Highlights
- •p62 binds to and stabilizes IκBα by preventing its proteolytic degradation
- •In-cell chemical crosslinking/LC-MS/MS identified the inter-crosslinked sites
- •Hotspots of p62-IκBα association are defined
- •APEX proximity labeling revealed p62 impaired IκBα-interaction with proteasome
- •p62 chaperones newly synthesized IκBα to terminate NF-κB activation.
ABSTRACT
Graphical abstract

The abbreviations used are as follows:
ABC (ammonium bicarbonate), AGC (automatic gain control), AR (Ankyrin repeat), ARD (AR-domain APEX), BCA (bicinchoninic acid), BFDR (Bayesian False Discovery Rate), CE (cytoplasmic Extract), CSL (Cell Lysis), XLMS (chemical crosslinking mass spectrometry), Co-IP (co-immunoprecipitation), CHX (cycloheximide), DMEM (Dulbecco's Modified Eagle high glucose medium), DSS (disuccinimidyl suberate), EThcD (electron transfer / high-energy collision dissociation), FBS (fetal bovine serum), FDR (false discovery rates), HA (hemagglutinin), HA-IκBα (HA-tagged IκBα), HCD (higher-energy collisional dissociation), iBMK (immortalized baby mouse kidney cells), IB (Immunoblotting), IL-1β (interleukin-1β), IDR-1 (innate defense regulator), IR (intervening region), Lys-C (lysylendopeptidase C), MEFs (mouse embryo fibroblasts), MEM (minimal Eagle's medium), NCE (normalized collision energy), NE (nuclear extract), NIS (nuclear import sequences), NLS (nuclear localization signal), NPC (nuclear pore complex), NSAF (normalized spectral abundance factor), Nup153 (nucleoporin 153), p62 flp/flp (p62-floxed mouse), p62-Myc (Myc-tagged p62), p62mut (p62 genetic mutant mouse), PB-1 (Phox and Bem1p-domain), P-p65 (phosphorylated p65), RanBP2 (a SUMO E3-ligase/Nup358), Ran-GDP (an abundant GTPase involved in nuclear import), SA (streptavidin), SOD1 (Cu-Zn superoxide dismutase), SIAB (succinimidyl (4-iodoacetyl)aminobenzoate)), SQSTM-1 (Sequestosome 1), TNFα (tumor necrosis factor α), TB (TRAF6-binding), Ub (ubiquitin), UPD (Ub-dependent 26S proteasomal degradation), ZnPP (Zn-protoporphyrin IX), ZZ (Zn-finger binding motifs)INTRODUCTION
- Chen C.
- Deng M.
- Sun Q.
- Loughran P.
- Billiar T.R.
- Scott M.J.
- Ling J.
- Kang Y.
- Zhao R.
- Xia Q.
- Lee D.F.
- Chang Z.
- Li J.
- Peng B.
- Fleming J.B.
- Wang H.
- Liu J.
- Lemischka I.R.
- Hung M.C.
- Chiao P.J.
EXPERIMENTAL PROCEDURES
p62-Mutant (p62mut) Mice and p62-KO Cell Lines:
p62mut mice
p62 KO MEF cells
- Komatsu M.
- Waguri S.
- Koike M.
- Sou Y.S.
- Ueno T.
- Hara T.
- Mizushima N.
- Iwata J.
- Ezaki J.
- Murata S.
- Hamazaki J.
- Nishito Y.
- Iemura S.
- Natsume T.
- Yanagawa T.
- Uwayama J.
- Warabi E.
- Yoshida H.
- Ishii T.
- Kobayashi A.
- Yamamoto M.
- Yue Z.
- Uchiyama Y.
- Kominami E.
- Tanaka K.
p62 KO HepG2 cells
Cell Culture and Transfections
Plasmids
- Hung V.
- Lam S.S.
- Udeshi N.D.
- Svinkina T.
- Guzman G.
- Mootha V.K.
- Carr S.A.
- Ting A.Y.
Plasmid | Template | PCR primers (restriction sites underlined) | Vector | RE |
---|---|---|---|---|
pcDNA6-p62-myc ΔZZ (128-163) | N/A | N/A, synthesized p62 DNA fragment with 382-489 deleted | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc ΔTB (225-251) | N/A | N/A, synthesized p62 DNA fragment with 672-753 deleted | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc N127 | pTOPO-p62 | AAGCTTATGGCGTCGCTCACCG CTCGAGGATCACATTGGGGTGCACC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc N224 | pTOPO-p62 | AAGCTTATGGCGTCGCTCACCG CTCGAGTGATTCTGCCGTGGGGCC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc N265 | pTOPO-p62 | AAGCTTATGGCGTCGCTCACCG CTCGAGTCTTTTCCCTCCGTGCTCCAC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc N320 | pTOPO-p62 | AAGCTTATGGCGTCGCTCACCG CTCGAGCCCCTCGGACTCCAAGGCG | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc N385 | pTOPO-p62 | AAGCTTATGGCGTCGCTCACCG CTCGAGATGTGGGTACAAGGCAGCTTCC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc C225 | pTOPO-p62 | AAGCTTATGGCTTCTGGTCCATCGGAGG CTCGAGCAACGGCGGGGGATGC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc C164 | pTOPO-p62 | AAGCTTATGACCAAGCTCGCATTCCCC CTCGAGCAACGGCGGGGGATGC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc C104 | pTOPO-p62 | AAGCTTATGGAGTGCCGGCGGGACCACC CTCGAGCAACGGCGGGGGATGC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc LL10AA | pTOPO-p62 | CTCACCGTGAAGGCCTACGCTGCAGGCAAGGAGGACGCGGCG CGCCGCGTCCTCCTTGCCTGCAGCGTAGGCCTTCACGGTGAG | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc K13A | pTOPO-p62 | CTACCTTCTGGGCGCGGAGGACGCGGCGC GCGCCGCGTCCTCCGCGCCCAGAAGGTAG | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc DE14AA | pTOPO-p62 | CTACCTTCTGGGCAAGGCAGCTGCGGCGCGCGAGATTCGC GCGAATCTCGCGCGCCGCAGCTGCCTTGCCCAGAAGGTAG | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc H190A | pTOPO-p62 | GGCTTCGGAAGCTGAAAGCTGGACACTTTGGCTGGC GCCAGCCAAAGTGTCCAGCTTTCAGCTTCCGAAGCC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc WL184AA | pTOPO-p62 | GCTTCTCGCACAGCCGCGCGGCCCGGAAGGTGAAACAC GTGTTTCACCTTCCGGGCCGCGCGGCTGTGCGAGAAGC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc KK187AA | pTOPO-p62 | GCCGCTGGCTCCGGGCGGTGGCACACGGACACTTCG CGAAGTGTCCGTGTGCCACCGCCCGGAGCCAGCGGC | pcDNA6-myc/His | XhoI/ HindIII |
pcDNA6-p62-myc RRKK-A (R183R186K187K189AAAA): | pTOPO-p62 | GGGCTTCTCGCACAGCGCCTGGCTCGCGGCGGTGGCACACGGACACTTCGGG CCCGAAGTGTCCGTGTGCCACCGCCGCGAGCCAGGCGCTGTGCGAGAAGCCC | pcDNA6-myc/His | XhoI/ HindIII |
pCMV4-3HA-IκBα 44-317 | pCMV4-3HA- IκBα | AAGCTTACCCAGATGGTCAAGGAGC CCCGGGATCCTCTAGATCATAACG | pCMV4-3HA-IκBα | HindIII/ SmaI |
pCMV4-3HA-IκBα 67-317 | pCMV4-3HA- IκBα | AAGCTTACCAAGCAGCAGCTCACCG CCCGGGATCCTCTAGATCATAACG | pCMV4-3HA-IκBα | HindIII/ SmaI |
pCMV4-3HA-IκBα 104-317 | pCMV4-3HA- IκBα | GGAAGTTGAGAGCGTAATCTGGAACGTCATATGG AGATTACGCTCTCAACTTCCAGAACAACCTGC | N/A HiFi DNA Assembly | N/A |
pCMV4-3HA-IκBα 1-206 | pCMV4-3HA- IκBα | AAGCTTACCATGTTCCAGGCGGCCGAG CCCGGGTCAACCCAAGGACACCAAAAGCTCC | pCMV4-3HA-IκBα | HindIII/ SmaI |
pCMV4-3HA-IκBα 1-287 | pCMV4-3HA- IκBα | AAGCTTACCATGTTCCAGGCGGCCGAG CCCGGGTCACTCCTCATCCTCACTCTCTGGCAGC | pCMV4-3HA-IκBα | HindIII/ SmaI |
pCMV4-3HA-IκBα 104-209 | pCMV4-3HA- IκBα 104-317 | CTCTAGATCAGACATCAGCACCCAAGGACAC TGCTGATGTCTGATCTAGAGGATCCCGGGTGGC | N/A Hifi DNA Assembly | N/A |
pCMV4-3HA-IκBα 104-199 | pCMV4-3HA- IκBα 104-317 | CTCTAGATCACACGATGCCCAGGTAGCCATG GGGCATCGTGTGATCTAGAGGATCCCGGGTGGC | N/A Hifi DNA Assembly | N/A |
pCMV4-APEX2- IκBα | pLX304-Flag-APEX2-NES | TCGAATTCAGATCTGGTACGCCACCATGGACTACAAGGATG CCGCCTGGAACATGGTAAGCTTGCCTGATCCGCTTGTGCTACCTGACCCGGCATCAGCAAACCCAAGCTC | pCMV4-3HA-IκBα Hifi DNA Assembly | KpnI/ HindIII to cut out HA and linearize vector |
Cell Fractionation
Western Immunoblotting (IB) Analyses
Co-Immunoprecipitation (Co-IP) Analyses
In-Cell Chemical Crosslinking and Crosslinked Protein Capture for LC-MS/MS (XLMS)
IR Fluorescence Detection of DSS- or SIAB-crosslinked p62-IκBα Species
APEX Reaction and Biotinylated Protein Capture
- Hung V.
- Lam S.S.
- Udeshi N.D.
- Svinkina T.
- Guzman G.
- Mootha V.K.
- Carr S.A.
- Ting A.Y.
Mass Spectrometric (MS) Analyses
Experimental Design and Statistical Rationale
- Mellacheruvu D.
- Wright Z.
- Couzens A.L.
- Lambert J.P.
- St-Denis N.A.
- Li T.
- Miteva Y.V.
- Hauri S.
- Sardiu M.E.
- Low T.Y.
- Halim V.A.
- Bagshaw R.D.
- Hubner N.C.
- Al-Hakim A.
- Bouchard A.
- Faubert D.
- Fermin D.
- Dunham W.H.
- Goudreault M.
- Lin Z.Y.
- Badillo B.G.
- Pawson T.
- Durocher D.
- Coulombe B.
- Aebersold R.
- Superti-Furga G.
- Colinge J.
- Heck A.J.
- Choi H.
- Gstaiger M.
- Mohammed S.
- Cristea I.M.
- Bennett K.L.
- Washburn M.P.
- Raught B.
- Ewing R.M.
- Gingras A.C.
- Nesvizhskii A.I.

RESULTS
Intimate protein-protein interactions of p62 with IκBα enhances its proteolytic stability

Identification of the p62-IκBα-interaction domains through structural deletion, in-cell chemical crosslinking/LC-MS/MS (XLMS) and site-directed mutagenesis analyses


p62 peptide | IκBα peptide | Xlinked AA | Xlinked AA |
---|---|---|---|
AYLLGK(+SIAB)EDAAR | C(+SIAB)GADVNR | K13 | C239 |
K(+SIAB)VK | C(+SIAB)GADVNR | K187 | C239 |
K(+DSS)VK | GSEPWK(+DSS)QQLTEDGDSFLHLAIIHEEK | K187 | K67 |
K(+DSS)VK | TALHLAVDLQNPDLVSLLLK(+DSS)C(NEM)GADVNR | K187 | K238 |
K(+DSS)VK | HDSGLDSM(Oxidation)KDEEYEQM(Oxidation)VK(+DSS) ELQEIR | K187 | K47 |
K(+DSS)VK | HDSGLDSM(Oxidation)K(+DSS)DEEYEQMVK | K187 | K38 |
p62 peptide | p62 peptide | ||
AYLLGK(+DSS)EDAAR | IYIK(+DSS)EK | K13 | K100 |
IYIK(+DSS)EK | K(+DSS)EC(Nethylmaleimide)R | K100 | K103 |
AYLLGK(+DSS)EDAAR | K(+DSS)EC(Nethylmaleimide)R | K13 | K103 |
AYLLGK(+DSS)EDAAR | EK(+DSS)K | K13 | K102 |
AYLLGK(+DSS)EDAAR | AYLLGK(+DSS)EDAAR | K13 | K13 |
AYLLGK(+SIAB)EDAAR | DHRPPC(+SIAB)AQEAPR | K13 | C113 |
AYLLGK(+SIAB)EDAAR | EC(+SIAB)R | K13 | C105 |
RDHRPPC(+SIAB)AQEAPR | K(+SIAB)VK | C113 | K187 |


Influence of p62-IκBα-interactions on intracellular IκBα-protein partnerships as monitored through in-cell APEX-proximity labeling analyses
Disruption of intracellular p62-IκBα protein interactions: Physiological and pathophysiological consequences



DISCUSSION
- Chen C.
- Deng M.
- Sun Q.
- Loughran P.
- Billiar T.R.
- Scott M.J.
- Ling J.
- Kang Y.
- Zhao R.
- Xia Q.
- Lee D.F.
- Chang Z.
- Li J.
- Peng B.
- Fleming J.B.
- Wang H.
- Liu J.
- Lemischka I.R.
- Hung M.C.
- Chiao P.J.
- Chen C.
- Deng M.
- Sun Q.
- Loughran P.
- Billiar T.R.
- Scott M.J.
- Ling J.
- Kang Y.
- Zhao R.
- Xia Q.
- Lee D.F.
- Chang Z.
- Li J.
- Peng B.
- Fleming J.B.
- Wang H.
- Liu J.
- Lemischka I.R.
- Hung M.C.
- Chiao P.J.

- Chen C.
- Deng M.
- Sun Q.
- Loughran P.
- Billiar T.R.
- Scott M.J.
- Ling J.
- Kang Y.
- Zhao R.
- Xia Q.
- Lee D.F.
- Chang Z.
- Li J.
- Peng B.
- Fleming J.B.
- Wang H.
- Liu J.
- Lemischka I.R.
- Hung M.C.
- Chiao P.J.
- Zhong Z.
- Umemura A.
- Sanchez-Lopez E.
- Liang S.
- Shalapour S.
- Wong J.
- He F.
- Boassa D.
- Perkins G.
- Ali S.R.
- McGeough M.D.
- Ellisman M.H.
- Seki E.
- Gustafsson A.B.
- Hoffman H.M.
- Diaz-Meco M.T.
- Moscat J.
- Karin M.
DATA AVAILABILITY
ACKNOWLEDGMENTS
Supplementary data
REFERENCES
- Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system.Curr Opin Cell Biol. 1993; 5: 477-487
- Cell-type-resolved quantitative proteomics of murine liver.Cell Metab. 2014; 20: 1076-1087
- Mechanism for biphasic rel A. NF-kappaB1 nuclear translocation in tumor necrosis factor alpha-stimulated hepatocytes.J Biol Chem. 1997; 272: 9825-9832
- IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response.Nature. 2010; 466: 1115-1119
- In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.J Proteomics. 2016; 136: 234-247
- Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation.Mol. Cell Biol. 1993; 13: 3301-3310
- A proteasome inhibitor prevent activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B.EMBO J. 1994; 13: 5433-5441
- Regulation of IkappaBbeta degradation. Similarities to and differences from IkappaBalpha.J. Biol. Chem. 1997; 272: 9942-9949
- Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B.Mol. Cell Biol. 1995; 15: 2689-2696
- I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B.Cell. 1995; 80: 573-582
- Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm.J. Cell Sci. 1997; 110: 369-378
- Missing pieces in the NF-kappaB puzzle.Cell. 2002; 109: S81-96
- Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein.FEBS Lett. 1998; 435: 138-142
- (2014) Lipopolysaccharide stimulates p62-dependent autophagy-like aggregate clearance in hepatocytes.Biomed Res Int. 2014; 267350https://doi.org/10.1155/2014/267350
- Role of p62/SQSTM1 in liver physiology and pathogenesis.Exp Biol Med (Maywood). 2013; 238: 525-538
- Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment.Cell. 2016; 166: 288-298
- KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma.Cancer Cell. 2012; 21: 105-120
- p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer.FEBS Lett. 2016; 590: 2375-2397
- Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant.Proc Natl Acad Sci U S A. 2017; 114: 1916-1921
- A Novel Mechanism for NF-kappaB-activation via IkappaB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation.Mol Cell Proteomics. 2020; 19: 1968-1986
- Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice.Cell. 2007; 131: 1149-1163
- DNA targeting specificity of RNA-guided Cas9 nucleases.Nat Biotechnol. 2013; 31: 827-832
- Heme-reversible impairment of CYP2B1/2 induction in heme-depleted rat hepatocytes in primary culture: translational control by a hepatic alpha-subunit of the eukaryotic initiation factor kinase?.J Pharmacol Exp Ther. 2005; 314: 128-138
- Genome engineering using the CRISPR-Cas9 system.Nat Protoc. 2013; 8: 2281-2308
- Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation.eLife. 2017; 6https://doi.org/10.7554/eLife.24463
- In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis.Anal Biochem. 1992; 203: 173-179
- Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing.Anal Biochem. 1995; 224: 451-455
- In-depth analysis of tandem mass spectrometry data from disparate instrument types.Mol Cell Proteomics. 2008; 7: 2386-2398
- Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry.Nat Methods. 2007; 4: 207-214
- Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae.J Proteome Res. 2006; 5: 2339-2347
- SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software.J Proteomics. 2014; 100: 37-43
- The CRAPome: a contaminant repository for affinity purification-mass spectrometry data.Nat Methods. 2013; 10: 730-736
- MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.Nat Biotechnol. 2008; 26: 1367-1372
- NF-kappaB dictates the degradation pathway of IkappaBalpha.EMBO J. 2008; 27: 1357-1367
- A Regulated, Ubiquitin-Independent Degron in IkappaBalpha.J Mol Biol. 2015; 427: 2748-2756
- Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B.Proc Natl Acad Sci U S A. 1994; 91: 12740-12744
- p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.J Biol Chem. 2007; 282: 24131-24145
- Signal integration and diversification through the p62 scaffold protein.Trends Biochem Sci. 2007; 32: 95-100
- Structural basis for sorting mechanism of p62 in selective autophagy.J Biol Chem. 2008; 283: 22847-22857
- Physiological significance of selective degradation of p62 by autophagy.FEBS Lett. 2010; 584: 1374-1378
- Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies.J Biol Chem. 2010; 285: 5941-5953
- Interaction domains of p62: a bridge between p62 and selective autophagy.DNA Cell Biol. 2013; 32: 220-227
- Different Roles of p62 (SQSTM1) Isoforms in Keratin-Related Protein Aggregation.Int J Mol Sci. 2021; 22: 6227https://doi.org/10.3390/ijms22126227
- Structure of an IkappaBalpha/NF-kappaB complex.Cell. 1998; 95: 749-758
- Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65.Mol Cell Biol. 1995; 15: 2166-2172
- The IkappaBalpha/NF-kappaB complex has two hot spots, one at either end of the interface.Protein Sci. 2008; 17: 2051-2058
- A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB activity.Mol Syst Biol. 2007; 3: 111
- Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus.EMBO J. 1993; 12: 201-211
- Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences.Mol Cell Biol. 1998; 18: 2524-2534
- Characterization of IkappaBalpha nuclear import pathway.J Biol Chem. 1999; 274: 6804-6812
- A code for RanGDP binding in ankyrin repeats defines a nuclear import pathway.Cell. 2014; 157: 1130-1145
- Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP.J Mol Biol. 1999; 293: 579-593
- Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain.EMBO J. 1999; 18: 1982-1995
- Crystallographic and biochemical analysis of the Ran-binding zinc finger domain.J Mol Biol. 2009; 391: 375-389
- Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability.J Cell Biol. 2011; 194: 597-612
- The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner.Traffic. 2012; 13: 218-233
- NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria.Cell. 2016; 164: 896-910
- The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis.Cancer Cell. 2008; 13: 343-354
- p62 in Cancer: Signaling Adaptor Beyond Autophagy.Cell. 2016; 167: 606-609
- Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide.J Biol Chem. 2009; 284: 36007-36011
- Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism.J Neurochem. 2009; 111: 1062-1073
- Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins.J Biol Chem. 2003; 278: 34568-34581
- Solution structure of atypical protein kinase C PB1 domain and its mode of interaction with ZIP/p62 and MEK5.J Biol Chem. 2004; 279: 31883-31890
- p62 at the crossroads of autophagy, apoptosis, and cancer.Cell. 2009; 137: 1001-1004
- Autophagy suppresses tumorigenesis through elimination of p62.Cell. 2009; 137: 1062-1107
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
Financial Support: These studies were supported by NIH Grants GM44037 (MAC). An UCSF Liver Center Flex fund (NIDDK Grant P30DK26743) supported the generation of the genetic p62mut mouse through UC Davis KOMP Facility. We also acknowledge the support for the mass spectrometry experiments at the UCSF Biomedical Mass Spectrometry and Proteomics Resource Center (Prof. A. L. Burlingame, Director) by the Adelson Medical Research Foundation and the University of California, San Francisco Program for Breakthrough Biomedical Research.
Author Contributions:
Y.L., M. J. T. and M.A.C designed the studies and wrote the manuscript. M.A.C supervised the project. Y.L. conducted most of the experiments with MS support, data analyses and interpretation from M. J. T. L. H. carried out the qRT-PCR (Fig. S10) and CIFM (Fig. S8) analyses. A.L.B participated in the discussion of potential MS proximity-labeling approaches to be employed. All authors critically reviewed the manuscript.
In Brief
The transcriptional activator NF-κB inhibitor, IκBα is proteolytically unstable when uncomplexed. How newly synthesized IκBα escapes degradation to terminate nuclear NF-κB-activation is unknown. Using in-cell chemical crosslinking and proximity labeling MS analyses, we uncovered a novel association of p62 with IκBα via well-defined structural hotspots, which impairs its interaction with the 26S/20S proteasome, extending its life-span and enabling termination of NF-κB-activation. Mice carrying liver-specific genetic deletion of p62-IκBα hotspot exhibit enhanced liver inflammation upon aging, validating this novel p62 role.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy