highlights
- •In-vitro differentiation of human B-cells into IgM, IgA and IgG antibody-secreting cells.
- •Simultaneous single-cell quantification of (phospho)-proteins and mRNA through sequencing.
- •Multi-omic factor analysis allows data integration and phenotyping of IgM, IgG and IgA cells.
- •Ig-class-specific transcriptome and expression of homing protein markers.
- •Signaling activity differs between IgM, IgA and IgG cells, including BCR and NF-κB.
Abstract
Graphical abstract

Keywords
Abbreviations:
ASCs (antibody secreting cells)INTRODUCTION
- Itoua Maïga R.
- Bonnaure G.
- Tremblay Rochette J.
- Néron S.
- King H.W.
- Orban N.
- Riches J.C.
- Clear A.J.
- Warnes G.
- Teichmann S.A.
- James L.K.
- Eyer K.
- Doineau R.C.L.
- Castrillon C.E.
- Briseño-Roa L.
- Menrath V.
- Mottet G.
- England P.
- Godina A.
- Brient-Litzler E.
- Nizak C.
- Jensen A.
- Griffiths A.D.
- Bibette J.
- Bruhns P.
- Baudry J.
- Gérard A.
- Woolfe A.
- Mottet G.
- Reichen M.
- Castrillon C.
- Menrath V.
- Ellouze S.
- Poitou A.
- Doineau R.
- Briseno-Roa L.
- Canales-Herrerias P.
- Mary P.
- Rose G.
- Ortega C.
- Delincé M.
- Essono S.
- Jia B.
- Iannascoli B.
- Richard-Le Goff O.
- Kumar R.
- Stewart S.N.
- Pousse Y.
- Shen B.
- Grosselin K.
- Saudemont B.
- Sautel-Caillé A.
- Godina A.
- McNamara S.
- Eyer K.
- Millot G.A.
- Baudry J.
- England P.
- Nizak C.
- Jensen A.
- Griffiths A.D.
- Bruhns P.
- Brenan C.
Experimental procedures
Antibody labeling
B-cell isolation and culture

Antibody staining and cell sorting
Library preparation
- Gerlach J.P.
- van Buggenum J.A.G.
- Tanis S.E.J.
- Hogeweg M.
- Heuts B.M.H.
- Muraro M.J.
- Elze L.
- Rivello F.
- Rakszewska A.
- van Oudenaarden A.
- Huck W.T.S.
- Stunnenberg H.G.
- Mulder K.W.
- Gerlach J.P.
- van Buggenum J.A.G.
- Tanis S.E.J.
- Hogeweg M.
- Heuts B.M.H.
- Muraro M.J.
- Elze L.
- Rivello F.
- Rakszewska A.
- van Oudenaarden A.
- Huck W.T.S.
- Stunnenberg H.G.
- Mulder K.W.
- Gerlach J.P.
- van Buggenum J.A.G.
- Tanis S.E.J.
- Hogeweg M.
- Heuts B.M.H.
- Muraro M.J.
- Elze L.
- Rivello F.
- Rakszewska A.
- van Oudenaarden A.
- Huck W.T.S.
- Stunnenberg H.G.
- Mulder K.W.
Data analysis
- Hao Y.
- Hao S.
- Andersen-Nissen E.
- Mauck W.M.
- Zheng S.
- Butler A.
- Lee M.J.
- Wilk A.J.
- Darby C.
- Zager M.
- Hoffman P.
- Stoeckius M.
- Papalexi E.
- Mimitou E.P.
- Jain J.
- Srivastava A.
- Stuart T.
- Fleming L.M.
- Yeung B.
- Rogers A.J.
- McElrath J.M.
- Blish C.A.
- Gottardo R.
- Smibert P.
- Satija R.
- Hao Y.
- Hao S.
- Andersen-Nissen E.
- Mauck W.M.
- Zheng S.
- Butler A.
- Lee M.J.
- Wilk A.J.
- Darby C.
- Zager M.
- Hoffman P.
- Stoeckius M.
- Papalexi E.
- Mimitou E.P.
- Jain J.
- Srivastava A.
- Stuart T.
- Fleming L.M.
- Yeung B.
- Rogers A.J.
- McElrath J.M.
- Blish C.A.
- Gottardo R.
- Smibert P.
- Satija R.
Experimental Design and Statistical Rationale: Multi-modal analysis
- Hao Y.
- Hao S.
- Andersen-Nissen E.
- Mauck W.M.
- Zheng S.
- Butler A.
- Lee M.J.
- Wilk A.J.
- Darby C.
- Zager M.
- Hoffman P.
- Stoeckius M.
- Papalexi E.
- Mimitou E.P.
- Jain J.
- Srivastava A.
- Stuart T.
- Fleming L.M.
- Yeung B.
- Rogers A.J.
- McElrath J.M.
- Blish C.A.
- Gottardo R.
- Smibert P.
- Satija R.
Compound treatment of in-vitro differentiated ASC
RESULTS
Phenotypic multi-modal single-cell analysis of human antibody secreting cells (ASCs)
- Itoua Maïga R.
- Bonnaure G.
- Tremblay Rochette J.
- Néron S.
- Halliley J.L.
- Tipton C.M.
- Liesveld J.
- Rosenberg A.F.
- Darce J.
- Gregoretti I.V.
- Popova L.
- Kaminiski D.
- Fucile C.F.
- Albizua I.
- Kyu S.
- Chiang K.-Y.
- Bradley K.T.
- Burack R.
- Slifka M.
- Hammarlund E.
- Wu H.
- Zhao L.
- Walsh E.E.
- Falsey A.R.
- Randall T.D.
- Cheung W.C.
- Sanz I.
- Lee F.E.-H.
- Gerlach J.P.
- van Buggenum J.A.G.
- Tanis S.E.J.
- Hogeweg M.
- Heuts B.M.H.
- Muraro M.J.
- Elze L.
- Rivello F.
- Rakszewska A.
- van Oudenaarden A.
- Huck W.T.S.
- Stunnenberg H.G.
- Mulder K.W.
- Halliley J.L.
- Tipton C.M.
- Liesveld J.
- Rosenberg A.F.
- Darce J.
- Gregoretti I.V.
- Popova L.
- Kaminiski D.
- Fucile C.F.
- Albizua I.
- Kyu S.
- Chiang K.-Y.
- Bradley K.T.
- Burack R.
- Slifka M.
- Hammarlund E.
- Wu H.
- Zhao L.
- Walsh E.E.
- Falsey A.R.
- Randall T.D.
- Cheung W.C.
- Sanz I.
- Lee F.E.-H.
Single-cell mRNA and protein analysis reveals Ig-class specific phenotypes

- Halliley J.L.
- Tipton C.M.
- Liesveld J.
- Rosenberg A.F.
- Darce J.
- Gregoretti I.V.
- Popova L.
- Kaminiski D.
- Fucile C.F.
- Albizua I.
- Kyu S.
- Chiang K.-Y.
- Bradley K.T.
- Burack R.
- Slifka M.
- Hammarlund E.
- Wu H.
- Zhao L.
- Walsh E.E.
- Falsey A.R.
- Randall T.D.
- Cheung W.C.
- Sanz I.
- Lee F.E.-H.

Ig-subclasss show differential activity of cytokine signaling across modalities


Tonic BCR signaling and NF-κB/mTOR show different activity in IgM, IgG or IgA cells
- Blanc P.
- Moro-Sibilot L.
- Barthly L.
- Jagot F.
- This S.
- De Bernard S.
- Buffat L.
- Dussurgey S.
- Colisson R.
- Hobeika E.
- Fest T.
- Taillardet M.
- Thaunat O.
- Sicard A.
- Mondière P.
- Genestier L.
- Nutt S.L.
- Defrance T.

DISCUSSION
- Jang J.S.
- Li Y.
- Mitra A.K.
- Bi L.
- Abyzov A.
- van Wijnen A.J.
- Baughn L.B.
- Van Ness B.
- Rajkumar V.
- Kumar S.
- Jen J.
- Cohen Y.C.
- Zada M.
- Wang S.Y.
- Bornstein C.
- David E.
- Moshe A.
- Li B.
- Shlomi-Loubaton S.
- Gatt M.E.
- Gur C.
- Lavi N.
- Ganzel C.
- Luttwak E.
- Chubar E.
- Rouvio O.
- Vaxman I.
- Pasvolsky O.
- Ballan M.
- Tadmor T.
- Nemets A.
- Jarchowcky-Dolberg O.
- Shvetz O.
- Laiba M.
- Shpilberg O.
- Dally N.
- Avivi I.
- Weiner A.
- Amit I.
- Ashuach T.
- Gabitto M.I.
- Jordan M.I.
- Yosef N.
- Ghazanfar S.
- Guibentif C.
- Marioni J.C.
- Blanc P.
- Moro-Sibilot L.
- Barthly L.
- Jagot F.
- This S.
- De Bernard S.
- Buffat L.
- Dussurgey S.
- Colisson R.
- Hobeika E.
- Fest T.
- Taillardet M.
- Thaunat O.
- Sicard A.
- Mondière P.
- Genestier L.
- Nutt S.L.
- Defrance T.
Data availability
Competing interests
Acknowledgments
Supplementary Data
References
- Plasma cells as an innovative target in autoimmune disease with renal manifestations.Nat. Rev. Nephrol. 2016; 12: 232-240
- Plasma cells: The programming of an antibody‐secreting machine.Eur. J. Immunol. 2019; 49: 30-37
- The generation of antibody-secreting plasma cells.Nat. Rev. Immunol. 2015; 15: 160-171
- Multiple myeloma.Lancet. 2021; 397: 410-427
- Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry.Blood. 1990; 76: 1739-1747
- In vitro differentiation model of human normal memory B cells to long-lived plasma cells.J. Vis. Exp. 2019; 201958929
- An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization.Blood. 2009; 114: 5173-5181
- Human CD38hiCD138+ plasma cells can be generated in vitro from CD40-activated switched-memory B lymphocytes.J. Immunol. Res. 2014; 2014https://doi.org/10.1155/2014/635108
- IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors.Leukemia. 2014; 28: 1647-1656
- RNA-sequencing data-driven dissection of human plasma cell differentiation reveals new potential transcription regulators.Leukemia. 2021; 35: 1451-1462
- IgM, IgG, and IgA Influenza-Specific Plasma Cells Express Divergent Transcriptomes.J. Immunol. 2019; 203: 2121-2129
- Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics.Sci. Immunol. 2021; 6https://doi.org/10.1126/sciimmunol.abe6291
- Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring.Nat. Biotechnol. 2017; 35: 977-982
- High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics.Nat. Biotechnol. 2020; https://doi.org/10.1038/s41587-020-0466-7
- Single-Cell Technologies for the Study of Antibody-Secreting Cells.Front. Immunol. 2022; 12: 1-9
- Simultaneous epitope and transcriptome measurement in single cells.Nat. Methods. 2017; 14: 865-868
- Multiplexed quantification of proteins and transcripts in single cells.Nat. Biotechnol. 2017; 35: 936-939
- Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells.Nat. Commun. 2018; 9: 2384
- Single-Cell ID-seq Reveals Dynamic BMP Pathway Activation Upstream of the MAF/MAFB-Program in Epidermal Differentiation.iScience. 2018; 9: 412-422
- Single-cell intracellular epitope and transcript detection reveals signal transduction dynamics.Cell Reports Methods. 2021; 1100070
- Long-Lived Plasma Cells Are Contained within the CD19−CD38hiCD138+ Subset in Human Bone Marrow.Immunity. 2015; 43: 132-145
- Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells.Sci. Rep. 2019; 9: 1469
M. Andreatta, S. J. Carmona, bioRxiv, in press, doi:10.1101/2021.04.13.439670.
- MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.Genome Biol. 2020; 21: 111
- Transcription Elongation Factor ELL2 Drives Ig Secretory-Specific mRNA Production and the Unfolded Protein Response.J. Immunol. 2014; 193: 4663-4674
- Requirement for Runx Proteins in IgA Class Switching Acting Downstream of TGF-$β$1 and Retinoic Acid Signaling.J. Immunol. 2010; 184: 2785-2792
- The immune responses in CD40-deficient mice: Impaired immunoglobulin class switching and germinal center formation.Immunity. 1994; 1: 167-178
- Signaling through CD70 Regulates B Cell Activation and IgG Production.J. Immunol. 2004; 173: 3901-3908
- TACI Is Required for Efficient Plasma Cell Differentiation in Response to T-Independent Type 2 Antigens.J. Immunol. 2007; 179: 2282-2288
- BAFF and BAFF-receptor in B cell selection and survival.Front. Immunol. 2018; 9: 1-10
- Competence and competition: The challenge of becoming a long-lived plasma cell.Nat. Rev. Immunol. 2006; 6: 741-750
- Plasma Cell Survival Is Mediated by Synergistic Effects of Cytokines and Adhesion-Dependent Signals.J. Immunol. 2003; 171: 1684-1690
- Plasma-cell homing.Nat. Rev. Immunol. 2003; 3: 822-829
- CD40 Signaling Promotes CXCR5 Expression in B Cells via Noncanonical NF- κ B Pathway Activation.J. Immunol. Res. 2020; 2020: 1-6
- Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15.Nat. Immunol. 2012; 13: 1187-1195
- STAT3-Mediated Up-Regulation of BLIMP1 Is Coordinated with BCL6 Down-Regulation to Control Human Plasma Cell Differentiation.J. Immunol. 2008; 180: 4805
- A functional BCR in human IgA and IgM plasma cells.Blood. 2013; 121: 4110-4114
- Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge.Nat. Commun. 2016; 7: 1-14
- Multiple myeloma: The (r)evolution of current therapy and a glance into the future.Haematologica. 2020; 105: 2358-2367
- Molecular signatures of multiple myeloma progression through single cell RNA-Seq.Blood Cancer J. 2019; 9https://doi.org/10.1038/s41408-018-0160-x
- Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing.Nat. Med. 2021; 27: 491-503
- Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy.Cell Biosci. 2021; 11: 203
- Computational principles and challenges in single-cell data integration.Nat. Biotechnol. 2021; 39: 1202-1215
- MultiVI: deep generative model for the integration of multi-modal data.bioRxiv. 2021; https://doi.org/10.1101/2021.08.20.457057
- Cobolt: integrative analysis of multimodal single-cell sequencing data.Genome Biol. 2021; 22: 351
- StabMap: Mosaic single cell data integration using non-overlapping features.bioRxiv. 2022; https://doi.org/10.1101/2022.02.24.481823
- A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data.Genome Biol. 2022; 23: 20
Y. Hao, T. Stuart, M. Kowalski, S. Choudhary, P. Hoffman, A. Hartman, A. Srivastava, G. Molla, S. Madad, C. Fernandez-granda, R. Satija, Dictionary learning for integrative, multimodal, and scalable single-cell analysis (2022).
- ITAM-mediated tonic signalling through pre-BCR and BCR complexes.Nat. Rev. Immunol. 2006; 6: 283-294
- BCL6 modulates tonic BCR signaling in diffuse large B-cell lymphomas by repressing the SYK phosphatase.PTPROt. Blood. 2009; 114: 5315-5321
- The SYK tyrosine kinase: a crucial player in diverse biological functions.Nat. Rev. Immunol. 2010; 10 (2010 106): 387-402
- Involvement of the Syk-mTOR pathway in follicular lymphoma cell invasion and angiogenesis.Leukemia. 2012; 26: 795-805
- Syk-dependent mTOR activation in follicular lymphoma cells.Blood. 2006; 108: 4156-4162
- mTOR Activation Promotes Plasma Cell Differentiation and Bypasses XBP-1 for Immunoglobulin Secretion.Mol. Cell. Biol. 2015; 35: 153-166
- CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq.Genome Biol. 2016; 17: 77
P. R. and bbimber and B. F. and santiagorevale and G. Gui, Hoohm/CITE-seq-Count: 1.4.2. Zenodo (2019), doi:10.5281/zenodo.2590196.
- Integrated analysis of multimodal single-cell data.Cell. 2021; : 1-15
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
Funding: This study was supported (in part) by research funding from Aduro Biotech (EvB, WJ, PV, MC, AvE and HvE)
Radboud University (LJAW, WTSH and JAGLvB)
Spinoza Grant (WTSH)
VENI grant from the Netherlands Organisation for Scientific Research VI.Veni.202.228 (JAGLvB).
Author contributions: EvB, WJ, PV, and MJMH established and performed the in-vitro differentiation protocol. EvB and WJ performed the flow cytometry, qPCR and ELISA experiments. EvB and LJAW performed the multi-modal sequencing experiment. JAGLvB conceived and performed the data-integration and analyzed the sequencing results. PV, AvE and HvE conceived the project, WTSH, PV and HvE supervised the project, EvB, JAGLvB, WTSH and HvE wrote the manuscript. All authors approved the final version of the manuscript.
Multi-modal single-cell sequencing technology enabled quantifying the characteristics of human antibody-secreting cells (ASCs). Integrative analysis identified three classes of ASCs and their molecular features, including surface protein markers, phospho-proteins and transcriptional profiles. Each Ig-class of IgM, IgA and IgG shows a specific expression of homing receptors and protein markers. IgM and IgA ASCs have tonic BCR signaling, while IgG has more active signaling pathways, including SYK, mTOR, IL6, and NF-kB.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy