Graphical Abstract

- Binnewies M.
- Roberts E.W.
- Kersten K.
- Chan V.
- Fearon D.F.
- Merad M.
- Coussens L.M.
- Gabrilovich D.I.
- Ostrand-Rosenberg S.
- Hedrick C.C.
- Vonderheide R.H.
- Pittet M.J.
- Jain R.K.
- Zou W.P.
- Howcroft T.K.
- Woodhouse E.C.
- Weinberg R.A.
- Krummel M.F.
- Dou M.W.
- Clair G.
- Tsai C.F.
- Xu K.R.
- Chrisler W.B.
- Sontag R.L.
- Zhao R.
- Moore R.J.
- Liu T.
- Pasa-Tolic L.
- Smith R.D.
- Shi T.J.
- Adkins J.N.
- Qian W.J.
- Kelly R.T.
- Ansong C.
- Zhu Y.
SAMPLE ISOLATION AND PREPARATION
Miniaturization
Simplification
Open Format
- Dou M.W.
- Clair G.
- Tsai C.F.
- Xu K.R.
- Chrisler W.B.
- Sontag R.L.
- Zhao R.
- Moore R.J.
- Liu T.
- Pasa-Tolic L.
- Smith R.D.
- Shi T.J.
- Adkins J.N.
- Qian W.J.
- Kelly R.T.
- Ansong C.
- Zhu Y.
- Zhu Y.
- Clair G.
- Chrisler W.B.
- Shen Y.F.
- Zhao R.
- Shukla A.K.
- Moore R.J.
- Misra R.S.
- Pryhuber G.S.
- Smith R.D.
- Ansong C.
- Kelly R.T.
- Zhu Y.
- Dou M.W.
- Piehowski P.D.
- Liang Y.R.
- Wang F.J.
- Chu R.K.
- Chrisler W.B.
- Smith J.N.
- Schwarz K.C.
- Shen Y.F.
- Shukla A.K.
- Moore R.J.
- Smith R.D.
- Qian W.J.
- Kelly R.T.
- Zhu Y.
- Podolak J.
- Zhao R.
- Shukla A.K.
- Moore R.J.
- Thomas G.V.
- Kelly R.T.
- Piehowski P.D.
- Zhu Y.
- Bramer L.M.
- Stratton K.G.
- Zhao R.
- Orton D.J.
- Moore R.J.
- Yuan J.
- Mitchell H.D.
- Gao Y.
- Webb-Robertson B.-J.M.
- Dey S.K.
- Kelly R.T.
- Burnum-Johnson K.E.
Progress

- Zhu Y.
- Podolak J.
- Zhao R.
- Shukla A.K.
- Moore R.J.
- Thomas G.V.
- Kelly R.T.
- Piehowski P.D.
- Zhu Y.
- Bramer L.M.
- Stratton K.G.
- Zhao R.
- Orton D.J.
- Moore R.J.
- Yuan J.
- Mitchell H.D.
- Gao Y.
- Webb-Robertson B.-J.M.
- Dey S.K.
- Kelly R.T.
- Burnum-Johnson K.E.
- Zhu Y.
- Clair G.
- Chrisler W.B.
- Shen Y.F.
- Zhao R.
- Shukla A.K.
- Moore R.J.
- Misra R.S.
- Pryhuber G.S.
- Smith R.D.
- Ansong C.
- Kelly R.T.
Prospects
- •Minimizing sample preparation volumes is beneficial for reducing adsorptive losses and increasing sample concentrations for more efficient reaction with trypsin and other reagents.
- •Open microfluidic processing platforms have a substantial advantage over closed systems in terms of minimizing SA:V, and they facilitate direct coupling with widely used sample isolation strategies including micromanipulation, FACS and LCM.
- •Solution-based sample processing reduces surface exposure relative to immobilized enzymatic reactors (36) and filter-based protocols (e.g. FASP (37) and micro-FASP (38)) and have thus far proven more effective for trace samples. However, bead, column or functionalized surface-based methods may still be required for enrichment of post-translationally modified proteins, etc., despite some expected sample losses.
- •Sample cleanup and aggressive protein extraction steps that are sometimes required for bulk workflows may be unnecessary for low input samples, thus providing opportunities to simplify sample preparation and further reduce losses.
- Williams S.M.
- Liyu A.V.
- Tsai C.-F.
- Moore R.J.
- Orton D.J.
- Chrisler W.B.
- Gaffrey M.J.
- Liu T.
- Smith R.D.
- Kelly R.T.
- Pasa-Tolic L.
- Zhu Y.
SEPARATIONS AND IONIZATION
Progress
Narrow-Bore Packed Columns
- Zhu Y.
- Clair G.
- Chrisler W.B.
- Shen Y.F.
- Zhao R.
- Shukla A.K.
- Moore R.J.
- Misra R.S.
- Pryhuber G.S.
- Smith R.D.
- Ansong C.
- Kelly R.T.

PLOT Columns
µPAC
Capillary Electrophoresis
- Sun L.L.
- Zhu G.J.
- Zhang Z.B.
- Mou S.
- Dovichi N.J.
- Zhang Z.
- Hebert A.S.
- Westphall M.S.
- Qu Y.
- Coon J.J.
- Dovichi N.J.
- Yan X.J.
- Sun L.L.
- Zhu G.J.
- Cox O.F.
- Dovichi N.J.
2D Separations
- Dou M.W.
- Tsai C.F.
- Piehowski P.D.
- Wang Y.
- Fillmore T.L.
- Zhao R.
- Moore R.J.
- Zhang P.F.
- Qian W.J.
- Smith R.D.
- Liu T.
- Kelly R.T.
- Shi T.J.
- Zhu Y.
Prospects
MASS SPECTROMETRY AND GAS-PHASE SEPARATIONS
Progress
Orbitrap MS
Ion Mobility
Prospects
To TMT or Not to TMT
- Russell C.L.
- Heslegrave A.
- Mitra V.
- Zetterberg H.
- Pocock J.M.
- Ward M.A.
- Pike I.
- Dou M.W.
- Clair G.
- Tsai C.F.
- Xu K.R.
- Chrisler W.B.
- Sontag R.L.
- Zhao R.
- Moore R.J.
- Liu T.
- Pasa-Tolic L.
- Smith R.D.
- Shi T.J.
- Adkins J.N.
- Qian W.J.
- Kelly R.T.
- Ansong C.
- Zhu Y.
SUMMARY
- Zhu Y.
- Dou M.W.
- Piehowski P.D.
- Liang Y.R.
- Wang F.J.
- Chu R.K.
- Chrisler W.B.
- Smith J.N.
- Schwarz K.C.
- Shen Y.F.
- Shukla A.K.
- Moore R.J.
- Smith R.D.
- Qian W.J.
- Kelly R.T.
- Piehowski P.D.
- Zhu Y.
- Bramer L.M.
- Stratton K.G.
- Zhao R.
- Orton D.J.
- Moore R.J.
- Yuan J.
- Mitchell H.D.
- Gao Y.
- Webb-Robertson B.-J.M.
- Dey S.K.
- Kelly R.T.
- Burnum-Johnson K.E.
REFERENCES
- Proteome sequencing goes deep.Curr. Opin. Chem. Biol. 2015; 24: 11-17
- Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat. Med. 2018; 24: 541-550
- Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor.Nat. Commun. 2018; 9: 884
- Single-cell proteomics reveals changes in expression during hair-cell development.Elife. 2019; 8: e50777
- The human body at cellular resolution: the NIH Human Biomolecular Atlas Program.Nature. 2019; 574: 187-192
- Ultrasensitive proteomics using high-efficiency on-line micro-SPE-NanoLC-NanoESI MS and MS/MS.Anal. Chem. 2004; 76: 144-154
- Zeptomole-sensitivity electrospray ionization−Fourier transform ion cyclotron resonance mass spectrometry of proteins.Anal. Chem. 2000; 72: 2271-2279
- Simple and integrated spintip-based technology applied for deep proteome profiling.Anal. Chem. 2016; 88: 4864-4871
- Single cell proteomics using frog (Xenopus laevis) blastomeres isolated from early stage embryos, which form a geometric progression in protein content.Anal. Chem. 2016; 88: 6653-6657
- Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo.Angew. Chem. Int. Ed. 2016; 55: 2454-2458
- Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.Nat. Commun. 2018; 9: 882
- SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation.Genome Biol. 2018; 19: 161
- Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell.bioRxiv. 2020; (2020.2006.2003.132449)
- High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform.Anal. Chem. 2019; 91: 13119-13127
- An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics.Mol. Cell. Proteomics. 2020; 19: 828-838
- Single-cell mass-spectrometry quantifies the emergence of macrophage heterogeneity.bioRxiv. 2019; : 665307
- Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of < 1000 mammalian cells.Chem. Sci. 2018; 9: 6944-6951
(2008) Proteomics Sample Preparation, Wiley-Blackwell, Hoboken, NJ.
- The importance of using the optimal plasticware and glassware in studies involving peptides.Anal. Biochem. 2011; 414: 38-46
- Step-wise assessment and optimization of sample handling recovery yield for nanoproteomic analysis of 1000 mammalian cells.Anal. Chem. 2019; 91: 10395-10400
- Principles of Biochemistry. W. H. Freeman and Company, New York2017
- Proteolytic activity of pseudotrypsin.FEBS Lett. 1971; 16: 291-295
- Microfluidics: innovations in materials and their fabrication and functionalization.Anal. Chem. 2020; 92: 150-168
- Solving the “World-to-Chip” interface problem with a microfluidic matrix.Anal. Chem. 2003; 75: 4718-4723
- Sessile droplets for chemical and biological assays.Lab Chip. 2017; 17: 2150-2166
- Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells.Anal. Bioanal. Chem. 2019; 411: 4587-4596
- Improved single-cell proteome coverage using narrow-bore packed NanoLC columns and ultrasensitive mass spectrometry.Anal. Chem. 2020; 92: 2665-2671
- Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS.Angew. Chem. Int. Ed. Engl. 2018; 57: 12370-12374
- Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets.Mol. Cell. Proteomics. 2018; 17: 1864-1874
- Spatially resolved proteome profiling of <200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation.Anal. Chem. 2018; 90: 11106-11114
- Proteome profiling of 1 to 5 spiked circulating tumor cells isolated from whole blood using immunodensity enrichment, laser capture microdissection, nanodroplet sample processing, and ultrasensitive nanoLC-MS.Anal. Chem. 2018; 90: 11756-11759
- Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution.Nat. Commun. 2020; 11: 8
- Nanoproteomics comes of age.Exp. Rev. Proteomics. 2018; 15: 865-871
- Integrated proteome analysis device for fast single-cell protein profiling.Anal. Chem. 2018; 90: 14003-14010
- Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis.Anal. Chem. 2018; 90: 5430-5438
- SNaPP: simplified nanoproteomics platform for reproducible global proteomic analysis of nanogram protein quantities.Endocrinology. 2016; 157: 1307-1314
- Universal sample preparation method for proteome analysis.Nat. Methods. 2009; 6: U359-U360
- Miniaturized filter-aided sample preparation (MICRO-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in Xenopus laevis embryos.Anal. Chem. 2020; 92: 5554-5560
- Automated coupling of nanodroplet sample preparation with liquid chromatography-mass spectrometry for high-throughput single-cell proteomics.Anal. Chem. 2020; 92: 10588-10596
- Proteomic analyses using an accurate mass and time tag strategy.BioTechniques. 2004; 37: 621-639
- The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.Nat. Protoc. 2016; 11: 2301-2319
- Analytical properties of the nanoelectrospray ion source.Anal. Chem. 1996; 68: 1-8
- Picoelectrospray ionization mass spectrometry using narrow-bore chemically etched emitters.J. Am. Soc. Mass Spectrom. 2014; 25: 30-36
- Nano liquid chromatography columns.Analyst. 2019; 144: 7090-7104
- Simplified high-throughput methods for deep proteome analysis on the timsTOF Pro.bioRxiv. 2019; : 657908
- Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI?.J. Am. Soc. Mass Spectrom. 2003; 14: 492-500
- High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics.Anal. Chem. 2002; 74: 4235-4249
- Nanoscale proteomics.Anal. Bioanal. Chem. 2004; 378: 1037-1045
- Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples.Int. J. Mass Spectrom. 2018; 427: 4-10
- Ultratrace LC/MS proteomic analysis using 10-μm-i.d. porous layer open tubular poly(styrene−divinylbenzene) capillary columns.Anal. Chem. 2007; 79: 938-946
- An integrated platform for isolation, processing, and mass spectrometry-based proteomic profiling of rare cells in whole blood.Mol. Cell. Proteomics. 2015; 14: 1672-1683
- Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns.Anal. Chem. 2007; 79: 5915-5926
- Improved sensitivity in low-input proteomics using micropillar array-based chromatography.Anal. Chem. 2019; 91: 14203-14207
- Capillary zone electrophoresis-mass spectrometry for bottom-up proteomics.TrAC Trends Anal. Chem. 2018; 108: 23-37
- Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests.J. Proteome Res. 2015; 14: 2312-2321
- Detection of 1 zmol injection of angiotensin using capillary zone electrophoresis coupled to a Q-Exactive HF mass spectrometer with an electrokinetically pumped sheath-flow electrospray interface.Talanta. 2019; 204: 70-73
- Production of over 27 000 peptide and nearly 4400 protein identifications by single-shot capillary-zone electrophoresis–mass spectrometry via combination of a very-low-electroosmosis coated capillary, a third-generation electrokinetically-pumped sheath-flow nanospray interface, an orbitrap fusion lumos tribrid mass spectrometer, and an advanced-peak-determination algorithm.Anal. Chem. 2018; 90: 12090-12093
- Over 4100 protein identifications from a Xenopus laevis fertilized egg digest using reversed-phase chromatographic prefractionation followed by capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry analysis.Proteomics. 2016; 16: 2945-2952
- Proteomic characterization of the neural ectoderm fated cell clones in the xenopus laevis embryo by high-resolution mass spectrometry.ACS Chem. Neurosci. 2018; 9: 2064-2073
- Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: developing cell clones in live Xenopus laevis and Zebrafish embryos.Anal. Chem. 2019; 91: 4797-4805
- Recent advances in multidimensional separation for proteome analysis.Anal. Chem. 2019; 91: 264-276
- Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses.Anal. Bioanal. Chem. 2019; 411: 5363-5372
- Automated nanoflow two-dimensional reversed-phase liquid chromatography system enables in-depth proteome and phosphoproteome profiling of nanoscale samples.Anal. Chem. 2019; 91: 9707-9715
- Picoflow liquid chromatography-mass spectrometry for ultrasensitive bottom-up proteomics using 2-mu m-i.d. open tubular columns.Anal. Chem. 2020; 92: 4711-4715
- New developments in biochemical mass spectrometry: electrospray ionization.Anal. Chem. 1990; 62: 882-899
- The ion funnel: theory, implementations, and applications.Mass Spectrom. Rev. 2010; 29: 294-312
- Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry.Anal. Chem. 2008; 80: 1800-1805
- Achieving 50% ionization efficiency in subambient pressure ionization with nanoelectrospray.Anal. Chem. 2010; 82: 9344-9349
- Evolution of orbitrap mass spectrometry instrumentation.Annu Rev Anal. Chem. 2015; 8: 61-80
- Ion traps in modern mass spectrometry.Mass Spectrom. Rev. 2019; 38: 150-168
- Defining the carrier proteome limit for single cell proteomics.Nat. Methods. 2020; (in press)
- Enhancing bottom-up and top-down proteomic measurements with ion mobility separations.Proteomics. 2015; 15: 2766-2776
- A compact quadrupole-orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients.Mol. Cell. Proteomics. 2020; 19: 716-729
- PASEF for sensitive shotgun proteomics: toward single cell analysis. 2020; (68th ASMS Conference on Mass Spectrometry and Allied topics): MP 547
- Single cell proteomics by data-independent acquisition to study embryonic asymmetry in Xenopus laevis.Anal. Chem. 2019; 91: 8891-8899
- BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.Nat. Methods. 2018; 15: 440-448
- Combined tissue and fluid proteomics with Tandem Mass Tags to identify low-abundance protein biomarkers of disease in peripheral body fluid: An Alzheimer's Disease case study.Rapid Commun. Mass Spectrom. 2017; 31: 153-159
- Comparison of protein quantification in a complex background by DIA and TMT workflows with fixed instrument time.J. Proteome Res. 2019; 18: 1340-1351
- MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics.Nat. Methods. 2011; 8: 937-940
Article info
Publication history
Footnotes
Funding and additional information—This work was supported by the National Cancer Institute of the National Institutes of Health under award number R33 CA225248. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—Author declares no competing interests.
Abbreviations—The abbreviations used are:
SA:V
Author contributions—R.T.K. wrote the paper.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy