M.
        • Sharon I.
        • Halpern Z.
        • Segal E.
        • Elinav E.
        Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
        Cell. 2018; 174: 1388-1405
        • Kim M.-S.
        • Bae J.-W.
        Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.
        Environ. Microbiol. 2016; 18: 1498-1510
        • Li X.
        • LeBlanc J.
        • Elashoff D.
        • McHardy I.
        • Tong M.
        • Roth B.
        • Ippoliti A.
        • Barron G.
        • McGovern D.
        • McDonald K.
        • Newberry R.
        • Graeber T.
        • Horvath S.
        • Goodglick L.
        • Braun J.
        Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease.
        Cell. Mol. Gastroenterol. Hepatol. 2016; 2: 567-583
        • Li X.
        • LeBlanc J.
        • Truong A.
        • Vuthoori R.
        • Chen S.S.
        • Lustgarten J.L.
        • Roth B.
        • Allard J.
        • Ippoliti A.
        • Presley L.L.
        • Borneman J.
        • Bigbee W.L.
        • Gopalakrishnan V.
        • Graeber T.G.
        • Elashoff D.
        • Braun J.
        • Goodglick L.
        A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.
        PLoS ONE. 2011; 6: e26542
        • Zhang X.
        • Deeke S.A.
        • Ning Z.
        • Starr A.E.
        • Butcher J.
        • Li J.
        • Mayne J.
        • Cheng K.
        • Liao B.
        • Li L.
        • Singleton R.
        • Mack D.
        • Stintzi A.
        • Figeys D.
        Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.
        Nat. Commun. 2018; 9: 2873
        • Presley L.L.
        • Ye J.
        • Li X.
        • Leblanc J.
        • Zhang Z.
        • Ruegger P.M.
        • Allard J.
        • McGovern D.
        • Ippoliti A.
        • Roth B.
        • Cui X.
        • Jeske D.R.
        • Elashoff D.
        • Goodglick L.
        • Braun J.
        • Borneman J.
        Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface.
        Inflamm. Bowel Dis. 2012; 18: 409-417
        • Zhao L.
        • Zhang F.
        • Ding X.
        • Wu G.
        • Lam Y.Y.
        • Wang X.
        • Fu H.
        • Xue X.
        • Lu C.
        • Ma J.
        • Yu L.
        • Xu C.
        • Ren Z.
        • Xu Y.
        • Xu S.
        • Shen H.
        • Zhu X.
        • Shi Y.
        • Shen Q.
        • Dong W.
        • Liu R.
        • Ling Y.
        • Zeng Y.
        • Wang X.
        • Zhang Q.
        • Wang J.
        • Wang L.
        • Wu Y.
        • Zeng B.
        • Wei H.
        • Zhang M.
        • Peng Y.
        • Zhang C.
        Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
        Science. 2018; 359: 1151-1156
        • Mills R.H.
        • Vázquez-Baeza Y.
        • Zhu Q.
        • Jiang L.
        • Gaffney J.
        • Humphrey G.
        • Smarr L.
        • Knight R.
        • Gonzalez D.J.
        Evaluating metagenomic prediction of the metaproteome in a 4.5-year study of a patient with Crohn's disease.
        mSystems. 2019; 4: e00318-e00337
        • Liu Y.
        • Beyer A.
        • Aebersold R.
        On the dependency of cellular protein levels on mRNA abundance.
        Cell. 2016; 165: 535-550
        • Zhu L.
        • Zhang D.
        • Zhu H.
        • Zhu J.
        • Weng S.
        • Dong L.
        • Liu T.
        • Hu Y.
        • Shen X.
        Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice.
        Atherosclerosis. 2018; 268: 117-126
        • Zhang X.
        • Chen W.
        • Ning Z.
        • Mayne J.
        • Mack D.
        • Stintzi A.
        • Tian R.
        • Figeys D.
        Deep metaproteomics approach for the study of human microbiomes.
        Anal. Chem. 2017; 89: 9407-9415
        • Moya A.
        • Ferrer M.
        Functional redundancy-induced stability of gut microbiota subjected to disturbance.
        Trends Microbiol. 2016; 24: 402-413
        • O'Connor M.I.
        • Pennell M.W.
        • Altermatt F.
        • Matthews B.
        • Melián C.J.
        • Gonzalez A.
        Principles of ecology revisited: integrating information and ecological theories for a more unified science.
        Front. Ecol. Evol. 2019; 7: 219
        • Stein R.R.
        • Bucci V.
        • Toussaint N.C.
        • Buffie C.G.
        • Rätsch G.
        • Pamer E.G.
        • Sander C.
        • Xavier J.B.
        Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.
        PLoS Comput. Biol. 2013; 9: e1003388
        • Bucci V.
        • Tzen B.
        • Li N.
        • Simmons M.
        • Tanoue T.
        • Bogart E.
        • Deng L.
        • Yeliseyev V.
        • Delaney M.L.
        • Liu Q.
        • Olle B.
        • Stein R.R.
        • Honda K.
        • Bry L.
        • Gerber G.K.
        MDSINE: Microbial dynamical systems INference Engine for microbiome time-series analyses.
        Genome Biol. 2016; 17: 121
        • Cao H.-T.
        • Gibson T.E.
        • Bashan A.
        • Liu Y.-Y.
        Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons.
        BioEssays. 2017; 39: 1600188
        • Tanca A.
        • Abbondio M.
        • Palomba A.
        • Fraumene C.
        • Manghina V.
        • Cucca F.
        • Fiorillo E.
        • Uzzau S.
        Potential and active functions in the gut microbiota of a healthy human cohort.
        Microbiome. 2017; 5: 79
        • Milo R.
        What is the total number of protein molecules per cell volume? A call to rethink some published values.
        BioEssays. 2013; 35: 1050-1055
        • Kleiner M.
        • Thorson E.
        • Sharp C.E.
        • Dong X.
        • Liu D.
        • Li C.
        • Strous M.
        Assessing species biomass contributions in microbial communities via metaproteomics.
        Nat. Commun. 2017; 8: 1558
        • Pible O.
        • Allain F.
        • Jouffret V.
        • Culotta K.
        • Miotello G.
        • Armengaud J.
        Estimating relative biomasses of organisms in microbiota using “phylopeptidomics”.
        Microbiome. 2020; 8: 30
        • Hao Z.
        • et al.
        Metaproteomics reveals growth phase-dependent responses of an in vitro gut microbiota to Metformin.
        Journal of the American Society for Mass Spectrometry. 2020;
        • Kleiner M.
        • Dong X.
        • Hinzke T.
        • Wippler J.
        • Thorson E.
        • Mayer B.
        • Strous M.
        Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.
        Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E5576-E5584
        • Deeke S.A.
        • et al.
        Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.
        American Journal of Gastroenterology. 2018; 113: 713-724
        • Chen E.
        • Ajami N.
        • Chen L.
        • Plew S.
        • White D.
        • Wang Z.
        • El-Serag H.
        • Petrosino J.
        • Jiao L.
        Dairy Intake and Mucosa-Associated Gut Microbiome in Healthy Individuals: Presidential Poster Award: 235.
        Am. J. Gastroenterol. 2018; 113: S137
        • Jones R.B.
        • Zhu X.
        • Moan E.
        • Murff H.J.
        • Ness R.M.
        • Seidner D.L.
        • Sun S.
        • Yu C.
        • Dai Q.
        • Fodor A.A.
        • Azcarate-Peril M.A.
        • Shrubsole M.J.
        Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples.
        Sci. Rep. 2018; 8: 4139
        • Van den Abbeele P.
        • Gérard P.
        • Rabot S.
        • Bruneau A.
        • El Aidy S.
        • Derrien M.
        • Kleerebezem M.
        • Zoetendal E.G.
        • Smidt H.
        • Verstraete W.
        • Van de Wiele T.
        • Possemiers S.
        Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats.
        Environ. Microbiol. 2011; 13: 2667-2680
        • Oberbach A.
        • Haange S.-B.
        • Schlichting N.
        • Heinrich M.
        • Lehmann S.
        • Till H.
        • Hugenholtz F.
        • Kullnick Y.
        • Smidt H.
        • Frank K.
        • Seifert J.
        • Jehmlich N.
        • von Bergen M.
        Metabolic in vivo labeling highlights differences of metabolically active microbes from the mucosal gastrointestinal microbiome between high-fat and normal chow diet.
        J. Proteome Res. 2017; 16: 1593-1604
        • Van den Abbeele P.
        • Belzer C.
        • Goossens M.
        • Kleerebezem M.
        • De Vos W.M.
        • Thas O.
        • De Weirdt R.
        • Kerckhof F.-M.
        • Van de Wiele T.
        Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model.
        ISME J. 2013; 7: 949-961
        • Eain M.M.G.
        • Baginska J.
        • Greenhalgh K.
        • Fritz J.V.
        • Zenhausern F.
        • Wilmes P.
        Engineering solutions for representative models of the gastrointestinal human-microbe interface.
        Engineering. 2017; 3: 60-65
        • Shah P.
        • Fritz J.V.
        • Glaab E.
        • Desai M.S.
        • Greenhalgh K.
        • Frachet A.
        • Niegowska M.
        • Estes M.
        • Jäger C.
        • Seguin-Devaux C.
        • Zenhausern F.
        • Wilmes P.
        A microfluidics-based in vitro model of the gastrointestinal human–microbe interface.
        Nat. Commun. 2016; 7: 11535
        • Shin W.
        • Kim H.J.
        Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip.
        Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E10539-E10547
        • Shin W.
        • Wu A.
        • Massidda M.W.
        • Foster C.
        • Thomas N.
        • Lee D.-W.
        • Koh H.
        • Ju Y.
        • Kim J.
        • Kim H.J.
        A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip.
        Front. Bioeng. Biotechnol. 2019; 7: 13
        • Jalili-Firoozinezhad S.
        • Gazzaniga F.S.
        • Calamari E.L.
        • Camacho D.M.
        • Fadel C.W.
        • Bein A.
        • Swenor B.
        • Nestor B.
        • Cronce M.J.
        • Tovaglieri A.
        • Levy O.
        • Gregory K.E.
        • Breault D.T.
        • Cabral J.M.S.
        • Kasper D.L.
        • Novak R.
        • Ingber D.E.
        A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.
        Nat. Biomed. Eng. 2019; 3: 520-531
        • Garmaeva S.
        • Sinha T.
        • Kurilshikov A.
        • Fu J.
        • Wijmenga C.
        • Zhernakova A.
        Studying the gut virome in the metagenomic era: challenges and perspectives.
        BMC Biol. 2019; 17: 84
        • Wang J.
        • Zhang X.
        • Li L.
        • Ning Z.
        • Mayne J.
        • Schmitt-Ulms C.
        • Walker K.
        • Cheng K.
        • Figeys D.
        Differential lysis approach enables selective extraction of taxon-specific proteins for gut metaproteomics.
        Anal. Chem. 2020; 92: 5379-5386
        • C W.
        • W A.T.
        Activity-based protein profiling—enabling multimodal functional studies of microbial communities.
        in: H.K. Cravatt B. Weerapana E. Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology. Springer, Cham2018
        • Mayers M.D.
        • Moon C.
        • Stupp G.S.
        • Su A.I.
        • Wolan D.W.
        Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease.
        J. Proteome Res. 2017; 16: 1014-1026
        • Parasar B.
        • Zhou H.
        • Xiao X.
        • Shi Q.
        • Brito I.L.
        • Chang P.V.
        Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity.
        ACS Cent. Sci. 2019; 5: 867-873
        • Jariwala P.B.
        • Pellock S.J.
        • Goldfarb D.
        • Cloer E.W.
        • Artola M.
        • Simpson J.B.
        • Bhatt A.P.
        • Walton W.G.
        • Roberts L.R.
        • Major M.B.
        • Davies G.J.
        • Overkleeft H.S.
        • Redinbo M.R.
        Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling.
        ACS Chem. Biol. 2020; 15: 217-225
        • Lombard V.
        • Golaconda Ramulu H.
        • Drula E.
        • Coutinho P.M.
        • Henrissat B.
        The carbohydrate-active enzymes database (CAZy) in 2013.
        Nucleic Acids Res. 2014; 42: D490-D495
        • Jehmlich N.
        • Kopinke F.-D.
        • Lenhard S.
        • Vogt C.
        • Herbst F.-A.
        • Seifert J.
        • Lissner U.
        • Völker U.
        • Schmidt F.
        • von Bergen M.
        Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ).
        Proteomics. 2012; 12: 37-42
        • Justice N.B.
        • Li Z.
        • Wang Y.
        • Spaudling S.E.
        • Mosier A.C.
        • Hettich R.L.
        • Pan C.
        • Banfield J.F.
        15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.
        Environ. Microbiol. 2014; 16: 3224-3237
        • Taubert M.
        • Stöckel S.
        • Geesink P.
        • Girnus S.
        • Jehmlich N.
        • von Bergen M.
        • Rösch P.
        • Popp J.
        • Küsel K.
        Tracking active groundwater microbes with D2O labelling to understand their ecosystem function.
        Environ. Microbiol. 2018; 20: 369-384
        • Starke R.
        • Keller A.
        • Jehmlich N.
        • Vogt C.
        • Richnow H.H.
        • Kleinsteuber S.
        • von Bergen M.
        • Seifert J.
        Pulsed 13C2-acetate protein-SIP unveils epsilonproteobacteria as dominant acetate utilizers in a sulfate-reducing microbial community mineralizing benzene.
        Microb. Ecol. 2016; 71: 901-911
        • Zhang X.
        • Ning Z.
        • Mayne J.
        • Deeke S.A.
        • Li J.
        • Starr A.E.
        • Chen R.
        • Singleton R.
        • Butcher J.
        • Mack D.R.
        • Stintzi A.
        • Figeys D.
        In vitro metabolic labeling of intestinal microbiota for quantitative metaproteomics.
        Anal. Chem. 2016; 88: 6120-6125