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In Brief
Availability of proteomics data in
the public domain has become
the norm, as it has been the case
in genomics and transcriptomics
for many years. Analogously to
sequencing data, there are
increasing ethical issues and
legal requirements related to
sensitive human clinical
proteomics data. We review the
current state of the art and make
concrete recommendations to
address these issues in the
proteomics field, which are
summarized in four different
areas.
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PERSPECTIVE
Data Management of Sensitive Human
Proteomics Data: Current Practices,
Recommendations, and Perspectives for the
Future
Nuno Bandeira1,2,3, Eric W. Deutsch4, Oliver Kohlbacher5,6,7,8, Lennart Martens9,10 , and
Juan Antonio Vizcaíno11,*
Today it is the norm that all relevant proteomics data that
support the conclusions in scientific publications are
made available in public proteomics data repositories.
However, given the increase in the number of clinical
proteomics studies, an important emerging topic is the
management and dissemination of clinical, and thus
potentially sensitive, human proteomics data. Both in the
United States and in the European Union, there are legal
frameworks protecting the privacy of individuals. Imple-
menting privacy standards for publicly released research
data in genomics and transcriptomics has led to pro-
cesses to control who may access the data, so-called
“controlled access” data. In parallel with the technolog-
ical developments in the field, it is clear that the privacy
risks of sharing proteomics data need to be properly
assessed and managed. In our view, the proteomics
community must be proactive in addressing these issues.
Yet a careful balance must be kept. On the one hand,
neglecting to address the potential of identifiability in hu-
man proteomics data could lead to reputational damage of
the field, while on the other hand, erecting barriers to open
access to clinical proteomics data will inevitably reduce
reuse of proteomics data and could substantially delay
critical discoveries in biomedical research. In order to
balance these apparently conflicting requirements for
data privacy and efficient use and reuse of research ef-
forts through the sharing of clinical proteomics data,
development efforts will be needed at different levels
including bioinformatics infrastructure, policymaking, and
mechanisms of oversight.

High-throughput proteomics approaches have matured
significantly, becoming an increasingly used tool in biological
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and clinical research. The main high-throughput proteomics
approach today is mass spectrometry (MS) coupled to liquid
chromatography, with less commonly used proteomics ap-
proaches based on antibodies (e.g., protein arrays and other
immunofluorescence-based techniques) and protein expres-
sion studies using affinity reagents such as aptamers (1).
Proteomics often complements information gained from other
omics techniques such as genomics and transcriptomics
(proteogenomics and proteotranscriptomics), metagenomics
(metaproteomics), glycomics, and metabolomics. Multiomics
studies involving proteomics approaches are becoming
increasingly common, including in the context of personalized
medicine. The most high-profile examples are focused on
cancer, such as those led by the CPTAC (Clinical Proteome
Tumor Analysis Consortium) (2).
In parallel to the many technical developments in the field,

open data policies have developed over the last few years as
well. This process has largely followed the trends set by
neighboring disciplines such as genomics and tran-
scriptomics. As a result, it is now commonplace that all ac-
quired proteomics data that support the conclusions in
scientific publications are made available in public proteomics
data repositories. One of the main benefits of this public data
availability is that it enables experimental reproducibility and
an independent assessment of the results described, while
also potentially enabling new discoveries as more advanced
algorithms become available. Indeed, it enables reuse of
public data sets in many different ways, including “big data”
approaches such as the development of machine-learning-
based predictors of analyte behavior (3) and the extraction
of new knowledge (4, 5). This shift toward public data release
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has been supported by the stricter data availability re-
quirements from scientific journals and funding agencies,
which in turn forms part of the wider movement toward open
science practices in biology (6, 7).
An important foundation for these pervasive open data

policies has been provided by the perceived reliability of
public proteomics data resources. While the first of these re-
sources were established around 2004–2005, in 2011, the
most prominent ones came together and started to collabo-
rate formally within the ProteomeXchange (PX) consortium
(http://www.proteomexchange.org/) (8), resulting in unified
standard submission and data dissemination practices. PX
has evolved and grown since its founding and is at present
composed of six members: the PRIDE database (9) (Hinxton,
UK), PeptideAtlas/PASSEL (10) (Seattle, USA), MassIVE
(http://massive.ucsd.edu/, San Diego, USA), Panorama Public
(Seattle, USA) (11), jPOST (the jPOST project, Japan) (12), and
iProX (13) (Beijing, China). Overall, as of February 2021, more
than 24,000 PX data sets have been submitted to PX re-
sources and more than 500 new data sets are submitted every
month on average (14). Over 45% of the data sets include data
coming from human samples (including cell lines).
With an increase in the popularity of clinical proteomics

studies, one quickly emerging topic is the management of
clinical, potentially sensitive, human proteomics data (15). A
key question in this topic is whether proteomics data from
human samples threaten the privacy of the human donors
and/or that of their family members (16). And if so, what is the
severity and likelihood of this potential privacy risk? The
introduction of the General Data Protection Regulation
(GDPR) by the European Union was an important trigger for
this topic, and recent publications have highlighted the
importance of considering the GDPR in clinical proteomics
(17) as well as in public bioinformatics resources (18). In the
United States, several legal and ethical frameworks exist that
address data privacy including The Privacy Act of 1974 (19),
the Health Insurance Portability and Accountability Act of
1996 (HIPAA) (20), the 2013 HIPAA Privacy Rule Amendment
(21), and the Code of Federal Regulations 45 part 46 (the
Revised Common Rule) (22).
Implementing privacy standards for publicly released

research data has led to processes to control who may access
the data, so-called “controlled access” data. For data with
potentially identifying information, such as germline genomic
sequence data, there is a mechanism whereby potential data
users must first be approved by a Data Access Committee
(DAC). This DAC confirms that the applicant is a bona fide
researcher from a recognized research institution and that the
proposed data use is allowable under the data use limitations
of the data set. Resources that support the storage and
dissemination of such controlled access data have already
been developed and are commonly used for DNA and RNA
sequences, including the European Genome-phenome
Archive (EGA, https://www.ebi.ac.uk/ega/), the database of
2 Mol Cell Proteomics (2021) 20 100071
Genotypes and Phenotypes (dbGAP) (23), and the Japanese
Genotype-phenotype Archive (JGA) (24). While controlled ac-
cess data are not freely available to all interested users,
ideally, those researchers who can genuinely benefit from
access to these data will be provided with access. Re-
searchers who cannot demonstrate a justifiable need to ac-
cess these data will, however, be denied access. Yet even
researchers who are given access need to abide by preset
rules regarding these data, which typically entail that the
researcher is prohibited from releasing or redistributing these
data and often is required to delete these data again after a set
period of time. This system of controlled access is designed to
enable legitimate use of privacy-sensitive data, while reducing
as much as possible the risk of nefarious use. In this context,
the GA4GH (Global Alliance for Genomics and Health, https://
www.ga4gh.org/) Data Security workstream has defined a set
of control objectives, which form the basis of the principles for
managing controlled access data (https://www.ga4gh.org/
genomic-data-toolkit/data-security-toolkit/).
The onus for privacy protection of human subjects in

research rests on the institution conducting the research. As a
concrete example of the current state of data management
practices, in the United States, according to the 2015
NIH (National Institutes of Health) Genomic Data Sharing
Policy, the research institution must provide an assurance
to the NIH that an Institutional Review Board (IRB) conducted
an ethics review of the proposed study to verify that
(see https://grants.nih.gov/grants/guide/notice-files/not-od-07-
088.html):

• The data submission (was) consistent, as appropriate,
with applicable, national, tribal, and state laws and reg-
ulations as well as relevant institutional policies.
• Any limitation on the research use of the data was
expressed in the informed consent documents.
• The identities of research participants (would) not be
disclosed through the NIH designated data repositories.
• An IRB, and/or Privacy Board, and/or equivalent body, as
application, (had) reviewed the investigator’s proposal for
data submission and assure(d) that:
• The protocol for the collection of genomic and
phenotypic data is consistent with 45 CFR Part 46.
• Data submission and subsequent data sharing for
research purposes (we)re not inconsistent with the
informed consent of study participants from whom the
data were obtained.
• Consideration was given to risks to individual partici-
pants and their families associated with data submit-
ted to NIH-designated repositories and subsequent
sharing.
• To the extent relevant and possible, consideration
was given to risks to groups or populations associ-
ated with submitting data to NIH-designated data re-
positories and subsequent sharing.

http://www.proteomexchange.org/
http://massive.ucsd.edu/
https://www.ebi.ac.uk/ega/
https://www.ga4gh.org/
https://www.ga4gh.org/
https://www.ga4gh.org/genomic-data-toolkit/data-security-toolkit/
https://www.ga4gh.org/genomic-data-toolkit/data-security-toolkit/
https://grants.nih.gov/grants/guide/notice-files/not-od-07-088.html
https://grants.nih.gov/grants/guide/notice-files/not-od-07-088.html


Data Management of Sensitive Human Proteomics Data
• The investigator’s plan for deidentifying data sets is
consistent with the standard outline in the Policy.
As proteomics techniques become more mainstream and
technological developments enable the detection of larger
proportions of the proteome with higher coverage, including
the reliable detection of single amino acid variants (SAAVs), it
is clear that privacy risks of proteomics data can emerge and
that these will need to be properly assessed and managed.
The proteomics community therefore needs to develop rules
and best-practice guidelines to deal with such privacy-
sensitive data sets and moreover, needs to evaluate the
alignment of these proteomics efforts with sequencing data
coming from genomic and transcriptomic approaches.
Currently, data collected as part of biological research are

required to be controlled access when: (1) the data contains
protected patient information or otherwise could potentially
uniquely match to a single individual; (2) the informed consent
forms specified that the research data would be controlled ac-
cess; and/or (3) it is required for adherence to laws and/or reg-
ulations concerning data privacy for the citizens (e.g., under
GDPR in the EU). Do any of these three scenarios currently apply
to proteomics data? Generally, in the United States, IRBs have
concluded that proteomic studies do not involve human subjects
because the resulting proteomic data are not considered iden-
tifiable. This allows proteomic data to be shared freely and
openly. However, if an IRB deemed proteomic data identifiable,
then the resulting data would be subject to any data use limita-
tions as defined in the informed consent form for that study. That
is, the data sharing plan should align with the data uses to which
the human subjects agreed, which in some cases may include
agreement with public access to the shared data (see https://
grants.nih.gov/grants/guide/notice-files/not-od-07-088.html).
We here summarize the conclusions that have emerged on

this topic from two meetings held in 2019, plus some follow-on
discussions, with a main focus on data management practices.
Additionally, we make concrete recommendations about future
needed developments. In our view, the community must be
proactive in addressing these issues. On the one hand, avoiding
addressing the potential of identifiability in proteomic data could
in our view lead to reputational damage of human donors and of
the field as a whole. On the other hand, making open access to
public datamore difficult will inevitably reduce access and reuse
of proteomic data, thus slowing advances in biomedical
research. A balanced approach is therefore necessary.

MEETINGS

The conclusions highlighted in this article are derived from
extensive discussions at two meetings held in 2019, plus
some follow-on discussions. The first meeting was held on
April 24th in Amsterdam (The Netherlands), funded by ELIXIR,
the European infrastructure for life science data (https://elixir-
europe.org/). A second follow-up meeting took place during
the Computational Proteomics Seminar in Schloss Dagstuhl
(Germany) on August 25th–30th. Overall, there were more than
20 attendees in total to both meetings, representing different
stakeholders in the fields of proteomics, bioinformatics, and
genomics, including academics and representatives from
SMEs (Small and Medium-sized Enterprises) and industry. The
complete list of the attendees has been included in the
Acknowledgements.
DO PROTEOMICS DATA CONSTITUTE PERSONALLY IDENTIFIABLE
INFORMATION (PII)?

The US law, HIPPA, denotes 18 categories of information as
“identifiers” (20). While protein sequences (or genomic se-
quences) are not explicitly named as identifiers, the list does
include “biometric identifiers such as retinal scan or finger-
prints, or any other unique identifying number or code”
(https://www.hipaajournal.com/considered-phi-hipaa/).
Should proteomic data be considered as a HIPAA identifier?
First, consider genomic data as an HIPAA identifier. DNA

variants have been incorporated in multiple industrial pro-
cesses. The forensic industry currently uses DNA as evidence
to support a suspect’s presence at the scene of a crime.
Genomic information is also used to confirm parental identity
and to connect distant relatives through a common ancestor.
It can also reveal the presence of genetic diseases and indi-
vidual disease risks. On the research side, Homer et al.
demonstrated a successful attack in genome-wide associa-
tion studies (GWAS), where only aggregated genotype data
were openly available and individual genotypes were
controlled access (25). The attack was to prove that an indi-
vidual was a member of the aggregated data set. As a result of
this publication, the NIH moved GWAS genotype data to
controlled access (26). Another relevant example is the study
where Gymrek et al. used short tandem repeats on the Y-
chromosome from the HapMap project in conjunction with
public genetic genealogy databases to recover surnames of
research participants (27). Clearly, research publications as
well as commercially available industrial applications demon-
strate the possibility of identification of an individual based on
genomic information.
While the sequence reads from DNA-seq and RNA-seq are

usually 75+ nucleotides long, determined de novo, and
generally acquired with sufficient overlapping read coverage
such that error rates in variant calling can easily be quite low,
peptide spectrum matches (PSMs) from MS/MS spectra are
usually matched against possible answers from a preexisting
sequence database and generally have low protein sequence
coverage. Contrary to the DNA/RNA sequencing raw data, the
typical MS/MS spectrum cannot be interpreted de novo to give
complete peptide sequence, because fragmentation along on
the peptide backbone during MS/MS is usually partial. As a
consequence, a key difference between genomic and proteo-
mic data in terms of identifiability is the number of observed
variants. A 2016 study of 105 breast cancer tumors showed
Mol Cell Proteomics (2021) 20 100071 3
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80,093 germline DNA variants, 49,986 RNA variants, and only
3620 protein variants (28). Multiple reasons for this disparity
among the detected variants between nucleotide sequencing
and proteomic data can be identified. First, many DNA variants
occur in the intronic regions, which are not translated to protein.
Second, some genomic variants may disrupt the translation
process such that the variant protein is not expressed. Addi-
tionally, at any time—and dependent on the tissue—there will
only be at best a bit more than half of the genes that are
detected to be translated to a significant degree. Third, there is
some redundancy involved in RNA sequence translation to
amino acid sequence due to some amino acids being encoded
by more than one codon. Fourth, genomic and proteomic data
differ in their extent of sequence coverage. Whole-genome
sequencing reads each nucleic acid base multiple times lead-
ing to sequence coverage of greater than 99%. In proteomics, a
protein is often identified by two or even just one representative
peptide, resulting in a low sequence coverage. This huge dif-
ference in coverage is due to several reasons. Primarily, typical
proteomics workflows measure 8–35 residue tryptic peptides,
the vast majority of which contains a C-terminal arginine or
lysine. Despite the high prevalence of these residues (lysine and
arginine eachmake up 5%of amino acids on average in human
proteins), some protein regions contain stretches of hundreds
of residues without arginine or lysine. Such regions are not
amenable to tryptic digestion and are undetectable by common
proteomics workflows. At the time of writing, the NIST (National
Institute of Standards and Technology) human HCD (Higher-
energy collisional dissociation) TMT peptide spectral library,
created by combining dozens of different human samples,
contains spectra for 386,224 distinct peptide sequences, which
account for a 29.1% proteome sequence coverage (https://
chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:lib:
human_hcd_tmt). In another ongoing effort, the resource
MassIVE-KB covers 50% of the human proteome with spectra
for >2.1 million distinct precursors (5). As a conclusion, this
leaves a significant portion of the proteome undetected,
including any potentially identifying variants that occur in the
undetected portion.
However, it should be noted that unlike in genomics and

transcriptomics, research into whether proteomics data is
actually PII or not remains scarce (29–33). Nevertheless,
ongoing efforts are touching upon this issue, such as the
“Proteos” program, which has a forensic angle (https://www.
iarpa.gov/index.php/165-research/current-research/cause/
proposers-day/979-proteos).
Identification of individuals is very difficult without the

detection of rare variants. The exact number of variants
required depends on the frequency of the alternative alleles.
Indeed, if an allele is very rare, then it can dramatically reduce
the number of people identifiable with that SAAV, and one
would only need a handful of these to reduce the size of a
given pool of samples to just one individual. On the other
hand, if an alternative allele is very common, then one would
4 Mol Cell Proteomics (2021) 20 100071
need more of these to make a unique match (29). In the case
of tumor samples (e.g., in the case of the CPTAC datasets),
the question about identifiability becomes more difficult to
answer, due to the fact that, for different tumors, the rate of
mutation is very different. For some of them, there is not that
much variation between primary and metastases. However,
others mutate rapidly and have rapidly diverging somatic
signatures (34). Moreover, for either normal or tumor tissue,
the calculations about the number of variants required for
identifying an individual need to be balanced with the FDR
(False Discovery Rate) calculations derived from the prote-
omics analysis. Overall, the “true” identification of an individ-
ual remains very difficult at present, but it is much more
plausible to match two data sets to each other or to be able to
match a proteomics data set to a genomic/transcriptomics
data set, based on a set of identified SAAVs.
In addition to SAAVs, it has been recently reported that in-

dividuals could potentially be identified by their protein
expression levels in blood plasma (33). To demonstrate this,
the authors used a plasma proteomics weight loss study in
which samples of 42 individuals were obtained at different
time points over 1 year. The reason behind the identifiability
risk was twofold: (i) intraindividual correlations of protein
expression profiles over time were much higher than the
correlations obtained at any point in time between two
different individuals; and (ii) highly individual-specific proteins
can have more than 100-fold different concentrations between
different individuals, but are very constant over time. One
example of such proteins is the apolipoprotein (a).
We would therefore like to encourage the community to

design and implement further studies to obtain more extensive
scientific evidence on the identifiability of proteomics data.
This should be done for the main proteomics data types and
different types of proteomics workflows and will be an
essential component of future, adequately informed policy-
related decisions.

CURRENT DATA DISSEMINATION PRACTICES FOR PROTEOMICS DATA
SETS

At present, all PX resources are committed to completely
open data, which means that there currently are no limitations
for data reuse by the community. All PX resources are currently
also moving toward formalizing an (at least) default CC-0 li-
cense, which is equivalent to publishing into the public domain
(the exception is Panorama Public, which implements a CC-BY
license, requiring attribution when data is reused). Outside the
mainstream PX resources, there are already proteomics data-
sets for which controlled access has been set up, e.g., a large
Alzheimer’s disease (AD) data set described in (35), which has
been made available in the generalist data sharing platform AD
knowledge Portal (https://adknowledgeportal.synapse.org/). In
contrast, proteomics data from the proteogenomic data
studies of the CPTAC consortium are openly available at the
Proteomic Data Commons (https://pdc.cancer.gov/pdc/),
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while the corresponding genomic sequence data are available
through controlled access at the Genomic Data Commons
(https://portal.gdc.cancer.gov/).
RECOMMENDATIONS FOR DEVELOPING POLICY FOR PROTEOMICS
DATA DISSEMINATION

Guiding Principles

As the overall guiding principle, we believe that data man-
agement practices for sensitive clinical proteomics data sets
must never be more restrictive that the current state of the art
for transcriptomics RNA-Seq data. The current situation for
gene-expression information is that a large amount of human
data sets are made publicly available without restrictions via
resources such as GEO (Gene Expression Omnibus) (36),
ArrayExpress (37) and the Genomic Expression Archive (38).
Only where required, sensitive human clinical gene expression
data (as decided by the corresponding DACs) is made avail-
able in controlled access mode, in appropriate resources such
as EGA, dbGAP, or JGA. In addition to gene expression data
archives, there are bioinformatics resources that consistently
reanalyze data sets and make the results available openly to
the public, such as the Expression Atlas (39) at the European
Bioinformatics Institute (EBI).
An analogous scenario would be, in our opinion, perfectly

transferable to the proteomics field. This model could be
summarized with the principle “as open as possible, as closed
as necessary.” This way, two main goals would be achieved:
ensure that open policies in proteomics are not hindered (and
the corresponding benefits for the field remain) while, at the
same time, ensuring that potential risks for individuals are
appropriately considered and managed where required. Also,
it is important to highlight that, as it already happens in tran-
scriptomics, many of the risks associated with sensitive clin-
ical data sets could be managed by making “aggregated” data
available to the community. Below, we provide our concrete
recommendations concerning different data types and
different workflows.

Recommendations for Different Proteomics Data Types

We believe that the various data types included in a typical
proteomics experiment have a different potential for being PII
and thus different requirements for being labeled as controlled
access information. These recommendations are intended to
be applicable to the main data types coming from human
samples, including also metaproteomics data, as detailed
below.

(a) Raw data (MS data derived directly from the mass
spectrometers). These have the highest information
content and come with the highest potential for detailed
reanalysis using different bioinformatics approaches,
potentially even several years after they were initially
generated. Therefore, in our view, these raw data have
the highest potential to be PII. A possible approach to
make this data type less risky would be to provide a “de-
identified” version (e.g., by removing a subset of the
mass spectra), but it is not clear to us at present how
this could be achieved in an efficient way, without
removing the vast majority of the spectra. Another
possible strategy, at least in the case of label-free
quantitative approaches, would be to pool the data
from multiple samples in each cohort, but this would
reduce the statistical power of the analysis, and it is not
clear how many samples would need to be pooled to
effectively reduce the risk of identifiability to acceptable
levels. This would not apply in the same manner to la-
beling approaches (e.g., TMT), as the reporter ions
would retain the individual information about each
sample. In the absence of any effective anonymization
strategy at present, sensitive raw data coming from
human studies should be considered potentially PII and
managed through controlled access mechanisms. As
mentioned above, different ameliorating strategies (e.g.,
by removing a subset of the spectra, data pooling) could
be developed to avoid this.

(b) Search databases (FASTA or PEFF files (40)). Sample-
specific protein sequences should only be made avail-
able if these do not include any SAAV-related informa-
tion. Customized search databases containing
individual human sequences should be considered PII
data and managed through controlled access mecha-
nisms. This is already common practice in the CPTAC
data portal. However, in our view, aggregated SAAV
containing protein sequences derived from an entire
patient cohort should not be considered PII.

(c) Identified peptide and protein sequences. If a generic
protein sequence database (e.g., UniProtKB (41) refer-
ence proteome) is used for the analysis, they should not
pose any risk. However, if personal proteomes including
SAAVs have been used, specific sequence variants
could be potentially identified, conferring the potential to
these data types to be PII. However, it would be
straightforward from the results to remove any se-
quences corresponding to variants that could lead to
individual identifiability allowing the PII risk to be miti-
gated for these data. An intermediate approach would
be to include in the search database only those
sequence variants that are present over some suitable
threshold of allele frequency in the population, because,
as mentioned above, rare alleles are much more critical
for the identification of individuals. In any case, peptide
and protein sequences are less risky than raw data and,
if these were obtained through matching to reference
protein sequences (e.g., the UniProtKB reference pro-
teome, with the potential inclusion of only very common
variants), they should not be considered PII.

(d) Peptide and protein expression values. These data
types are, in our view, analogous to gene expression
Mol Cell Proteomics (2021) 20 100071 5
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values, so the same principles followed in tran-
scriptomics should be applied. To address the identifi-
ability risks related to individual protein levels, peptide
and protein expression values could therefore be
aggregated and averaged to be made openly available.
Additionally, for the same reason explained above,
expression values should be reported using only ca-
nonical protein sequences as reference system, with the
potential inclusion of only very common variants to
mitigate PII risks. However, in the case of data aggre-
gation (e.g., reporting SAAV frequencies or distributions
of their abundances in each cohort of patients), it should
be required that the study contains a minimum number
of samples, which is something that would need to be
investigated appropriately.

(e) Expression profiles of modified peptides/proteins. The
principles used for peptide/protein expression values
apply equally to peptides/proteins with posttranslational
modifications (PTMs). Reporting of identifications
modified with biological, chemical, or artifactual modi-
fications should not represent any issues, except
possibly in cases where there is ambiguity in whether a
modification mass (or combination of masses) could
also correspond to the mass difference of an SAAV. In
the concrete case of open modification searches, if this
is the used analysis method, unexplained delta masses
for putative PTMs should not be made openly available
since they could represent (combinations of) SAAVs.

Recommendations for Different Proteomics Approaches

The main proteomics approaches used in “discovery”mode
are Data-Dependent Acquisition (DDA), Data-Independent
Acquisition (DIA), and top-down proteomics. In addition,
there are targeted approaches such as Selected Reaction
Monitoring (SRM) and Parallel Reaction Monitoring (PRM). Do
these techniques have different potential to be PII? In our
view, although the current state of the art is different for the
different techniques, no differences in terms of potential risks
should be considered for “discovery” approaches as a whole.
Targeted approaches are however different, and there could

be different scenarios depending on each specific study. For
instance, it is obvious that if specific variant peptides were
targeted in a given study (especially those that are rare), an-
alyses would pose a higher risk of being PII than analogous
targeted analyses performed on nonvariant peptides.

Experimental Metadata

The metadata information currently available for each orig-
inally submitted PX data set is defined to describe only high-
level experimental information and does not contain a detailed
description of samples, study groups, or patient characteris-
tics. Therefore, current metadata in PX resources does not
pose any risk to be PII. In case more detailed metadata or
specific sample/clinical information would be submitted, this
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information would need to be deidentified first or should be
made available as controlled access data. This is already a
common practice in DNA/RNA sequencing studies, and the
same analogous recommendations would therefore apply to
similar metadata for proteomic studies. However, it should be
noted that, at least at present, there is little standardization in
the sample/clinical metadata provision for clinical sensitive
human studies. In fact, different criteria exist e.g., in different
countries, consortia, etc. As an illustrative example, the met-
adata requirements for the EGA can be accessed at https://
www.ebi.ac.uk/ega/submission/sequence/metadata.

Reanalyses of Human Data Sets and Spectral Libraries

Reanalyses of public proteomics data sets are becoming
increasingly common. For instance, PX resources (e.g., Pep-
tideAtlas and MassIVE) are starting to track reanalyzed data
sets, by using RPXD identifiers for data sets (14), instead of
the PXD identifiers used for originally submitted data sets. If
controlled access is implemented for the relevant data sets,
these bioinformatics resources would also need to apply to
DACs to gain access to data sets prior to reanalysis. Such an
application should contain the actual analysis protocol that
will be performed, as well as the way in which any results will
be presented to the scientific community.
The prescription offered above for peptide/protein expres-

sion values would apply here as well, meaning that final results
should be made available using only canonical proteins as the
reference system, containing no SAAV information. Data
coming from different individuals should also be aggregated
and averaged prior to being made openly available. This
process would again be analogous to what happens in tran-
scriptomics resources that perform reanalysis of RNA-Seq
data sets, such as EBI’s Expression Atlas.
One particular use case for data reanalysis and reuse is the

creation of spectral libraries. As indicated above, raw data has
the highest potential to be PII. The objective to create spectral
libraries coming from controlled access data sets should
therefore be included in applications to DACs and should al-
ways be done only after aggregating into a large-enough
collection of spectra (ideally from multiple data sets).

CONCRETE RECOMMENDATIONS FOR PERFORMING DATA
SUBMISSIONS

Authors that are required by their DACs or legal advisors to
classify proteomics data as PII are advised to find alternative
ways to make the data available for the community as PX
resources at present cannot provide controlled access to data
sets as EGA, dbGAP, and/or JGA do for DNA/RNA
sequencing data. This raises two questions:

(1) Are there alternative resources at present? To the best
of our knowledge, proteomics data are not supported by
EGA, dbGAP, and/or JGA at present because these
resources are focused in nucleotide sequencing exper-
iments. Institutional repositories (e.g., those available in

https://www.ebi.ac.uk/ega/submission/sequence/metadata
https://www.ebi.ac.uk/ega/submission/sequence/metadata
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some universities and/or research institutions) may offer
a local alternative for some researchers. Additionally, as
it was mentioned above, the collaborative data sharing
platform AD knowledge Portal already contains one
controlled access proteomics data set. Yet, it is likely
that a significant proportion of the generated clinical
proteomics data are currently simply not being submit-
ted to any public resource at all, although it is very
difficult to estimate this number. As a result, the para-
doxical situation is that the availability of relevant infra-
structure for controlled access sharing of proteomics
data with substantial PII risk may well increase the
availability of these data rather than reduce it.

(2) Are proteomics scientists requesting this functionality
currently? The vast majority of the field is currently not
worried about these potential issues. In particular, the
CPTAC program is by far the largest proteomics study of
human subjects to date and, as also mentioned above,
proteomics data has been classified by the NIH IRB at
not PII—a precedent that should be considered by US
institutions deciding how to classify their own proteomics
data. On an international scale, PRIDE, the most-used
proteomics data repository, storing approximately 5300
data sets during 2020 alone, received just a handful of
queries around this topic over the last couple of years.
Only one of these queries resulted in triggering the
deletion of a data set that had already been submitted,
although it had not been publicly released.
FUTURE NEEDED DEVELOPMENTS: WHAT IS THE WAY FORWARD?

The whole field will undoubtedly need to transition to take
potential ethical and privacy issues formally into account.
Otherwise, there is a real risk of reputational damage and
potential negative consequences for patients involved in
clinical proteomics studies. It can be expected that standard
data management and dissemination practices will evolve in
parallel, as awareness about these issues grows. However, it
is not unrealistic to anticipate that some sensitive proteomics
data sets will formally need to be made available in controlled
access mode, so it is also safe to posit that alternative data
submission and dissemination mechanisms will have to be
developed by public resources to support those use cases. In
fact, it would be vastly preferable that the necessary infra-
structure is available before the PII issue in proteomics comes
to a head, as this will allow the field to transition much more
smoothly toward a greater availability of proteomics data with
a substantial PII risk. Therefore, in our view, developments are
needed at different levels:

(1) Research. As mentioned above, it is important that
larger-scale studies be performed to learn more about
the identifiability risks for the different proteomics data
types and approaches, to allow well-informed decisions
in the future.
(2) Policymaking. Specialists in biological data policy need
to understand the different data types included in pro-
teomics experiments and the inherent differences with
DNA/RNA sequencing data. Specifically, assigning
certain human proteomic data as PII has implications for
obtaining informed consent from human donors as in-
vestigators requesting human samples for proteomic
studies will then need to ensure the samples have been
consented for generating potentially identifying infor-
mation through the research. Members of the DACs
must also receive adequate training with the same
overall objective in mind.

(3) Bioinformatics Infrastructure. The necessary infrastruc-
ture (data repositories, submission pipelines, interfaces
to access controlled data, which are compliant with the
existing practices today for DNA/RNA sequencing data,
and possibly tailored data formats) needs to be put in
place so that controlled access proteomics data can be
adequately supported. Funding agencies must also
realize that a substantial investment will be required to
create and support this whole ecosystem.

(4) Involvement of proteomics groups in activities of the
GA4GH, in order to learn how the genomics community is
already handling these types of issues, at both the
technical (infrastructure) and policy levels. As a concrete
example, one possibility could be to adapt the approach
of the existing Beacons framework, initially developed for
DNA sequence variant information (42), to also support
variant-level information at the proteome level. As it
stands today, proteomics variation information can
already be represented in the current version of the
Beacons framework, using translated VCF (Variant Call
Format) files. There is thus a possibility that the Beacons
technical infrastructure could inform how proteomics
resources could be extended with this aim, even if it
would not solve all possible identification risks (43).
CONCLUSIONS

The right balance needs to be found in providing adequate
protections for PII while still allowing for the immense potential
benefits of sharing clinical proteomics data. In the most
extreme scenario, a proposal in which most human-sensitive
proteomics data sets should be treated as controlled access
data would undermine the years of work that have gone into
creating a culture of open data sharing in the proteomics
community. The concomitant loss of data sharing would
drastically hinder progress in proteomics and especially its
utility in biomedical applications. On the other extreme,
continuing with a fully open model for proteomic data sharing
will eventually lead to privacy issues for sample donors. A high
profile demonstrated breach of privacy would lead to a severe
backlash in data sharing policy and cause a substantial
erosion of public trust in proteomics research.
Mol Cell Proteomics (2021) 20 100071 7
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We have here proposed a via media between these ex-
tremes by adhering to the principle “as open as possible, as
closed as necessary.” It should be noted that we do not
profess to have a full and complete solution for these issues.
However, it should be clear that there are three main stages of
evolution that should take place in the near future. First of all, a
clear policy needs to be developed. Second, additional infra-
structure for controlled data sharing will need to be developed
for proteomics data, which will in turn require dedicated funds
to be raised. Third, the resulting policy will need to be adopted
by the community and practiced through the developed
infrastructure. Throughout, it should be noted that in-
vestments in a clear policy on, and a suitable dissemination
infrastructure for, the subset of (clinical) proteomics data at
risk of PII will actually enable the sharing of these data, which
are otherwise likely to remain locked away, in turn bringing the
many benefits of such sharing to clinical proteomics efforts.
We hope that this article can be used to document the

current state of the art and that it represents a first step for the
community to handle PII-related issues appropriately.
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