Global Phosphoproteomics Unveils Kinase-regulated Networks in Systemic Lupus Erythematosus

Shuhui Meng¹,²#, Teng Li¹#, Tingting Wang², Dandan Li¹, Jieping Chen¹, Heng Li², Wanxia Cai¹, Zhipeng Zeng¹, Donge Tang¹*, Xiaoping Hong²#, Yong Dai¹*

#Authors Shuhui Meng and Teng Li contributed equally to this study.

¹Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, P.R. China.

²Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, P.R. China.

*Correspondence to:

Yong Dai, Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, P.R. China. Email: daiyong22@aliyun.com.

Xiaoping Hong, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, P.R. China. E-mail: hong_xiaoping@hotmail.com.

Donge Tang, Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, P.R. China. Email: donge66@126.com.
Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune complex deposition in multiple organs. Despite the severe symptoms caused by it, the underlying mechanisms of SLE, especially phosphorylation-dependent regulatory networks remain elusive. Herein, by combining high-throughput phosphoproteomics with bioinformatics approaches, we established the global phosphoproteome landscape of the peripheral blood mononuclear cells (PBMCs) from a large number of SLE patients including the remission stage (SLE_S), active stage (SLE_A), rheumatoid arthritis (RA), and healthy controls (HC), and thus a deep mechanistic insight into SLE signaling mechanism was yielded. Phosphorylation upregulation was preferentially in patients with SLE (SLE_S and SLE_A) compared with HC and RA populations, resulting in an atypical enrichment in cell adhesion and migration signatures. Several specifically upregulated phosphosites were identified, and the leukocyte transendothelial migration pathway was enriched in the SLE_A group by expression pattern clustering analysis. Phosphosites identified by 4D-Label-free quantification (LFQ) unveiled key kinases and kinase-regulated networks in SLE, then further validated by PRM. Some of these validated phosphosites including VCL S275, VCL S579 and TGFB1I1 S68, primarily were phosphorylation of Actin Cytoskeleton-related proteins. Some predicted kinases including MAP3K7, TBK1, IKKβ, and GSK3β, were validated by western blot using kinases phosphorylation sites-specific antibodies. Taken together, the study has yielded fundamental insights into the phosphosites, kinases, and kinase-regulated networks in SLE. The map of the global phosphoproteomic enables further understanding of this disease and will provide great help for seeking more potential therapeutic targets for SLE.

Keywords: Phosphoproteomics; SLE remission stage; SLE active stage; Kinases; Parallel reaction monitoring
Introduction

SLE is a complex systemic autoimmune disease characterized by uncontrolled autoantibody production, immune complex deposition and subsequent organ damage, which could gradually cause severe multisystemic symptoms including lupus nephritis [1]. Recent development in high-throughput omics approaches, such as methylomics, proteomics and single-cell RNA sequencing, has facilitated the pinpointing for key molecular in SLE pathogenesis as well as potential therapeutic targets. However, the underlying molecular mechanism of SLE remains poorly understood, which badly hinders the improvement of SLE treatments [2-6]. Thus, there is an urgent need of revealing the aberrant molecular events in SLE and gaining further insights into its pathogenesis.

Among all the molecular events in cells, protein phosphorylation is one of the most ubiquitous regulatory events participating in signal transduction and is almost involved with every cellular process [7],[8]. Dysregulated phosphorylation-mediated cell signalling is present in numerous diseases including SLE [9]. STAT1 serine-727 phosphorylation has been found to play a critical role in B cells via promoting autoimmune Ab-forming cell (AFC) and germinal centre (GC) responses, thus sequentially stimulating autoantibody production in SLE [10], while the use of kinase inhibitors, such as Bruton tyrosine kinase (BTK) inhibitors and p38α MAPK kinase inhibitors showed efficacy in SLE treatment [11, 12]. A recent study also suggested that blocking mechanistic target of rapamycin (MTOR) can extend life expectancy by attenuating or preventing SLE [13]. Therefore, exploring the global phosphorylation in cells can provide novel and valuable information for identifying reliable diagnostic and therapeutic targets of SLE.

Phosphoproteomics is a novel approach that has exhibited certain advantages through the ability to detect tens of thousands of phosphorylation events with extensive throughput [7]. In our study, we present a global phosphoproteomic analysis of PBMCs in patients with SLE_S, SLE_A, RA, and HC by LC-MS/MS analysis, phosphosite mapping, and predict upstream kinases to identify distinct phosphorylation profiles that may result in divergent clinical behaviours, as well as to build kinase-regulated networks. We revealed kinases, phosphosites, and signalling pathways in SLE_S and SLE_A patients that differ from those in HC and RA patients, and demonstrated the difference between SLE_S and SLE_A. By presenting abundant information resource to explore
phosphorylation events in SLE, our study could provide new insights to elucidating the underlying molecular mechanism of SLE pathogenesis and developing better treatment.

Materials and methods

Experimental Design and Statistical Rationale

The first cohort consisting of 130 patients with SLE (SLE_S=82, SLE_A =48), 96 patients with RA, and 90 HC was used for phosphoproteomics analysis, and the PBMC protein was mixed into 52 pools (14 SLE_S, 7 SLE_A, 16 RA, 15 HC), and each pool had 1mg protein that contains approximately 6 independent samples. The second independent cohort consisting of 19 patients with SLE (SLE_S=12, SLE_A =7), 10 patients with RA, and 8 HC was used for PRM validation, and each sample had 1mg protein. The third independent cohort consisting of 15 patients with SLE and 7 HC was used for Western blot validation. We used RA and HC as the control groups. All three experiments (phosphoproteomics, PRM, and Western blot) were performed with biological replicates. For comparisons between two groups, two-sample two-tailed Student’s t tests were performed for phosphoproteomics, a single-tailed, two-sample t-test for PRM validation, and p-value < 0.05 were considered to be significant.

All Peripheral blood samples from patients with SLE (SLE_S, SLE_A), and RA were obtained from Department of rheumatology and immunology, Shenzhen People’s hospital, China. The Healthy Controls were recruited from Department of Physical Examination, Shenzhen People’s hospital, China. The present study conformed to the principles of the Declaration of Helsinki. This study was approved by Ethics Committee of the Shenzhen People’s Hospital, China (LL-KY 2019514). And all donors signed a written informed consent to participate in the study. All SLE patients fulfilled The Systemic Lupus International Collaborating Clinics (SLICC) classification criteria [14]. The SLE disease activity index (SLEDAI) 2000 is widely used to measure SLE disease activity, and the disease activity score is calculated using the SLEDAI-2K score calculator (https://qxmd.com/calculate/calculator_335/sledai-2k) according to both clinical and laboratory parameters [15]. When the SLEDAI score was less than or equal to 4, the SLE patients were considered to be in remission stage (SLE_S), while the ones with the SLEDAI score > 4 were considered to be in active stage (SLE_A) and the disease activity was assessed using the SLE Disease Activity Index (SLEDAI) [16]. All RA patients meet the ACR/European League Against Rheumatism 2010 RA classification criteria [17], and the clinical activity of the RA patients was
evaluated according to the DAS28 score [18]. The clinical information of samples in this study is presented in Supplementary table X.

PBMCs collection

The Peripheral blood was collected in EDTA-treated collection tubes from each individual. PBMCs were isolated using density gradient centrifugation with Ficoll-Hypaque (Invitrogen) according to the manufacturer’s instructions, and placed in a −80 °C freezer before for later use. The PBMCs were used for proteomics, phosphoproteomics, phosphosites validation and kinases validation.

PBMCs lysis

Taken out from freezer, the PBMCs were then placed on ice, and sonicated using a high intensity ultrasonic processor (Scientz) in lysis buffer (8 M urea, 1% Protease Inhibitor Cocktail). The remaining debris was removed by centrifugation at 12,000 g at 4°C for 10 min. At last, the supernatant was transferred to a new tube, and the protein concentration was measured using the BCA kit (Thermo Scientific).

Trypsin digestion

The equal amount of protein was taken from each sample. Dithiothreitol (DTT) was added to the protein solution to a final concentration of 5 mM and reduction reaction occurred at 56 °C and lasted for 30 min. Then iodine acetamide (IAA) was added to protein solution to a final concentration of 11mM, followed by a 15 min-incubation at room temperature in the dark. Then the protein solution was diluted by adding 100mM TEAB until urea concentration was less than 2M. Lastly, trypsin was added at a 1:50 trypsin/protein ratio for the first round of overnight digestion and 1:100 trypsin/protein ratio for the second round of 4h-digestion.

Phosphopeptide Enrichment Using IMAC

The peptide mixtures were first incubated with Immobilized metal affinity chromatography (IMAC, ThermoFisher Scientific-A32992) microspheres suspension with vibration in loading buffer (50% acetonitrile/6% trifluoroacetic acid). IMAC microspheres with enriched phosphopeptides were then precipitated by centrifugation, and the supernatant was removed. Next, the IMAC microspheres were sequentially washed with 50% acetonitrile/6% trifluoroacetic acid and 30% acetonitrile/0.1% trifluoroacetic acid, to remove nonspecifically adsorbed peptides. Then,
the enriched phosphopeptides were eluted with elution buffer containing 10% NH4OH on a rotary shaker, and the eluate was collected and dried under vacuum. Finally, enriched phosphopeptides were desalted using C18 ZipTips (Millipore) and freeze-dried under vacuum for LC-MS/MS analysis.

LC-MS/MS Analysis for phosphoproteomics

The peptides were dissolved in solvent A (0.1% formic acid, 2% acetonitrile in water) of liquid chromatography mobile phase, directly loaded onto a home-made reversed-phase analytical column (25-cm length, 100 μm i.d.) packed with 1.9 μm/120 Å ReproSilPurC18 resins (Dr. Maisch GmbH, Ammerbuch, Germany). Solvent B was 0.1% formic acid in acetonitrile. Liquid phase gradient was set as follows: 0-50 min, 2%~22%B; 50-52 min, 22%~35%B; 52-55 min, 35%~90%B; 55-60 min, 90%B; All peptides were separated at a constant flow rate of 450 nL/min by online nanoElute UHPLC system (Bruker Daltonics).

The peptides were subjected to Capillary source followed by the timsTOF Pro (Bruker Daltonics) mass spectrometry. The electrospray voltage was set to 1.6 kV. Precursors and fragments of peptide were detected and analyzed by TOF. The MS/MS scan range was from 100 to 1700 m/z. Parallel accumulation serial fragmentation (PASEF) mode was used for data acquisition. Precursors with charge states of 0 to 5 were selected for fragmentation, and 10 PASEF-MS/MS scans were acquired per cycle. The dynamic exclusion time of tandem mass spectrometry was set to 30 seconds to avoid repeated scanning of precursors.

Database search

The LC-MS/MS data were analyzed by the MaxQuant search engine (v.1.6.6.0). The retrieval parameters were set as follows: Tandem mass spectra were searched against the human SwissProt database (Homo_sapiens_9606_SP_20191115, 20380 entries) concatenated with reverse decoy database; The enzyme specificity was trypsin/P, and 2 missing cleavages were permitted; The minimum length of peptide was set to 7 amino acid residues, and the maximum modification number was set to 5; The mass tolerance for precursor ions was set as 20 ppm in both First search and Main search, and the mass tolerance for fragment ions was set to 0.02 Da; Carbamidomethyl on Cys was set to fixed modification, and acetylation on protein N-terminal, oxidation on Met, and phosphorylation on Ser, Thr, Tyr were set as variable modifications. FDR was adjusted to < 1%.
Phosphoproteomics Data processing

The signal intensity of each peptide in different samples was calculated as follow: First, the relative quantitative value (R) of the modified peptide in different samples was obtained after the signal intensity value (I) was transformed by the center. The formula for calculation was as follows: \(R_{ij} = \frac{I_{ij}}{\text{Mean}(I_j)} \), where I represented the samples, and J represented the peptides. The relative quantitative value of the modified site was divided by the relative quantitative value of the protein corresponding to the modified site to eliminate the influence of protein expression on the modified expression. The quantitative value was log2 transformed to ensure that they were normally distributed, then the significance of p-value is calculated using a two-sample, two-tail Student’s t-test in two groups. Phosphosites were considered significantly differentially expressed if the p-value was < 0.05 and absolute fold change was ≥1.5.

Pathway analysis

Enrichment of Gene Ontology analysis

Phosphoproteins were classified by GO annotation (http://www.ebi.ac.uk/GOA/) into three categories: biological process (BP), cellular compartment (CC) and molecular function (MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate protein pathway, KEGG online service tools KAAS (http://www.genome.jp/kaas-bin/kaas_main) was used to annotated protein’s KEGG database description, and then the annotation result was mapped on the KEGG pathway database using KEGG online service tools KEGG mapper (http://www.kegg.jp/kegg/mapper.html). The functional enrichment of GO and KEGG was analyzed by a two-tailed Fisher’s exact test to test the enrichment of the differentially modified protein against all identified proteins. When the p-value was less than 0.05, the pathway was considered significant. Additionally, we submitted differentially expressed phosphoproteins to Ingenuity Pathway Analysis (IPA) software (Qiagen) for core pathways analysis. The Z scores were calculated based on Ingenuity Knowledge Base, and predicted the activation status of each pathway. The higher the Z score is, the more activated this pathway is, and the lower the Z value is, the more inhibited this pathway is. Fisher’s exact test was utilized to calculate P- values with IPA, with p-value < 0.05 considered as significant.
Expression pattern clustering analysis

The Mfuzz method was used to perform cluster analysis for modification site abundance shift under different continuous samples. A new clustering algorithm, the fuzzy c-means algorithm, was used. We first transformed the relative expression level of the modified sites by Log2, then screened out the modified sites with SD>0.5. After screening, the remaining modification sites were used for expression pattern clustering analysis by the Mfuzz method. These modified sites were then divided into 5 clusters, and the functional enrichment of GO, KEGG, and domains were performed for each cluster. The analysis method was Fisher’s exact test. It was considered significant when the p-value was less than 0.05.

Motif Analysis

The software MOMO (motif-x algorithm) was used to analyze the motif characteristics of phosphosites. When the number of phosphosites in a characteristic sequence form was more than 20, and the p-value of statistical test was less than 0.000001, the characteristic sequence form can be considered as a motif for phosphosites.

Kinase prediction and kinase-substrate regulatory network analysis

The iGPS1.0 software (http://igps.biocuckoo.org/) was used to predict upstream phosphokinase, which was based on the theory of short linear motifs (SLMs) around phosphosite (p-sites) to provide the primary specificity. The kinase activity was predicted by the GSEA method. The two types of GSEA input data were, the corresponding phosphosites of each kinase, as .gmt file, and the ratio value of the kinase in each comparison group as the expression profile .gct file. The bar graphs were analyzed by ggplot2 R package. The predicted kinases with positive or negative activity and significantly differential expressed phosphosites were used to construct a kinase-substrate regulatory network by Cytoscape.

Kinase-pathway network analysis

The kinase-pathway network analysis was conducted based on the predicted results of kinase activity in the three comparison groups (SLE_S vs HC, SLE_A vs HC and SLE_A vs SLE_S), and the up-regulated and down-regulated kinases (top10) were selected for the relationship network analysis. Next, when choosing kinases, consider whether they catalyze differentially expressed phosphosites (Fold change >1.5, p-value <0.05), if not, skip the kinase. Then, based on the proteins
of the phosphorylation sites catalyzed by these kinases, the KEGG pathway and GO functional annotation results were selected (p-value < 0.05). Finally, a “differential kinases-phosphosites-phosphoproteins-pathways” quadripartite network was constructed that also called Kinase-pathway network. Kinase-pathway network was visualized by Cytoscape software.

Validation studies using parallel reaction monitoring (PRM)

In this study, we applied Tier 3 PRM analyses. As Tier 3 measurements were usually considered as powerful methods especially in early-stage biological studies, which enable repeatable measurement of the same sets of analytes across experiments but do not employ internal standards for either accurate or precise measurement of the levels of each analyte. Tier 3 methods do not constitute assays, but instead employ targeted strategies to bias towards detection of a predefined set of analytes.

The processes of protein extraction, trypsin digestion, and phosphopeptide enrichment are consistent with phosphoproteomics. The peptides were dissolved in solvent A (0.1% formic acid, 2% acetonitrile in water), directly loaded onto a home-made reversed-phase analytical column (25-cm length, 100 μm i.d.). Solvent B was 0.1% formic acid in 90% acetonitrile. Liquid phase gradient was set as follows: 0~40 min, 3%-17%B; 40~52 min, 17%-28% B; 52~56 min, 28%-80% B; 56~60 min, 80% ; All peptides was separated at a constant flow rate of 500 nL/min on an EASY-nLC 1200 UPLC system (Thermo).

The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS) in Q Exactive™ plus (Thermo) coupled online to the UPLC. The electrospray voltage was set to 2.1 kV. The m/z scan range was 490 to 1300 for full scan, and intact peptides were detected in the Orbitrap at a resolution of 35,000. Peptides were then selected for MS/MS, and the Normalized Collisional Energy (NCE) was set to 27, and the Orbitrap scan resolution was set to 17,500. The Automatic gain control (AGC) was set at 3E6 and the maximum IT was set at 200 ms for full MS; The Automatic gain control (AGC) was set at 1E5 and the maximum IT was set at 200 ms for MS/MS, and the isolation window for MS/MS was set at 1.6 m/z.

The MS/MS data were processed using Skyline (v.4.1.0.18166). The data were analyzed by the MaxQuant search engine (v.1.5.2.8). Phosphopeptide settings were as follows: Tandem mass spectra were searched against the human SwissProt database (Homo_sapiens_9606_SP_20191115,
20380 entries) concatenated with reverse decoy database. The enzyme was set as Trypsin [KR/P], max missed cleavage was set as 3. The peptide length was set as 7-32, Variable modification was set as Carbamidomethyl on Cys and oxidation on Met, and max variable modifications were set as 3. Transition settings were set as follows: precursor charges were set as 2, 3, ion charges were set as 1, ion types were set as b, y. The product ions were set as from ion 3 to last ion. The ion match tolerance was set as 0.02 Da.

Western blot analysis

For whole cell protein extraction, the PBMC was pelleted and lysed in RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton-X100, 1% sodium deoxycholate, 0.1% SDS, and 1 mM EDTA) supplemented with proteinase inhibitors (Sigma) on ice for 15 min. After protein concentration quantification by BCA kit (Sigma), same amount of proteins were calculated and add of an equal volume of 2×sample buffer (950 μl of Laemmli buffer + 50 μl β-mercaptoethanol), the lysates were then boiled for 10 min at 99°C. For western blot analysis, the boiled samples were separated by SDS-PAGE, then transferred to nitrocellulose membranes (Millipore). The membranes were blocked with 3% non-fat milk at room temperature for 1 hour and washed with TBST before incubating with specific primary antibodies overnight at 4°C. Antibodies for IKKβ (CST #8943), p-IKKβ Ser176/180 (CST #2697), TBK1 (CST #3504), p-TBK1 Ser172 (CST #5483), and p-GSK3β Ser9 (CST #5558) were purchased from Cell Signaling Technology, Antibody for MAP3K7 (PTM-5764) was purchased from PTM Biolabs, Antibodies for p-MAP3K7 Thr187 (28958-1-AP) and β-actin (20536-1-AP) were purchased from Proteintech. The membranes were then washed with TBST at room temperature for 3 times followed by incubating with secondary antibodies at RT for 1 h, the membranes were washed for 3 times and incubated with ECL (ThermoFisher) to collect the data.

Results

Generation of phosphoproteomic data obtained from PBMCs

To characterize the phosphorylation events of patients with SLE (SLE_S (SLEDAI score ≤ 4) and SLE_A (SLEDAI score > 4), we used RA and HC as the control groups in the analysis and performed LC-MS/MS with a 4D-label-free quantification (LFQ) approach to generate phosphoproteomic datasets (Figure 1A, Supplementary table A). As depicted in Figure 1A, we
quantified 8,329 phosphosites on 2,787 phosphorylated proteins, and validated target phosphosites using PRM. Hierarchical clustering analysis showed the differentially expressed phosphosites in patients with SLE, RA and HC (Figure 1B). We counted differentially expressed phosphosites on proteins in patients with SLE compared with HC and patients with RA (Figure 1C, Supplementary table 1) and found that 291 phosphosites are specifically expressed in SLE when compared with HC, while 49 phosphosites are specifically expressed in SLE when compared with RA. This result suggested more differentially expressed phosphosites are shown in SLE when compared to HC than when compared to RA (Figure 1D, Supplementary table 2). We also observed more significant differences in these differentially expressed phosphosites when SLE_S and SLE_A were compared to HC than in those differentially expressed phosphosites from comparison between SLE_S and SLE_A versus RA (Figure 1F-G, Supplementary table 2). When both compared with HC, we found many common differentially expressed phosphosites in SLE_S and SLE_A (Figure 1E, Supplementary table 2).

High-resolution overview of signalling pathways revealed in SLE

Next, we primarily analyzed the subgroups of SLE to explore the differences of functions in patients with SLE_S and SLE_A compared with HC and those with RA. Additionally, we also compared the differences of functions between SLE_A and SLE_S. Firstly, the volcano plot showed top 25 up and downregulated phosphosites in patients with SLE_S and SLE_A compared to HC and those with RA, and SLE_A vs SLE_S (Figure 2A). Based on these differences, a Gene Ontology enrichment analysis of phosphoprotein was performed, and the results suggested that the upregulated phosphoproteins in the SLE_S and SLE_A groups when compared with HC and those with RA tend to be involved in executive functions, including actin filament organization, adherens junction organization and cell–substrate junction assembly, and the SLE_A group showed a higher degree of pathway enrichment than the SLE_S group (Figure 2B, Supplementary table 3). Compared with the SLE_S group, phosphoproteins involved in focal adhesion, cell migration, and positive regulation of cytokine production were enriched in the SLE_A group. These functions suggest that these phosphoproteins may contribute to disease severity in SLE_A (Figure 2B, Supplementary table 3). Chemotaxis in the SLE (SLE_S and SLE_A) group was upregulated when compared with RA group. The most frequently obtained GO terms of enrichment associated with
downregulated phosphoproteins were related to heart development in patients with SLE_S and SLE_A (Figure 2B, Supplementary table 3). In addition, we performed KEGG analysis of differentially expressed phosphoproteins. The most significantly upregulated pathway in patients with SLE_A was that of leukocyte transendothelial migration, with increased phosphorylation of VCL, VASP, ACTN1, ACTB, F11R and PTK2B (Figure 2C, Supplementary table 4). Compared with those in the SLE_S group, the phosphoproteins involved in Fc gamma R–mediated phagocytosis were significantly enriched in the SLE_A group, and this function was regulated primarily by the phosphorylation of ASAP1, SYK and VASP. The most frequently obtained terms associated with enriched upregulated phosphoproteins in the SLE_S group were the chemokine signalling pathway, and in the SLE_A group were adherens junctions, compared with the RA group (Figure 2C, Supplementary table 4). Together, these results pinpointed distinct pathways and associated phosphoproteins in patients with SLE_S and SLE_A compared with those in HC and RA patients, which later would be meaningful in further mechanistic exploration.

We identified 45 differentially regulated phosphoproteins based on the results of GO and KEGG pathway analyses in SLE (Figure 2B, C, Supplementary table 8). To further elucidate underlying function of these phosphoproteins, we performed pathway analysis using Ingenuity Pathway Analysis (IPA) software. We presented top 4 activated signalling pathways that was similar to GO and KEGG results, such as Actin Cytoskeleton signalling, Leukocyte extravasation signalling and Integrin signalling, which were crucial process for cell migration (Supplementary Figure 1A, Supplementary Figure 1B). Our data also showed that the Actin Cytoskeleton signalling, one of these activated signalling pathways, regulated by TLN1, VCL, FLNA and so on (Supplementary Figure 1C). These results suggest that the identified phosphoproteins facilitate Actin polymerization and Focal adhesion assembly.

Expression pattern clustering identified five distinct patterns of phosphosites expression

To select phosphosites with significant changes in abundance, the relative expression of phosphosites was calculated by log2 transformation. The phosphosites that met the SD>0.5 criterion was selected. Finally, 277 phosphosites were grouped into five distinct clusters by the Mfuzz method, and a functional enrichment analysis was performed for each cluster. Among these clusters, clusters 1 and 2 represented phosphosites downregulated in SLE_S, SLE_A and RA. For
the phosphoproteins in cluster 1, the KEGG analysis showed significant downregulation in ECM-receptor interaction, and the GO enrichment analysis showed significant downregulation in microtubule binding, regulation of the multicellular organismal process, and polymeric cytoskeletal fibres. Cluster 2 was enriched in phosphoproteins involved in the regulation of the apoptotic signalling pathway, regulation of the cellular response to stress, nucleoside binding, and organelle subcompartments. Cluster 4 included 27 specifically downregulated phosphosites in the SLE_A group that are associated with protein phosphatase inhibitor activity, catalytic complex, regulation of cellular ketone metabolic process and RNA processing (Figure 3A, Supplementary table 5).

Cluster 3 included 23 specifically upregulated phosphosites in the SLE_A group, and they were enriched in leukocyte transendothelial migration, which is an important step in driving inflammatory immune responses and is regulated primarily by S305 phosphorylation of VASP, S375 phosphorylation of PTK2B, and S140 phosphorylation of ACTN1 (Figure 3A and 3B). Cluster 3 phosphoproteins were also involved in altered DNA function, including the DNA packaging complex, chromatin DNA binding and winged helix-turn-helix DNA-binding domain, which are regulated by T18 phosphorylation of histone H1.4 and S18 phosphorylation of histone H1.5. Cluster 5 included 57 upregulated phosphosites among the three groups of patients, with SLE_S, SLE_A, and RA, and they were enriched in the Hippo signalling pathway, regulation of cysteine–type endopeptidase activity and the immune effector process, among other functions and components. Several commonly upregulated phosphosites were found in the SLE_S and SLE_A groups, including phosphorylated CD226, VCL and TLN1. Additionally, cluster 5 included multiple upregulated phosphosites of ASAP1 in the SLE_A group (Figure 3A and 3B). Taken together, the overall results of the phosphoproteomic analysis indicate that there are multiple signaling events contributing to the regulatory control in SLE progression.

Phosphoproteomics identified key kinases and kinase-regulated networks in SLE

Through a motif analysis, we found that the amino acids aspartate (D), glutamate (E) and proline (P) were preferentially located at upstream of serine phosphosites, and proline (P) was preferentially present at upstream of threonine phosphosites (Figure 4A). We further used iGPS1.0 software to predict the upstream phosphokinases based on the phosphosites, and each of these
kinases contained at least one regulated phosphosite. Then, we used the GSEA method to predict kinase activity, and the normalized enrichment scores (NESs) of the enrichment results were regarded as kinase activity scores. There were apparent differences in patients with SLE_S and SLE_A compared with HC and patients with RA, and there were high similarities between SLE_S and SLE_A patients (Figure 4B, Supplementary table 6). Most of the kinases predicted to be strongly activated included several members of the mitogen-activated protein kinase kinase kinase (MAP3K) family, including MAP3K1, MAP3K2 and MAP3K7, in patients with SLE_S and SLE_A compared with HC and those with RA. Several members of the mitogen-activated protein kinase kinase (MAP2K) family were also activated, including MAP2K1, MAP2K2 and MAP2K7, in patients with SLE_A compared with HC and those with RA. Besides, TBK1, inhibiting kappa B kinase beta (IKKB) and glycogen synthase kinase-3 beta (GSK3B) are activated in SLE_S and SLE_A patients when compared with HC. The activity showed an increase for Beta-adrenergic receptor kinase 1 (BARK1) in SLE_A compared to SLE_S patients. The kinases predicted to be commonly downregulated in patients with SLE_S and SLE_A included several cell cycle kinases (CDK5, CDK6, CDK7, CDK9 CRK7, and CHED), which are activated by binding to a cyclin and mediate progression through the cell cycle (Figure 4C, D).

Next, we constructed kinase-substrate interaction networks and retrieved the kinase-substrate relationship from iGPS for the SLE groups. The interaction networks revealed that the upregulated kinase activity of MAP3Ks, MAP2Ks, TBK1 and IKKB was directly linked to increased phosphorylation substrates such as VCL S275, VCL S579, VAPB S160, and decreased TGFB1I1 S68 in SLE_S and SLE_A groups. The increased phosphosite of ACLY S481 was associated with the upregulated kinase activity of GSK3B in the SLE_S and SLE_A groups (Figure 4E). The relationship of these kinases and phosphorylation substrates provided clues for the regulation mechanism of SLE.

Based on the kinase-phosphosite correlation suggested by our data, next, we wanted to understand how the phosphoproteomic signalling pathways interact with kinases, and therefore, we performed a kinase-pathway network analysis. We found that upregulated pathways (homotypic cell-cell adhesion, actin filament organization and blood coagulation) were correlated with upregulated kinases (MAP3Ks, TBK1, IKKB, and PKACB) in the SLE_S group. In SLE_A group, several upregulated pathways, including those involved with focal adhesion, anchoring
junctions, and cell-substrate adherens junctions, were also correlated with upregulated kinases, such as MAP3Ks, MAP2Ks, TBK1 and IKKB. This analysis suggests that phosphoproteomic signalling pathways are linked with and regulated by the predicted kinases (Figure 5).

Validation of phosphosites and phospho-kinases identified by MS using PRM and western blot in PBMC

To validate the 4D-LFQ data, we quantified 18 phosphosites in the four different groups by PRM (Supplementary table B). We compared PRM data with those from our 4D-LFQ analysis and found that, for most phosphosites, the data showed good correlation (Figure 6A, Supplementary table 7). The phosphosites showed the same trend, although the fold change varied notably between the results generated through two techniques. Seven phosphosites (BIN2 S458, CD226 S290, TLN1 S1201, LCP1 S5, CAP1 S308, VCL S275 and VCL S579) were upregulated, and 1 phosphosite was downregulated (TGFB1I1 S68) in the SLE_S and SLE_A groups compared with the HC group, and among these phosphosites, CD226 S290, VCL S275, and VCL S579 showed higher expression in the SLE_S and SLE_A groups than in the RA group (Figure 6B). Three additional phosphosites (TGFB1I1 S164, ZYX S259 and SEC31A S799) were confirmed to be upregulated in SLE_A group compared with the HC group (Figure 6B). Nevertheless, using PRM, we failed to validate the high expression of ASAP1 S843, SEC31A S799, ACTN1 S140 or RGCC S97 in the SLE_A group relative to the SLE_S group. Technical issues and the use of an independent cohort may have resulted in poor correlation between the 4D-LFQ and PRM data obtained for these specific phosphosites.

We further validated some of the core predicted kinases by comparing the modification levels to the total protein levels at HC and SLE PBMC groups by western blot approach. As shown in Figure 7A in our revised manuscript, there was a marked increase in phosphorylation of MAP3K7 T187, TBK1 S172, IKKβ S176/180, and GSK3β S9 in SLE compared with those in HC groups, suggesting an increased activity of these kinases in SLE. Finally, we summarized a prominent kinase-phosphosite-pathway profile in SLE according to the PRM and 4D-LFQ data. The phosphoproteomic data demonstrated the regulation of several kinases and phosphoprotein-related pathways in SLE. The network showed that the increased phosphorylation of VCL, TLN1 and decreased phosphorylation of TGFB1I1 were regulated by MAP3Ks and MAP2Ks, phosphorylation of VAPB was regulated by IKKB, TBK1, MAP3Ks, and MAP2Ks, while
phosphorylation of FLNA and LCP1 was regulated by PKACB. All of these phosphorylated proteins are involved in several processes related to cell adhesion and migration, such as cell adherens junctions, focal adhesion and actin filament organization. These processes contribute to signal transduction and reorganization of the actin cytoskeleton and ultimately promote leukocyte transendothelial migration (Figure 7C).

Discussion

SLE is a complex disease featuring diverse clinical features and laboratory abnormalities, the disease progression of which is influenced by both genetic and environmental factors. Over the past decades, more than 100 genetic loci involved in SLE pathogenesis have been detected [19], but the effect of each locus on risk is relatively small. Besides the heterogeneity of genetic background, the disease activity can vary with the exposure of environmental risk factors [20]. Thus, instead of exploring the potential targets at the static genetic level, our study aims to verify the aberrant dynamic cellular signal pathways in patients with SLE by performing high-throughput phosphoproteomic analyses with PBMCs obtained from HC and patients with SLE_S, SLE_A and RA. In this study, we identified significantly regulated phosphosites and pathways associated with cell adhesion and migration in the SLE patients compared with HC and those with RA. Expression pattern clustering analysis revealed distinct phosphosites and functions between the SLE_A and SLE_S groups. In addition, key kinases were predicted, and kinase-regulated networks were built in SLE. Finally, using PRM and western blot, we validated several phosphosites and kinases related to cell adhesion and migration in SLE. For the migration and infiltration of immune cells, they are important drivers initiating and amplifying uncontrolled tissue damage, these phosphosites and kinases can provide potential target for the control of inflammation and ameliorating organ damage.

Previous studies have indicated that transendothelial migration (TEM) is a critical step that regulates the movement of lymphocytes from blood into inflamed tissues [21], which involves a complex signalling cascade mediated by selectins, integrins, chemokines, and adhesion molecules etc [22]. By comparing the distribution of phosphosites in SLE_S and SLE_A patients with RA patients or with HC, a series of dysregulated phosphorylation events involved in cell migration, such as actin filament organization, cell–substrate junctions, and chemotaxis regulation were
found in the SLE_S and SLE_A groups, and phosphoproteins involved in focal adhesion and leukocyte transendothelial migration were more enriched in the SLE_A group than SLE_S group. All these functions and components can promote the recruitment of leukocytes to the site of inflammation [23, 24]. Using PRM, we further validated several phosphosites associated with these pathways, such as adenylyl cyclase-associated protein 1 (CAP1) S308, plasin-2 (LCP1) S5, talin-1 (TLN-1) S1201, vinculin (VCL) S579, VCL S275, transforming growth factor beta-1-induced transcript 1 (TGFB1I1) S68 and 164, and CD226 antigen (CD226) S290. Focal adhesions are large protein complexes that can regulate signalling between the extracellular matrix and interacting cells, affecting cell migration and cell differentiation, where TLN1 and VCL are core components because they connect integrin at the plasma membrane with the actomyosin cytoskeleton. TLN1 and VCL interbanding with F-actin is the basis for the formation of focal adhesions [25, 26]. CAP1 is an actin-binding protein that can form complexes with focal adhesion kinase and talin of which the function in regulating the actin cytoskeleton and cell adhesion has been identified [27, 28]. TGFB1I1, a focal adhesion scaffold protein (also known as Hic-5), has been demonstrated that tyrosine phosphorylation of TGFB1I1 can regulate lamellipodia formation to affect cell motility [29]. L-plastin (LCP1) is an actin-bundling protein in the haematopoietic-specific α-actin family participating the formation of integrin-associated adhesion structures [30]. It has been shown that LCP1 is crucial for regulating T-cell motility and T-cell activation [31]. Since the function of these actin-bundling proteins in regulating cell adhesion and migration has been shown by a large number of studies, the phosphosite analyses in our results will help to further unravel the global regulatory network in leukocytes migration. In addition, the phosphosites of corresponding actin-bundling proteins can also provide potential therapeutic target for developing drugs to inhibit immune cell migration.

In addition, we found several upregulated phosphosites in the SLE_A group relative to the SLE_S group, such as VASP S305, ASAP1 S1041, H1-4 T18 and H1-5 S18, among which VASP can link actin filaments to invadopodia and focal adhesions, which is also crucial for promoting cell migration [32]. It has been shown that VASP phosphorylation can increase podocyte motility and act as a biomarker for disease activity measurement in focal segmental glomerulosclerosis (FSGS) [33]. By modulating signalling at the actin cytoskeleton, VASP is involved in the stabilization of endothelial barrier. Since most SLE patients also have kidney damage at different severities, exploring the function of VASP S305 in SLE activity may also be worthwhile. ASAP1
is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. Several studies have demonstrated that ASAP1 can affect integrin adhesion, actin cytoskeleton, and invasion and metastasis of cancer cells [34]. In addition, anti-histone antibodies were frequently detected in SLE patients, which reported to be correlated with the disease activity [35]. The modification of histone is also reported to facilitate the production of anti-histone antibodies [36]. Taken together, by comparing SLE_A with SLE_S, our phosphoproteomic analyses can provide information for potential targets for reducing the SLE disease activity.

Interesting, our results revealed the key upstream kinase for phosphosites. MAP3Ks and MAP2Ks were found to be more activated in patients with SLE (SLE_S and SLE_A) compared with HC and those with RA. Mitogen-activated protein kinase cascades include at least three kinase families of MAP3Ks, MAP2Ks, and MAPKs. Members of these three kinase families are highly conserved across eukaryotic species and have important physiological/pathological functions, such as cell growth, differentiation, adhesion, stress and inflammatory response [37]. MAPKs can positively regulate the production of inflammatory mediators such as tumour-necrosis factor (TNF), interleukin-1β (IL-1β) and IL-6, and their impact in T cell development and activation have also been well reported, implicating MAPKs can play a role in the pathogenesis of autoimmune disease [38, 39]. A recent study revealed increased phosphorylation of several MAPK kinases and associated markers in multiple sclerosis (MS) [40]. And according to the prominent kinase-phosphosite-pathway profile, we summarized the data from the PRM and 4D-LFQ, MAP3Ks and MAP2Ks are associated with increased phosphorylation of VCL, LCP1, TGFB1I1 and VAPB, indicating the MAPK pathway can affect cell adhesion and cell migration, which also provides a potential new regulatory mechanism for SLE pathogenesis study. In addition, our analysis also found IKKB, TBK1 and GSK3B were strongly activated in patients with SLE but not in HC. IKKB, and TBK1 both involved in the transcription activation induced by NF-κB pathway activation, which was related with the production of inflammatory cytokines [41, 42]. And GSK3B was a key regulator in control of glucose homeostasis, by which it can also participate in the development and function of immune cells [43]. Based on our result, we found IKKB and TBK1 kinase activity are linked to VAPB S160 phosphorylation, which also provide a new possible mechanism for the leukocyte mobility.

Above all, by performing global phosphoproteomic analysis in large number of clinical samples, our study provides rich information to understand aberrant activation of dynamic pathway in SLE
patients. Furthermore, we also explored the differential phosphorylation events correlated with disease activity. By analyzing the kinase-phosphosite correlation, we summarized several potential kinase-phosphosite-pathways in SLE, by which unravelling of new mechanism of SLE pathogenesis might be facilitated and new clinical strategies could be developed.

Acknowledgements

This study was supported by the Key Research and Development Program of Guangdong Province (No. 2019B020229001), Grants San ming project of medicine in Shenzhen, the group of Rheumatology and Immunology leaded by Xiaofeng Zeng of Peking Union medical college Hospital and Dongzhou Liu in Shenzhen People’s Hospital (No. SZSM202111006), and The National Natural Science Foundation of China (No. 81971464). We thank PTM Biolabs of Hangzhou for technical assistance.

Data availability

The phosphoproteomics and PRM data generated in this study have been uploaded to ProteomeXchange under accession no. PXD025559 and pXD025399, respectively. Visualization of MS/MS spectra can be accessed using the following URL: https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?report_title=MS-Viewer&search_key=wvw7pyeoyq&search_name=msviewer. All the information about this manuscript has been summarized in Supplementary data, and all data are available for the corresponding author upon reasonable request.

Code availability

For the code of analyzing and generating the data, we have deposited it in Zenodo (https://zenodo.org/record/6881019#.Ytpka8iVVMg).

Author contribution

Yong Dai and Xiaoping Hong designed and supervised the study; Shuhui Meng and Teng Li performed sequencing experiments, drafted the manuscript and analyzed the data; Donge Tang helped to analyze the data and revised the manuscript; Dandan Li and Tingting Wang helped to revise the manuscript; Heng Li helped to analyze the data. Jieping Chen, Wanxia Cai, and Zhipeng Zeng recruited patients and performed PBMC isolations.
Competing interests

All authors declare no competing interests.

References

Figure Legends

Figure 1. Overview of the High-throughput phosphoproteomics

A. PBMCs from three experimental groups, including patients with SLE (SLE_S=82, SLE_A=48) (n=130), RA (n=96) and HC (n=90) were subjected to LC-MS/MS analysis with a 4D-LFQ approach to generate phosphoproteomic datasets and bioinformatics analysis. B. Hierarchical clustering of the differentially expressed phosphosites in patients with SLE (SLE_S, SLE_A), HC, and RA. C. The Histogram of significantly regulated phosphosites on phosphorylated proteins in seven comparable groups, including SLE vs HC, SLE_ vs RA, SLE_S vs HC, SLE_A vs HC, SLE_A vs SLE_S, SLE_S vs RA and SLE_A vs RA. Differential phosphosite expression was defined as fold change >1.5, and the p-value <0.05. D-G. Venn diagram showing unique and overlapping phosphosites in different comparison groups.

Figure 2. Top enriched pathway profiles of GO and KEGG

A. Volcano plots of quantitative analysis of phosphosites were shown in 5 comparable groups (Fold change >1.5, p-value <0.05). Significant upregulated sites were indicated in red and downregulated ones in blue, with top 25 sites were highlighted. B, C. The Top 30 GO terms and Top 3 KEGG pathways for significantly changing phosphosites in comparable groups, which was divided into two sets: upregulated (left) and downregulated (right). The following criteria was applied for GO terms and KEGG pathways: p-value <0.05 was considered as significant. The color represented the degree of enrichment for GO terms and KEGG pathways, red represented strong enrichment and blue represented weak enrichment.

Figure 3. Expression pattern clustering and functional analysis of phosphosites

A. Five phosphoproteomic clusters were identified using the Mfuzz method. Line chart of phosphosite expression level (left), the horizontal coordinate represented samples (HC, SLE_S, SLE_A, and RA). The vertical coordinate represented the relative expression level of the phosphosites. Each line represented a phosphosite and was color-coded by the cluster membership. Heatmap of expression level (center), the horizontal coordinate represented samples (HC, SLE_S, SLE_A and RA), and the vertical coordinate represented different phosphosites, the color of heatmap indicated the relative expression of the phosphosites in the sample. Pathway enrichment analysis (right), Gene Ontology (GO), KEGG, and domain. The GO mainly included three aspects: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), and the top two significantly enriched items were presented in each function by different colors, p-value <0.05. B. The Heatmap showed the
specific phosphosites in cluster 3, 4 and 5.

Figure 4. Kinase predicted and Kinase-Pathway Network Analysis

A. Significant enriched phosphorylation motifs extracted from the overrepresented phosphopeptide dataset by Motif-X. The motifs were from phosphoserine and phosphothreonine.
B. The top 50 kinases were listed for four groups (HC, SLE_S, SLE_A, and RA) according to the absolute value of NES.
C. Normalized enrichment scores (NESs) of several kinases for SLE_S vs HC were shown, each substrate (phosphopeptide) was represented as a vertical black line.
D. The top 10 kinase activity scores were displayed for five comparable groups, including SLE_S vs HC, SLE_A vs HC, SLE_A vs SLE_S, SLE_S vs RA and SLE_A vs RA.
E. Integrative networks of the kinase-phosphosite interaction were analyzed for three comparable groups, including SLE_S vs HC, SLE_A vs HC and SLE_A vs SLE_S. The relationship between differentially modified proteins and kinases significantly enriched by GSEA was screened, and Cytoscape software was used for drawing.

Figure 5. Integrative networks of the kinase-pathway interaction were analyzed for three comparable groups, including (A) SLE_S vs HC, (B) SLE_A vs HC, (C) SLE_A vs SLE_S. Kinase-Function Network was visualized by Cytoscape software, positive kinases represented by red and negative kinases by blue. Yellow represented up-regulated phosphosites/proteins and green represented down-regulated phosphosites/proteins. In addition, yellow-green meant there were both up-regulated and down-regulated phosphosites in a protein and purple squares represented enriched function (KEGG and GO).

Figure 6. Parallel Reaction Monitoring (PRM) Validation

A. Heatmap showed 18 quantified phosphosites. The PRM (left) and 4D-LFQ data (right) were depicted, the phosphosites were clustered according to the PRM profiles, the PRM data were log2-transformed, and the color code represented log2-fold changes in SLE_S, SLE_A and RA compared with healthy controls (log2-ratios were ranged from -2 to 6).
B. Validated phosphosites were shown that has the same trend with 4D-LFQ. Note: *, **, *** represent p-value <0.05, <0.01, <0.001, respectively. ns: non-significant.

Figure 7. kinase-phosphosite-pathway involved in SLE

A. Predicted kinases were validated by western blot approach in SLE and HC PBMC groups.
B. Kinase-phosphosite-pathway network analysis of SLE.
Supplementary Figure 1. A. Top4 enriched canonical pathway of differentially expressed phosphoproteins was shown via Ingenuity pathway analysis (IPA) in SLE. B. All enriched canonical pathways of differentially expressed phosphoproteins were shown via Ingenuity pathway analysis (IPA) in SLE. C. Activated actin signaling pathway was shown based on z-score and IPA ingenuity knowledge database, positive z-score, orange (z-score>2); The fuchsia outer ring represented the enriched proteins in this pathway. Red represented upregulated phosphoproteins.
Highlights

- Global phosphoproteome landscape were analyzed by 4D-LFQ approach in HC and SLE PBMC samples from Clinical patients.
- The Phosphoproteomics analysis unveils Kinase-regulated Networks played important roles in SLE.
- Several upregulated phosphosites were validated by PRM, including VCL S275, VCL S579, and TGFB1I1 S68.
- Several core predicted kinases were validated by western blot, including MAP3K7, TBK1, IKKβ, and GSK3β.
In Brief

We established the global phosphoproteome landscape of PBMCs from HCs, SLE patients (SLE_S, SLE_A) and RA, by combining high-throughput phosphoproteomics with bioinformatics approaches. We validated some of the key phosphosites and kinases, and then built kinase-regulated networks for SLE. The map of the global phosphoproteomic enables further understanding the pathogenesis of this disease and will provide strategies for seeking potential therapeutic targets for SLE.
Author contributions-Yong Dai and Xiaoping Hong designed and supervised the study; Shuhui Meng and Teng Li performed sequencing experiments, drafted the manuscript and analyzed the data; Donge Tang helped to analyze the data and revised the manuscript; Dandan Li and Tingting Wang helped to revise the manuscript; Heng Li helped to analyze the data. Jieping Chen, Wanxia Cai, and Zhipeng Zeng recruited patients and performed PBMC isolations.
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: