Graphical Abstract

- Turroni S.
- Rampelli S.
- Biagi E.
- Consolandi C.
- Severgnini M.
- Peano C.
- Quercia S.
- Soverini M.
- Carbonero F.G.
- Bianconi G.
- Rettberg P.
- Canganella F.
- Brigidi P.
- Candela M.
- Thaiss C.A.
- Levy M.
- Korem T.
- Dohnalová L.
- Shapiro H.
- Jaitin D.A.
- David E.
- Winter D.R.
- Gury-BenAri M.
- Tatirovsky E.
- Tuganbaev T.
- Federici S.
- Zmora N.
- Zeevi D.
- Dori-Bachash M.
- Pevsner-Fischer M.
- Kartvelishvily E.
- Brandis A.
- Harmelin A.
- Shibolet O.
- Halpern Z.
- Honda K.
- Amit I.
- Segal E.
- Elinav E.
PROTEOMICS AND METAPROTEOMICS TECHNIQUES AT a GLANCE
STRUCTURE AND ECOLOGY OF THE MLI
- Thaiss C.A.
- Levy M.
- Korem T.
- Dohnalová L.
- Shapiro H.
- Jaitin D.A.
- David E.
- Winter D.R.
- Gury-BenAri M.
- Tatirovsky E.
- Tuganbaev T.
- Federici S.
- Zmora N.
- Zeevi D.
- Dori-Bachash M.
- Pevsner-Fischer M.
- Kartvelishvily E.
- Brandis A.
- Harmelin A.
- Shibolet O.
- Halpern Z.
- Honda K.
- Amit I.
- Segal E.
- Elinav E.

IMPORTANCE OF PROTEOMICS AND METAPROTEOMICS IN MLI STUDIES
- Suez J.
- Zmora N.
- Zilberman-Schapira G.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Zur M.
- Regev-Lehavi D.
- Ben-Zeev Brik R.
- Federici S.
- Horn M.
- Cohen Y.
- Moor A.E.
- Zeevi D.
- Korem T.
- Kotler E.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Pevsner-Fischer M.
- Shapiro H.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Zmora N.
- Zilberman-Schapira G.
- Suez J.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Kotler E.
- Zur M.
- Regev-Lehavi D.
- Brik R.B.-Z.
- Federici S.
- Cohen Y.
- Linevsky R.
- Rothschild D.
- Moor A.E.
- Ben-Moshe S.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Shapiro H.
- Pevsner-Fischer M.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Suez J.
- Zmora N.
- Zilberman-Schapira G.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Zur M.
- Regev-Lehavi D.
- Ben-Zeev Brik R.
- Federici S.
- Horn M.
- Cohen Y.
- Moor A.E.
- Zeevi D.
- Korem T.
- Kotler E.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Pevsner-Fischer M.
- Shapiro H.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Zmora N.
- Zilberman-Schapira G.
- Suez J.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Kotler E.
- Zur M.
- Regev-Lehavi D.
- Brik R.B.-Z.
- Federici S.
- Cohen Y.
- Linevsky R.
- Rothschild D.
- Moor A.E.
- Ben-Moshe S.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Shapiro H.
- Pevsner-Fischer M.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Suez J.
- Zmora N.
- Zilberman-Schapira G.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Zur M.
- Regev-Lehavi D.
- Ben-Zeev Brik R.
- Federici S.
- Horn M.
- Cohen Y.
- Moor A.E.
- Zeevi D.
- Korem T.
- Kotler E.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Pevsner-Fischer M.
- Shapiro H.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Zmora N.
- Zilberman-Schapira G.
- Suez J.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Kotler E.
- Zur M.
- Regev-Lehavi D.
- Brik R.B.-Z.
- Federici S.
- Cohen Y.
- Linevsky R.
- Rothschild D.
- Moor A.E.
- Ben-Moshe S.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Shapiro H.
- Pevsner-Fischer M.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Li X.
- LeBlanc J.
- Elashoff D.
- McHardy I.
- Tong M.
- Roth B.
- Ippoliti A.
- Barron G.
- McGovern D.
- McDonald K.
- Newberry R.
- Graeber T.
- Horvath S.
- Goodglick L.
- Braun J.
- Li X.
- LeBlanc J.
- Truong A.
- Vuthoori R.
- Chen S.S.
- Lustgarten J.L.
- Roth B.
- Allard J.
- Ippoliti A.
- Presley L.L.
- Borneman J.
- Bigbee W.L.
- Gopalakrishnan V.
- Graeber T.G.
- Elashoff D.
- Braun J.
- Goodglick L.
- Presley L.L.
- Ye J.
- Li X.
- Leblanc J.
- Zhang Z.
- Ruegger P.M.
- Allard J.
- McGovern D.
- Ippoliti A.
- Roth B.
- Cui X.
- Jeske D.R.
- Elashoff D.
- Goodglick L.
- Braun J.
- Borneman J.
Functional Diversity is an Important Dimension of Biodiversity
- Zhao L.
- Zhang F.
- Ding X.
- Wu G.
- Lam Y.Y.
- Wang X.
- Fu H.
- Xue X.
- Lu C.
- Ma J.
- Yu L.
- Xu C.
- Ren Z.
- Xu Y.
- Xu S.
- Shen H.
- Zhu X.
- Shi Y.
- Shen Q.
- Dong W.
- Liu R.
- Ling Y.
- Zeng Y.
- Wang X.
- Zhang Q.
- Wang J.
- Wang L.
- Wu Y.
- Zeng B.
- Wei H.
- Zhang M.
- Peng Y.
- Zhang C.
Matter and Energy Are Basis for Ecosystem Models
Site-Specific Insight is Required for Host-Microbiome Interaction
- Li X.
- LeBlanc J.
- Elashoff D.
- McHardy I.
- Tong M.
- Roth B.
- Ippoliti A.
- Barron G.
- McGovern D.
- McDonald K.
- Newberry R.
- Graeber T.
- Horvath S.
- Goodglick L.
- Braun J.
- Li X.
- LeBlanc J.
- Truong A.
- Vuthoori R.
- Chen S.S.
- Lustgarten J.L.
- Roth B.
- Allard J.
- Ippoliti A.
- Presley L.L.
- Borneman J.
- Bigbee W.L.
- Gopalakrishnan V.
- Graeber T.G.
- Elashoff D.
- Braun J.
- Goodglick L.
- Presley L.L.
- Ye J.
- Li X.
- Leblanc J.
- Zhang Z.
- Ruegger P.M.
- Allard J.
- McGovern D.
- Ippoliti A.
- Roth B.
- Cui X.
- Jeske D.R.
- Elashoff D.
- Goodglick L.
- Braun J.
- Borneman J.
PROTEOMICS AND METAPROTEOMICS APPROACHES TO DISSECT THE MLI ECOLOGY
Isolating Different MLI Compartments
- Suez J.
- Zmora N.
- Zilberman-Schapira G.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Zur M.
- Regev-Lehavi D.
- Ben-Zeev Brik R.
- Federici S.
- Horn M.
- Cohen Y.
- Moor A.E.
- Zeevi D.
- Korem T.
- Kotler E.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Pevsner-Fischer M.
- Shapiro H.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Zmora N.
- Zilberman-Schapira G.
- Suez J.
- Mor U.
- Dori-Bachash M.
- Bashiardes S.
- Kotler E.
- Zur M.
- Regev-Lehavi D.
- Brik R.B.-Z.
- Federici S.
- Cohen Y.
- Linevsky R.
- Rothschild D.
- Moor A.E.
- Ben-Moshe S.
- Harmelin A.
- Itzkovitz S.
- Maharshak N.
- Shibolet O.
- Shapiro H.
- Pevsner-Fischer M.
- Sharon I.
- Halpern Z.
- Segal E.
- Elinav E.
- Van den Abbeele P.
- Gérard P.
- Rabot S.
- Bruneau A.
- El Aidy S.
- Derrien M.
- Kleerebezem M.
- Zoetendal E.G.
- Smidt H.
- Verstraete W.
- Van de Wiele T.
- Possemiers S.
- Oberbach A.
- Haange S.-B.
- Schlichting N.
- Heinrich M.
- Lehmann S.
- Till H.
- Hugenholtz F.
- Kullnick Y.
- Smidt H.
- Frank K.
- Seifert J.
- Jehmlich N.
- von Bergen M.
- Van den Abbeele P.
- Gérard P.
- Rabot S.
- Bruneau A.
- El Aidy S.
- Derrien M.
- Kleerebezem M.
- Zoetendal E.G.
- Smidt H.
- Verstraete W.
- Van de Wiele T.
- Possemiers S.
- Jalili-Firoozinezhad S.
- Gazzaniga F.S.
- Calamari E.L.
- Camacho D.M.
- Fadel C.W.
- Bein A.
- Swenor B.
- Nestor B.
- Cronce M.J.
- Tovaglieri A.
- Levy O.
- Gregory K.E.
- Breault D.T.
- Cabral J.M.S.
- Kasper D.L.
- Novak R.
- Ingber D.E.
Capturing Desired Arrays of Proteins
Targeting Specific Pathways
Tracking Nutrient Flows
PERSPECTIVES

CONCLUSION
Acknowledgments
Supplementary Material
REFERENCES
- The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept.FEMS Microbiol. Rev. 2011; 35: 681-704
- Bacteria and host interactions in the gut epithelial barrier.Nat. Chem. Biol. 2011; 8: 36-45
- Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500.Microbiome. 2017; 5: 39
- The long-term stability of the human gut microbiota.Science. 2013; 341: 1237439
- Gut microbiota utilize immunoglobulin A for mucosal colonization.Science. 2018; 360: 795-800
- Microbiota diurnal rhythmicity programs host transcriptome oscillations.Cell. 2016; 167: 1495-1510.e12
- Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities.Anal. Chem. 2013; 85: 4203-4214
- Metaproteomics as a complementary approach to gut microbiota in health and disease.Front. Chem. 2017; 5: 4
- Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota—implementation and computational analysis.J. Proteome Res. 2020; 19: 432-436
- Quantitative imaging of gut microbiota spatial organization.Cell Host Microbe. 2015; 18: 478-488
- The two mucus layers of colon are organized by the muc2 mucin, whereas the outer layer is a legislator of host–microbial interactions.Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 4659-4665
- Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent.FEMS Microbiol. Ecol. 2018; 94
- Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics.Sci. Rep. 2014; 4: 6185
- The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor.Gut Microbes. 2014; 5: 748-760
- The outer mucus layer hosts a distinct intestinal microbial niche.Nat. Commun. 2015; 6: 8292
- Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract.Eur. J. Nutr. 2016; 55: 1479-1489
- Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach.Antonie van Leeuwenhoek. 2018; 111: 859-873
- Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation.Int. J. Biol. Macromol. 2020; 149: 331-340
- Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation.Microbiologyopen. 2019; 8: e00796
- Glycan utilization and cross-feeding activities by Bifidobacteria.Trends Microbiol. 2018; 26: 339-350
- Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose.Appl. Environ. Microbiol. 2006; 72: 7835-7841
- Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.FEMS Microbiology Letters. 2015; 362: fnv176
- Cytokine-mediated regulation of antimicrobial proteins.Nat. Rev. Immunol. 2008; 8: 829-835
- Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice.Mucosal Immunol. 2017; 10: 91-103
- Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 13780-13785
- From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis. Princeton University Press, Princeton, NJ, United States2010
- Microbial interactions and community assembly at microscales.Curr. Opin. Microbiol. 2016; 31: 227-234
- The limiting similarity, convergence, and divergence of coexisting species.Am. Naturalist. 1967; 101: 377-385
- Competition and biodiversity in spatially structured habitats.Ecology. 1994; 75: 2-16
- Competitive lottery-based assembly of selected clades in the human gut microbiome.Microbiome. 2018; 6: 186
- Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects.ISME J. 2018; 12: 2446-2457
- Towards a solution of the plankton paradox: the importance of physiology and life history.Ecol. Letters. 2001; 4: 408-411
- Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.Proc. Natl. Acad. Sci. U.S.A. 2016; 113: E7-E15
- Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.Cell. 2018; 174: 1406-1423.e16
- Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.Cell. 2018; 174: 1388-1405
- Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.Environ. Microbiol. 2016; 18: 1498-1510
- Microgeographic proteomic networks of the human colonic mucosa and their association with inflammatory bowel disease.Cell. Mol. Gastroenterol. Hepatol. 2016; 2: 567-583
- A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.PLoS ONE. 2011; 6: e26542
- Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.Nat. Commun. 2018; 9: 2873
- Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface.Inflamm. Bowel Dis. 2012; 18: 409-417
- Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.Science. 2018; 359: 1151-1156
- Evaluating metagenomic prediction of the metaproteome in a 4.5-year study of a patient with Crohn's disease.mSystems. 2019; 4: e00318-e00337
- On the dependency of cellular protein levels on mRNA abundance.Cell. 2016; 165: 535-550
- Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice.Atherosclerosis. 2018; 268: 117-126
- Deep metaproteomics approach for the study of human microbiomes.Anal. Chem. 2017; 89: 9407-9415
- Functional redundancy-induced stability of gut microbiota subjected to disturbance.Trends Microbiol. 2016; 24: 402-413
- Principles of ecology revisited: integrating information and ecological theories for a more unified science.Front. Ecol. Evol. 2019; 7: 219
- Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.PLoS Comput. Biol. 2013; 9: e1003388
- MDSINE: Microbial dynamical systems INference Engine for microbiome time-series analyses.Genome Biol. 2016; 17: 121
- Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons.BioEssays. 2017; 39: 1600188
- Potential and active functions in the gut microbiota of a healthy human cohort.Microbiome. 2017; 5: 79
- What is the total number of protein molecules per cell volume? A call to rethink some published values.BioEssays. 2013; 35: 1050-1055
- Assessing species biomass contributions in microbial communities via metaproteomics.Nat. Commun. 2017; 8: 1558
- Estimating relative biomasses of organisms in microbiota using “phylopeptidomics”.Microbiome. 2020; 8: 30
- Metaproteomics reveals growth phase-dependent responses of an in vitro gut microbiota to Metformin.Journal of the American Society for Mass Spectrometry. 2020;
- Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities.Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E5576-E5584
- Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.American Journal of Gastroenterology. 2018; 113: 713-724
- Dairy Intake and Mucosa-Associated Gut Microbiome in Healthy Individuals: Presidential Poster Award: 235.Am. J. Gastroenterol. 2018; 113: S137
- Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples.Sci. Rep. 2018; 8: 4139
- Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats.Environ. Microbiol. 2011; 13: 2667-2680
- Metabolic in vivo labeling highlights differences of metabolically active microbes from the mucosal gastrointestinal microbiome between high-fat and normal chow diet.J. Proteome Res. 2017; 16: 1593-1604
- Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model.ISME J. 2013; 7: 949-961
- Engineering solutions for representative models of the gastrointestinal human-microbe interface.Engineering. 2017; 3: 60-65
- A microfluidics-based in vitro model of the gastrointestinal human–microbe interface.Nat. Commun. 2016; 7: 11535
- Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip.Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E10539-E10547
- A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip.Front. Bioeng. Biotechnol. 2019; 7: 13
- A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.Nat. Biomed. Eng. 2019; 3: 520-531
- Studying the gut virome in the metagenomic era: challenges and perspectives.BMC Biol. 2019; 17: 84
- Differential lysis approach enables selective extraction of taxon-specific proteins for gut metaproteomics.Anal. Chem. 2020; 92: 5379-5386
- Activity-based protein profiling—enabling multimodal functional studies of microbial communities.in: H.K. Cravatt B. Weerapana E. Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology. Springer, Cham2018
- Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease.J. Proteome Res. 2017; 16: 1014-1026
- Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity.ACS Cent. Sci. 2019; 5: 867-873
- Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling.ACS Chem. Biol. 2020; 15: 217-225
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42: D490-D495
- Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ).Proteomics. 2012; 12: 37-42
- 15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.Environ. Microbiol. 2014; 16: 3224-3237
- Tracking active groundwater microbes with D2O labelling to understand their ecosystem function.Environ. Microbiol. 2018; 20: 369-384
- Pulsed 13C2-acetate protein-SIP unveils epsilonproteobacteria as dominant acetate utilizers in a sulfate-reducing microbial community mineralizing benzene.Microb. Ecol. 2016; 71: 901-911
- In vitro metabolic labeling of intestinal microbiota for quantitative metaproteomics.Anal. Chem. 2016; 88: 6120-6125
Article info
Publication history
Footnotes
This article contains supplemental Data.
Funding and additional information—This work was supported by the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-156), the Natural Sciences and Engineering Research Council of Canada (NSERC, grant no. 210034), and the Ontario Ministry of Economic Development and Innovation (ORF-DIG-14405). L.L. was funded by a stipend from the NSERC CREATE in Technologies for Microbiome Science and Engineering (TECHNOMISE) Program.
Conflict of interest—Authors declare no competing interests.
Abbreviations—The abbreviations used are:
MLI
Author contributions—L.L. and D.F. wrote the paper.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy