Highlights
- •Two-year IgM and IgG manifestation of 144 COVID-19 patients
- •Longitudinal serum proteomics characterization of four serological patterns in COVID-19
- •Negative serology during COVID-19 was associated with mild inflammation and enhanced T cell immunity
- •Overexpression of IgM during COVID-19 was related to dysregulated complement cascades, inferior cellular immunity, and elevated CD163
- •Boosted IgG expression in the vaccinated population with previous SARS-CoV-2 infection
Abstract
Graphical abstract

Keywords
Abbreviations:
ADE (antibody-dependent enhancement), ARDS (acute respiratory distress syndrome), C1 (complement 1), CLIA (chemiluminescence immunoassay), COVID-19 (Coronavirus Disease 2019), CV (coefficient of variation), DDA (data-dependent acquisition), DEP (differentially expressed protein), EHR (electronic hospital record), HDL-C (high-density lipoprotein cholesterol), IQR (interquartile range), LDL-C (low-density lipoprotein cholesterol), LMI (leukocyte mediated immunity), LMP (lipid metabolic process), LOESS (locally weighted scatterplot smoothing), NAb (neutralizing antibody), nonVac (non-vaccinated), PCA (principal component analysis), R1 (one-year follow-up), R2 (two-year follow-up), RBD (receptor binding domain), RLU (relative luminescence unit), RT-PCR (reverse-transcriptase polymerase-chain-reaction), TC (total cholesterol), TEAB (triethylammonium bicarbonate), TG (triglyceride), TMT (tandem mass tag), Vac (vaccinated)Introduction
- Long Q.X.
- Liu B.Z.
- Deng H.J.
- Wu G.C.
- Deng K.
- Chen Y.K.
- Liao P.
- Qiu J.F.
- Lin Y.
- Cai X.F.
- Wang D.Q.
- Hu Y.
- Ren J.H.
- Tang N.
- Xu Y.Y.
- Yu L.H.
- Mo Z.
- Gong F.
- Zhang X.L.
- Tian W.G.
- Hu L.
- Zhang X.X.
- Xiang J.L.
- Du H.X.
- Liu H.W.
- Lang C.H.
- Luo X.H.
- Wu S.B.
- Cui X.P.
- Zhou Z.
- Zhu M.M.
- Wang J.
- Xue C.J.
- Li X.F.
- Wang L.
- Li Z.J.
- Wang K.
- Niu C.C.
- Yang Q.J.
- Tang X.J.
- Zhang Y.
- Liu X.M.
- Li J.J.
- Zhang D.C.
- Zhang F.
- Liu P.
- Yuan J.
- Li Q.
- Hu J.L.
- Chen J.
- Huang A.L.
- Zhao J.
- Yuan Q.
- Wang H.
- Liu W.
- Liao X.
- Su Y.
- Wang X.
- Yuan J.
- Li T.
- Li J.
- Qian S.
- Hong C.
- Wang F.
- Liu Y.
- Wang Z.
- He Q.
- Li Z.
- He B.
- Zhang T.
- Fu Y.
- Ge S.
- Liu L.
- Zhang J.
- Xia N.
- Zhang Z.
- Iyer A.S.
- Jones F.K.
- Nodoushani A.
- Kelly M.
- Becker M.
- Slater D.
- Mills R.
- Teng E.
- Kamruzzaman M.
- Garcia-Beltran W.F.
- Astudillo M.
- Yang D.
- Miller T.E.
- Oliver E.
- Fischinger S.
- Atyeo C.
- Iafrate A.J.
- Calderwood S.B.
- Lauer S.A.
- Yu J.
- Li Z.
- Feldman J.
- Hauser B.M.
- Caradonna T.M.
- Branda J.A.
- Turbett S.E.
- LaRocque R.C.
- Mellon G.
- Barouch D.H.
- Schmidt A.G.
- Azman A.S.
- Alter G.
- Ryan E.T.
- Harris J.B.
- Charles R.C.
- den Hartog G.
- Vos E.R.A.
- van den Hoogen L.L.
- van Boven M.
- Schepp R.M.
- Smits G.
- van Vliet J.
- Woudstra L.
- Wijmenga-Monsuur A.J.
- van Hagen C.C.E.
- Sanders E.A.M.
- de Melker H.E.
- van der Klis F.R.M.
- van Binnendijk R.S.
- Ali H.
- Alahmad B.
- Al-Shammari A.A.
- Alterki A.
- Hammad M.
- Cherian P.
- Alkhairi I.
- Sindhu S.
- Thanaraj T.A.
- Mohammad A.
- Alghanim G.
- Deverajan S.
- Ahmad R.
- El-Shazly S.
- Dashti A.A.
- Shehab M.
- Al-Sabah S.
- Alkandari A.
- Abubaker J.
- Abu-Farha M.
- Al-Mulla F.
- Long Q.X.
- Liu B.Z.
- Deng H.J.
- Wu G.C.
- Deng K.
- Chen Y.K.
- Liao P.
- Qiu J.F.
- Lin Y.
- Cai X.F.
- Wang D.Q.
- Hu Y.
- Ren J.H.
- Tang N.
- Xu Y.Y.
- Yu L.H.
- Mo Z.
- Gong F.
- Zhang X.L.
- Tian W.G.
- Hu L.
- Zhang X.X.
- Xiang J.L.
- Du H.X.
- Liu H.W.
- Lang C.H.
- Luo X.H.
- Wu S.B.
- Cui X.P.
- Zhou Z.
- Zhu M.M.
- Wang J.
- Xue C.J.
- Li X.F.
- Wang L.
- Li Z.J.
- Wang K.
- Niu C.C.
- Yang Q.J.
- Tang X.J.
- Zhang Y.
- Liu X.M.
- Li J.J.
- Zhang D.C.
- Zhang F.
- Liu P.
- Yuan J.
- Li Q.
- Hu J.L.
- Chen J.
- Huang A.L.
- Zhao J.
- Yuan Q.
- Wang H.
- Liu W.
- Liao X.
- Su Y.
- Wang X.
- Yuan J.
- Li T.
- Li J.
- Qian S.
- Hong C.
- Wang F.
- Liu Y.
- Wang Z.
- He Q.
- Li Z.
- He B.
- Zhang T.
- Fu Y.
- Ge S.
- Liu L.
- Zhang J.
- Xia N.
- Zhang Z.
- Long Q.X.
- Liu B.Z.
- Deng H.J.
- Wu G.C.
- Deng K.
- Chen Y.K.
- Liao P.
- Qiu J.F.
- Lin Y.
- Cai X.F.
- Wang D.Q.
- Hu Y.
- Ren J.H.
- Tang N.
- Xu Y.Y.
- Yu L.H.
- Mo Z.
- Gong F.
- Zhang X.L.
- Tian W.G.
- Hu L.
- Zhang X.X.
- Xiang J.L.
- Du H.X.
- Liu H.W.
- Lang C.H.
- Luo X.H.
- Wu S.B.
- Cui X.P.
- Zhou Z.
- Zhu M.M.
- Wang J.
- Xue C.J.
- Li X.F.
- Wang L.
- Li Z.J.
- Wang K.
- Niu C.C.
- Yang Q.J.
- Tang X.J.
- Zhang Y.
- Liu X.M.
- Li J.J.
- Zhang D.C.
- Zhang F.
- Liu P.
- Yuan J.
- Li Q.
- Hu J.L.
- Chen J.
- Huang A.L.
- Geyer P.E.
- Arend F.M.
- Doll S.
- Louiset M.-L.
- Virreira Winter S.
- Müller-Reif J.B.
- Torun F.M.
- Weigand M.
- Eichhorn P.
- Bruegel M.
- Strauss M.T.
- Holdt L.M.
- Mann M.
- Teupser D.
Experimental procedures
Patient information
Removal of identifying information
Experimental Design and Statistical Rationale




- Tang X.
- Sun R.
- Ge W.
- Mao T.
- Qian L.
- Huang C.
- Kang Z.
- Xiao Q.
- Luo M.
- Zhang Q.
- Li S.
- Chen H.
- Liu W.
- Wang B.
- Li S.
- Lin X.
- Xu X.
- Li H.
- Wu L.
- Dai J.
- Gao H.
- Li L.
- Lu T.
- Liang X.
- Cai X.
- Ruan G.
- Xu F.
- Li Y.
- Zhu Y.
- Kong Z.
- Huang J.
- Guo T.
- Al-Nesf M.A.Y.
- Abdesselem H.B.
- Bensmail I.
- Ibrahim S.
- Saeed W.A.H.
- Mohammed S.S.I.
- Razok A.
- Alhussain H.
- Aly R.M.A.
- Al Maslamani M.
- Ouararhni K.
- Khatib M.Y.
- Hssain A.A.
- Omrani A.S.
- Al-Kaabi S.
- Al Khal A.
- Al-Thani A.A.
- Samsam W.
- Farooq A.
- Al-Suwaidi J.
- Al-Maadheed M.
- Al-Siddiqi H.H.
- Butler A.E.
- Decock J.V.
- Mohamed-Ali V.
- Al-Ejeh F.
- Gisby J.
- Clarke C.L.
- Medjeral-Thomas N.
- Malik T.H.
- Papadaki A.
- Mortimer P.M.
- Buang N.B.
- Lewis S.
- Pereira M.
- Toulza F.
- Fagnano E.
- Mawhin M.A.
- Dutton E.E.
- Tapeng L.
- Richard A.C.
- Kirk P.D.
- Behmoaras J.
- Sandhu E.
- McAdoo S.P.
- Prendecki M.F.
- Pickering M.C.
- Botto M.
- Willicombe M.
- Thomas D.C.
- Peters J.E.
Laboratory characteristic tests
Antibody analyses
Patient classification based on antibody titers
Patient selection for proteomics analysis
Proteomic analysis
- Shen B.
- Yi X.
- Sun Y.
- Bi X.
- Du J.
- Zhang C.
- Quan S.
- Zhang F.
- Sun R.
- Qian L.
- Ge W.
- Liu W.
- Liang S.
- Chen H.
- Zhang Y.
- Li J.
- Xu J.
- He Z.
- Chen B.
- Wang J.
- Yan H.
- Zheng Y.
- Wang D.
- Zhu J.
- Kong Z.
- Kang Z.
- Liang X.
- Ding X.
- Ruan G.
- Xiang N.
- Cai X.
- Gao H.
- Li L.
- Li S.
- Xiao Q.
- Lu T.
- Zhu Y.
- Liu H.
- Chen H.
- Guo T.
- Shen B.
- Yi X.
- Sun Y.
- Bi X.
- Du J.
- Zhang C.
- Quan S.
- Zhang F.
- Sun R.
- Qian L.
- Ge W.
- Liu W.
- Liang S.
- Chen H.
- Zhang Y.
- Li J.
- Xu J.
- He Z.
- Chen B.
- Wang J.
- Yan H.
- Zheng Y.
- Wang D.
- Zhu J.
- Kong Z.
- Kang Z.
- Liang X.
- Ding X.
- Ruan G.
- Xiang N.
- Cai X.
- Gao H.
- Li L.
- Li S.
- Xiao Q.
- Lu T.
- Zhu Y.
- Liu H.
- Chen H.
- Guo T.
Pathway analysis
- Szklarczyk D.
- Gable A.L.
- Lyon D.
- Junge A.
- Wyder S.
- Huerta-Cepas J.
- Simonovic M.
- Doncheva N.T.
- Morris J.H.
- Bork P.
- Jensen L.J.
- Mering C.V.
Results
Negative and exceptionally high IgM and IgG expression in COVID-19
Vaccination boosts IgG expression in COVID-19
COVID-19 severity and on-admission inflammation were positively correlated with antibody expression
Enhanced cellular immune responses are associated with negative IgM and IgG expression
- Masana L.
- Correig E.
- Ibarretxe D.
- Anoro E.
- Arroyo J.A.
- Jericó C.
- Guerrero C.
- Miret M.
- Näf S.
- Pardo A.
- Perea V.
- Pérez-Bernalte R.
- Plana N.
- Ramírez-Montesinos R.
- Royuela M.
- Soler C.
- Urquizu-Padilla M.
- Zamora A.
- Pedro-Botet J.
Serum proteomics of 16 selected patients
Differential analyses of serum proteomics
- Shen B.
- Yi X.
- Sun Y.
- Bi X.
- Du J.
- Zhang C.
- Quan S.
- Zhang F.
- Sun R.
- Qian L.
- Ge W.
- Liu W.
- Liang S.
- Chen H.
- Zhang Y.
- Li J.
- Xu J.
- He Z.
- Chen B.
- Wang J.
- Yan H.
- Zheng Y.
- Wang D.
- Zhu J.
- Kong Z.
- Kang Z.
- Liang X.
- Ding X.
- Ruan G.
- Xiang N.
- Cai X.
- Gao H.
- Li L.
- Li S.
- Xiao Q.
- Lu T.
- Zhu Y.
- Liu H.
- Chen H.
- Guo T.
- Schneider W.M.
- Luna J.M.
- Hoffmann H.H.
- Sánchez-Rivera F.J.
- Leal A.A.
- Ashbrook A.W.
- Le Pen J.
- Ricardo-Lax I.
- Michailidis E.
- Peace A.
- Stenzel A.F.
- Lowe S.W.
- MacDonald M.R.
- Rice C.M.
- Poirier J.T.
- Szklarczyk D.
- Gable A.L.
- Lyon D.
- Junge A.
- Wyder S.
- Huerta-Cepas J.
- Simonovic M.
- Doncheva N.T.
- Morris J.H.
- Bork P.
- Jensen L.J.
- Mering C.V.
- Chakraborty S.
- Gonzalez J.
- Edwards K.
- Mallajosyula V.
- Buzzanco A.S.
- Sherwood R.
- Buffone C.
- Kathale N.
- Providenza S.
- Xie M.M.
- Andrews J.R.
- Blish C.A.
- Singh U.
- Dugan H.
- Wilson P.C.
- Pham T.D.
- Boyd S.D.
- Nadeau K.C.
- Pinsky B.A.
- Zhang S.
- Memoli M.J.
- Taubenberger J.K.
- Morales T.
- Schapiro J.M.
- Tan G.S.
- Jagannathan P.
- Wang T.T.
- Shen B.
- Yi X.
- Sun Y.
- Bi X.
- Du J.
- Zhang C.
- Quan S.
- Zhang F.
- Sun R.
- Qian L.
- Ge W.
- Liu W.
- Liang S.
- Chen H.
- Zhang Y.
- Li J.
- Xu J.
- He Z.
- Chen B.
- Wang J.
- Yan H.
- Zheng Y.
- Wang D.
- Zhu J.
- Kong Z.
- Kang Z.
- Liang X.
- Ding X.
- Ruan G.
- Xiang N.
- Cai X.
- Gao H.
- Li L.
- Li S.
- Xiao Q.
- Lu T.
- Zhu Y.
- Liu H.
- Chen H.
- Guo T.
- Wilk A.J.
- Rustagi A.
- Zhao N.Q.
- Roque J.
- Martínez-Colón G.J.
- McKechnie J.L.
- Ivison G.T.
- Ranganath T.
- Vergara R.
- Hollis T.
- Simpson L.J.
- Grant P.
- Subramanian A.
- Rogers A.J.
- Blish C.A.
Correlation between serum proteomes and clinical indicators
- Tang X.
- Sun R.
- Ge W.
- Mao T.
- Qian L.
- Huang C.
- Kang Z.
- Xiao Q.
- Luo M.
- Zhang Q.
- Li S.
- Chen H.
- Liu W.
- Wang B.
- Li S.
- Lin X.
- Xu X.
- Li H.
- Wu L.
- Dai J.
- Gao H.
- Li L.
- Lu T.
- Liang X.
- Cai X.
- Ruan G.
- Xu F.
- Li Y.
- Zhu Y.
- Kong Z.
- Huang J.
- Guo T.
- Tang X.
- Sun R.
- Ge W.
- Mao T.
- Qian L.
- Huang C.
- Kang Z.
- Xiao Q.
- Luo M.
- Zhang Q.
- Li S.
- Chen H.
- Liu W.
- Wang B.
- Li S.
- Lin X.
- Xu X.
- Li H.
- Wu L.
- Dai J.
- Gao H.
- Li L.
- Lu T.
- Liang X.
- Cai X.
- Ruan G.
- Xu F.
- Li Y.
- Zhu Y.
- Kong Z.
- Huang J.
- Guo T.
- Gisby J.
- Clarke C.L.
- Medjeral-Thomas N.
- Malik T.H.
- Papadaki A.
- Mortimer P.M.
- Buang N.B.
- Lewis S.
- Pereira M.
- Toulza F.
- Fagnano E.
- Mawhin M.A.
- Dutton E.E.
- Tapeng L.
- Richard A.C.
- Kirk P.D.
- Behmoaras J.
- Sandhu E.
- McAdoo S.P.
- Prendecki M.F.
- Pickering M.C.
- Botto M.
- Willicombe M.
- Thomas D.C.
- Peters J.E.
- Al-Nesf M.A.Y.
- Abdesselem H.B.
- Bensmail I.
- Ibrahim S.
- Saeed W.A.H.
- Mohammed S.S.I.
- Razok A.
- Alhussain H.
- Aly R.M.A.
- Al Maslamani M.
- Ouararhni K.
- Khatib M.Y.
- Hssain A.A.
- Omrani A.S.
- Al-Kaabi S.
- Al Khal A.
- Al-Thani A.A.
- Samsam W.
- Farooq A.
- Al-Suwaidi J.
- Al-Maadheed M.
- Al-Siddiqi H.H.
- Butler A.E.
- Decock J.V.
- Mohamed-Ali V.
- Al-Ejeh F.
A putative working model for diverse serology in COVID-19
Discussion
- Long Q.X.
- Liu B.Z.
- Deng H.J.
- Wu G.C.
- Deng K.
- Chen Y.K.
- Liao P.
- Qiu J.F.
- Lin Y.
- Cai X.F.
- Wang D.Q.
- Hu Y.
- Ren J.H.
- Tang N.
- Xu Y.Y.
- Yu L.H.
- Mo Z.
- Gong F.
- Zhang X.L.
- Tian W.G.
- Hu L.
- Zhang X.X.
- Xiang J.L.
- Du H.X.
- Liu H.W.
- Lang C.H.
- Luo X.H.
- Wu S.B.
- Cui X.P.
- Zhou Z.
- Zhu M.M.
- Wang J.
- Xue C.J.
- Li X.F.
- Wang L.
- Li Z.J.
- Wang K.
- Niu C.C.
- Yang Q.J.
- Tang X.J.
- Zhang Y.
- Liu X.M.
- Li J.J.
- Zhang D.C.
- Zhang F.
- Liu P.
- Yuan J.
- Li Q.
- Hu J.L.
- Chen J.
- Huang A.L.
- Garcia-Beltran W.F.
- Lam E.C.
- Astudillo M.G.
- Yang D.
- Miller T.E.
- Feldman J.
- Hauser B.M.
- Caradonna T.M.
- Clayton K.L.
- Nitido A.D.
- Murali M.R.
- Alter G.
- Charles R.C.
- Dighe A.
- Branda J.A.
- Lennerz J.K.
- Lingwood D.
- Schmidt A.G.
- Iafrate A.J.
- Balazs A.B.
- Garcia-Beltran W.F.
- Lam E.C.
- Astudillo M.G.
- Yang D.
- Miller T.E.
- Feldman J.
- Hauser B.M.
- Caradonna T.M.
- Clayton K.L.
- Nitido A.D.
- Murali M.R.
- Alter G.
- Charles R.C.
- Dighe A.
- Branda J.A.
- Lennerz J.K.
- Lingwood D.
- Schmidt A.G.
- Iafrate A.J.
- Balazs A.B.
- Nie X.
- Qian L.
- Sun R.
- Huang B.
- Dong X.
- Xiao Q.
- Zhang Q.
- Lu T.
- Yue L.
- Chen S.
- Li X.
- Sun Y.
- Li L.
- Xu L.
- Li Y.
- Yang M.
- Xue Z.
- Liang S.
- Ding X.
- Yuan C.
- Peng L.
- Liu W.
- Yi X.
- Lyu M.
- Xiao G.
- Xu X.
- Ge W.
- He J.
- Fan J.
- Wu J.
- Luo M.
- Chang X.
- Pan H.
- Cai X.
- Zhou J.
- Yu J.
- Gao H.
- Xie M.
- Wang S.
- Ruan G.
- Chen H.
- Su H.
- Mei H.
- Luo D.
- Zhao D.
- Xu F.
- Li Y.
- Zhu Y.
- Xia J.
- Hu Y.
- Guo T.
- Boumaza A.
- Gay L.
- Mezouar S.
- Bestion E.
- Diallo A.B.
- Michel M.
- Desnues B.
- Raoult D.
- La Scola B.
- Halfon P.
- Vitte J.
- Olive D.
- Mege J.L.
- Wendisch D.
- Dietrich O.
- Mari T.
- von Stillfried S.
- Ibarra I.L.
- Mittermaier M.
- Mache C.
- Chua R.L.
- Knoll R.
- Timm S.
- Brumhard S.
- Krammer T.
- Zauber H.
- Hiller A.L.
- Pascual-Reguant A.
- Mothes R.
- Bülow R.D.
- Schulze J.
- Leipold A.M.
- Djudjaj S.
- Erhard F.
- Geffers R.
- Pott F.
- Kazmierski J.
- Radke J.
- Pergantis P.
- Baßler K.
- Conrad C.
- Aschenbrenner A.C.
- Sawitzki B.
- Landthaler M.
- Wyler E.
- Horst D.
- Hippenstiel S.
- Hocke A.
- Heppner F.L.
- Uhrig A.
- Garcia C.
- Machleidt F.
- Herold S.
- Elezkurtaj S.
- Thibeault C.
- Witzenrath M.
- Cochain C.
- Suttorp N.
- Drosten C.
- Goffinet C.
- Kurth F.
- Schultze J.L.
- Radbruch H.
- Ochs M.
- Eils R.
- Müller-Redetzky H.
- Hauser A.E.
- Luecken M.D.
- Theis F.J.
- Conrad C.
- Wolff T.
- Boor P.
- Selbach M.
- Saliba A.E.
- Sander L.E.
- Shen B.
- Yi X.
- Sun Y.
- Bi X.
- Du J.
- Zhang C.
- Quan S.
- Zhang F.
- Sun R.
- Qian L.
- Ge W.
- Liu W.
- Liang S.
- Chen H.
- Zhang Y.
- Li J.
- Xu J.
- He Z.
- Chen B.
- Wang J.
- Yan H.
- Zheng Y.
- Wang D.
- Zhu J.
- Kong Z.
- Kang Z.
- Liang X.
- Ding X.
- Ruan G.
- Xiang N.
- Cai X.
- Gao H.
- Li L.
- Li S.
- Xiao Q.
- Lu T.
- Zhu Y.
- Liu H.
- Chen H.
- Guo T.
- Ali H.
- Alahmad B.
- Al-Shammari A.A.
- Alterki A.
- Hammad M.
- Cherian P.
- Alkhairi I.
- Sindhu S.
- Thanaraj T.A.
- Mohammad A.
- Alghanim G.
- Deverajan S.
- Ahmad R.
- El-Shazly S.
- Dashti A.A.
- Shehab M.
- Al-Sabah S.
- Alkandari A.
- Abubaker J.
- Abu-Farha M.
- Al-Mulla F.
Data availability
Supplementary data
Competing Interests statement
Acknowledgments
Supplementary Data
References
- Antibody responses to SARS-CoV-2 in patients with COVID-19.Nat Med. 2020; 26: 845-848
- Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019.Clin Infect Dis. 2020; 71: 2027-2034
- Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019.International Journal of Infectious Diseases. 2020; 94: 49-52
- Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.Sci Immunol. 2020; 5eabe0367
- Persistence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 in Relation to Symptoms in a Nationwide Prospective Study.Clin Infect Dis. 2021; 73: 2155-2162
- Durable antibody response one year after hospitalization for COVID-19: A longitudinal cohort study.J Autoimmun. 2021; 123 (102703): 102703
- Previous COVID-19 Infection and Antibody Levels After Vaccination.Front Public Health. 2021; 9 (778243): 778243
- High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion.EMBO Mol Med. 2021; 13 (e14167): e14167
- Genetics meets proteomics: perspectives for large population-based studies.Nat Rev Genet. 2020;
- missMDA: A Package for Handling Missing Values in Multivariate Data Analysis.Journal of Statistical Software. 2016; 70: 1-31
- Proteomic and Metabolomic Characterization of COVID-19 Patient Sera.Cell. 2020; 182 (e15): 59-72
- Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat Commun. 2019; 10: 1523
- STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res. 2019; 47: D607-d613
- The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis.Crit Care. 2020; 24: 255
- Prealbumin as a Predictor of Prognosis in Patients With Coronavirus Disease 2019.Front Med (Lausanne). 2020; 7: 374
- The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis.Life Sci. 2020; 258118167
- Abnormal immunity of non-survivors with COVID-19: predictors for mortality.Infect Dis Poverty. 2020; 9: 108
- Low HDL and high triglycerides predict COVID-19 severity.Sci Rep. 2021; 11: 7217
- Adaptive immunity to SARS-CoV-2 and COVID-19.Cell. 2021; 184: 861-880
- Serum level of testosterone predicts disease severity of male COVID-19 patients and is related to T-cell immune modulation by transcriptome analysis.Clin Chim Acta. 2022; 524: 132-138
- Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level.Journal of proteome research. 2020; 19: 4417-4427
- Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks.Cell. 2021; 184 (e114): 120-132
- IgD can largely substitute for loss of IgM function in B cells.Nature. 1998; 393: 797-801
- The value of HDL genetics.Current opinion in lipidology. 2008; 19: 385-394
- Proinflammatory IgG Fc structures in patients with severe COVID-19.Nature immunology. 2021; 22: 67-73
- A single-cell atlas of the peripheral immune response in patients with severe COVID-19.Nature Medicine. 2020; 26: 1070-1076
- CD163 and inflammation: biological, diagnostic, and therapeutic aspects.Antioxid Redox Signal. 2013; 18: 2352-2363
- COVIDpro: Database for mining protein dysregulation in patients with COVID-19.bioRxiv. 2022; (2022.2009.2027.509819)
- Enhanced inflammation and suppressed adaptive immunity in COVID-19 with prolonged RNA shedding.Cell Discovery. 2022; 8: 70
- Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19.Immunity. 2020; 53 (e1105): 1108-1122
- Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death.Elife. 2021; 10
- Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications.Nat Commun. 2022; 13: 946
- The Mertk receptor tyrosine kinase promotes T-B interaction stimulated by IgD B-cell receptor cross-linking.J Autoimmun. 2014; 53: 78-84
- COVID-19-neutralizing antibodies predict disease severity and survival.Cell. 2021; 184 (e411): 476-488
- Antibody-dependent enhancement of coronavirus.Int J Infect Dis. 2020; 100: 483-489
- A systematic meta-analysis of immune signatures in patients with COVID-19.Rev Med Virol. 2021; 31e2195
- The clinical course and its correlated immune status in COVID-19 pneumonia.J Clin Virol. 2020; 127104361
- Multi-organ proteomic landscape of COVID-19 autopsies.Cell. 2021; 184 (e714): 775-791
- Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis.J Infect Dis. 2021; 224: 395-406
- SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.Cell. 2021; 184 (e6227): 6243-6261
- Lipid metabolism changes in patients with severe COVID-19.Clin Chim Acta. 2021; 517: 66-73
- One-year sustained cellular and humoral immunities of COVID-19 convalescents.Clin Infect Dis. 2021;
Favresse, J., Gillot, C., Di Chiaro, L., Eucher, C., Elsen, M., Van Eeckhoudt, S., David, C., Morimont, L., Dogné, J. M., and Douxfils, J. (2021) Neutralizing Antibodies in COVID-19 Patients and Vaccine Recipients after Two Doses of BNT162b2. Viruses 13
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
Author Contributions
Y.Z., B.S., and T.G. designed the project, Y.Z., J.W., K.Z., D.W., and G.Z. collected the samples, X.L., J.W., K.Z., J.L, S.C., M.L., J.P., J.X., H.Z., and G.Z. organized the sample information, X.L., S.L., and X.Y. prepared the samples, X.L., M.L., Y.S., Y.X., and Q.Z. performed the data analysis, X.L., Y.X., and Q.Z. designed the figures, X.L. and R.S. wrote the manuscript, Y.Z., B.S., Y.Z., and T.G. supervised the project.
In Brief statement
Unexpected serological patterns, such as continuous negative IgM and IgG expression, or exceptionally high titers of IgM were observed in a cohort of 144 COVID-19 patients. To understand the host responses behind the diverse serology, we applied two-year clinical manifestation and longitudinal serum proteomics analysis. Our findings suggest that COVID-19 patients who do not express antibodies developed cellular immunity for viral defense, and that high titers of IgM might not be favorable to COVID-19 recovery.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy