Highlights
- •Four spectral library-based data-independent acquisition (DIA) pipelines were benchmarked for accurate identification and quantification of peptide antigens in complex immunopeptidomic datasets.
- •PEAKS and DIA-NN provided higher immunopeptidome coverage and reproducibility between replicates.
- •Skyline and Spectronaut achieved lower false-positive identifications.
- •All tools showed high correlation in the quantification of HLA-bound peptides.
- •A consensus approach provides the highest confidence in peptide identification.
ABSTRACT
Graphical abstract

Keywords
Abbreviations:
DDA (Data-dependent acquisition), DIA (Data-independent acquisition), HLA (Human leukocyte antigen), FDR (False discovery rate), LFQ (Label-free quantification), LC-MS/MS (Liquid chromatography coupled with tandem mass spectrometry), MS (Mass spectrometry), MHC (Major histocompatibility complex), pHLA (HLA-bound peptide complex), PSM (Peptide-spectrum match), SWATH-MS (Sequential windowed acquisition of all theoretical fragment ion mass spectra)Introduction
- Bassani-Sternberg M.
- Bräunlein E.
- Klar R.
- Engleitner T.
- Sinitcyn P.
- Audehm S.
- Straub M.
- Weber J.
- Slotta-Huspenina J.
- Specht K.
- Martignoni M.E.
- Werner A.
- Hein R.
- H. Busch D.
- Peschel C.
- Rad R.
- Cox J.
- Mann M.
- Krackhardt A.M.
- Navarro P.
- Kuharev J.
- Gillet L.C.
- Bernhardt O.M.
- MacLean B.
- Röst H.L.
- Tate S.A.
- Tsou C.-C.
- Reiter L.
- Distler U.
- Rosenberger G.
- Perez-Riverol Y.
- Nesvizhskii A.I.
- Aebersold R.
- Tenzer S.
- Caron E.
- Espona L.
- Kowalewski D.J.
- Schuster H.
- Ternette N.
- Alpízar A.
- Schittenhelm R.B.
- Ramarathinam S.H.
- Lindestam Arlehamn C.S.
- Chiek Koh C.
- Gillet L.C.
- Rabsteyn A.
- Navarro P.
- Kim S.
- Lam H.
- Sturm T.
- Marcilla M.
- Sette A.
- Campbell D.S.
- Deutsch E.W.
- Moritz R.L.
- Purcell A.W.
- Rammensee H.-G.
- Stevanovic S.
- Aebersold R.
- Schittenhelm R.B.
- Sivaneswaran S.
- Lim Kam Sian T.C.C.
- Croft N.P.
- Purcell A.W.
Kovalchik, K., Hamelin, D., and Caron, E. (2022) Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS. In: Corrales, F. J., Paradela, A., and Marcilla, M., eds. Clinical Proteomics: Methods and Protocols, pp. 137-147, Springer US, New York, NY
- Caron E.
- Espona L.
- Kowalewski D.J.
- Schuster H.
- Ternette N.
- Alpízar A.
- Schittenhelm R.B.
- Ramarathinam S.H.
- Lindestam Arlehamn C.S.
- Chiek Koh C.
- Gillet L.C.
- Rabsteyn A.
- Navarro P.
- Kim S.
- Lam H.
- Sturm T.
- Marcilla M.
- Sette A.
- Campbell D.S.
- Deutsch E.W.
- Moritz R.L.
- Purcell A.W.
- Rammensee H.-G.
- Stevanovic S.
- Aebersold R.
- Bruderer R.
- Bernhardt O.M.
- Gandhi T.
- Miladinović S.M.
- Cheng L.-Y.
- Messner S.
- Ehrenberger T.
- Zanotelli V.
- Butscheid Y.
- Escher C.
- Vitek O.
- Rinner O.
- Reiter L.
Experimental Procedures
Experimental Design and Statistical Rationale
Cell culture
Large-scale isolation and elution of HLA peptides
LC-MS/MS analysis to identify HLA-bound peptides for spectral library generation
DDA database search to generate spectral library
Generation of a spectral library containing HLA-A*02:01 and HLA-B*57:01 bound peptides
- Pavlos R.
- McKinnon E.J.
- Ostrov D.A.
- Peters B.
- Buus S.
- Koelle D.
- Chopra A.
- Schutte R.
- Rive C.
- Redwood A.
- Restrepo S.
- Bracey A.
- Kaever T.
- Myers P.
- Speers E.
- Malaker S.A.
- Shabanowitz J.
- Jing Y.
- Gaudieri S.
- Hunt D.F.
- Carrington M.
- Haas D.W.
- Mallal S.
- Phillips E.J.
Small-scale immunoprecipitation for pHLA quantification and DIA algorithm benchmarking
Titration of HLA-B*57:01 bound peptidome within a HeLa tryptic digest
DIA-MS acquisition
Library search-based DIA data analysis
- Bruderer R.
- Bernhardt O.M.
- Gandhi T.
- Miladinović S.M.
- Cheng L.-Y.
- Messner S.
- Ehrenberger T.
- Zanotelli V.
- Butscheid Y.
- Escher C.
- Vitek O.
- Rinner O.
- Reiter L.
Statistics
Software tools for peptide sequence and statistical data analysis
Results

Generation and verification of HLA-specific spectral libraries
Assessment of immunopeptidome coverage by four DIA tools
Evaluation of the reliability of identified HLA peptides using precursor characteristics

Assessment of reproducibility in identifying immunopeptidomes across biological replicates

Evaluation of false positive and false negative discovery rates using a hybrid spectral library

Examination of sensitivity, specificity, and correlations in quantifying HLA-bound peptides through titration data

Discussion
Analytical criteria | Skyline ver. 21.1 | Spectronaut ver. 16 | DIA-NN ver. 1.8 | PEAKS ver. Xpro (v. 10.6) |
---|---|---|---|---|
Immunopeptidomes coverage | **** | ***** | ***** | ***** |
Coverage specificity (exclusively identified peptides per tool) | 12.14-16.33% | 1.95-6.90% | 4.49-4.96% | 4.89-15.58% |
Identification-based sensitivity with increasing pHLA concentration | 1761.0 ± 153.8 | 2870.0 ± 143.0 | 2956.0 ± 161.0 | 2405.0 ± 155.7 |
Identification reproducibility across replicates | 62.03 % | 63.80 % | 66.72 % | 64.44 % |
Actual FDR% calculated from search against hybrid spectral library | 1.25-4.44 % | 2.03-2.69 % | 1.45-3.60 % | 1.75-4.25 % |
Speed per triplicate | 15-20 mins | 17 mins | 5 mins | 12 mins |
Data visualization | ***** | **** | ** | **** |
Graphical user interface | Yes | Yes | Yes | Yes |
Ease to configure and use | *** | ***** | **** | ***** |
Availability | Free (open access) | License required | Free (open access) | License required |
- Wilhelm M.
- Zolg D.P.
- Graber M.
- Gessulat S.
- Schmidt T.
- Schnatbaum K.
- Schwencke-Westphal C.
- Seifert P.
- de Andrade Krätzig N.
- Zerweck J.
- Knaute T.
- Bräunlein E.
- Samaras P.
- Lautenbacher L.
- Klaeger S.
- Wenschuh H.
- Rad R.
- Delanghe B.
- Huhmer A.
- Carr S.A.
- Clauser K.R.
- Krackhardt A.M.
- Reimer U.
- Kuster B.
- Wilhelm M.
- Zolg D.P.
- Graber M.
- Gessulat S.
- Schmidt T.
- Schnatbaum K.
- Schwencke-Westphal C.
- Seifert P.
- de Andrade Krätzig N.
- Zerweck J.
- Knaute T.
- Bräunlein E.
- Samaras P.
- Lautenbacher L.
- Klaeger S.
- Wenschuh H.
- Rad R.
- Delanghe B.
- Huhmer A.
- Carr S.A.
- Clauser K.R.
- Krackhardt A.M.
- Reimer U.
- Kuster B.
Kovalchik, K., Hamelin, D., and Caron, E. (2022) Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS. In: Corrales, F. J., Paradela, A., and Marcilla, M., eds. Clinical Proteomics: Methods and Protocols, pp. 137-147, Springer US, New York, NY
Data availability
- Deutsch E.W.
- Bandeira N.
- Sharma V.
- Perez-Riverol Y.
- Carver J.J.
- Kundu D.J.
- García-Seisdedos D.
- Jarnuczak A.F.
- Hewapathirana S.
- Pullman B.S.
- Wertz J.
- Sun Z.
- Kawano S.
- Okuda S.
- Watanabe Y.
- Hermjakob H.
- MacLean B.
- MacCoss M.J.
- Zhu Y.
- Ishihama Y.
- Vizcaíno J.A.
- Perez-Riverol Y.
- Bai J.
- Bandla C.
- García-Seisdedos D.
- Hewapathirana S.
- Kamatchinathan S.
- Kundu Deepti J.
- Prakash A.
- Frericks-Zipper A.
- Eisenacher M.
- Walzer M.
- Wang S.
- Brazma A.
- Vizcaíno Juan A.
Supplemental data
Conflict of interest
Acknowledgments
Supplementary Data
References
Dudek, N. L., and Purcell, A. W. (2016) Repertoire of Nonclassical MHC I (HLA-E, HLA-F, HLA-G, and Orthologues). In: Ratcliffe, M. J. H., ed. Encyclopedia of Immunobiology, pp. 215-219, Academic Press, Oxford
Purcell, A. W., and Dudek, N. L. (2016) Repertoire of Classical MHC Class I and Class II Molecules. In: Ratcliffe, M. J. H., ed. Encyclopedia of Immunobiology, pp. 200-208, Academic Press, Oxford
- Towards a systems understanding of MHC class I and MHC class II antigen presentation.Nature Reviews Immunology. 2011; 11: 823
- Present yourself! By MHC class I and MHC class II molecules.Trends in immunology. 2016; 37: 724-737
- Antigen Presentation and T Cell Stimulation by Dendritic Cells.Annual Review of Immunology. 2002; 20: 621-667
- Pathways of Antigen Processing.Annual Review of Immunology. 2013; 31: 443-473
- Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.Molecular & Cellular Proteomics. 2015; 14: 3105
Dudek, N. L., Croft, N. P., Schittenhelm, R. B., Ramarathinam, S. H., and Purcell, A. W. (2016) A Systems Approach to Understand Antigen Presentation and the Immune Response. In: Reinders, J., ed. Proteomics in Systems Biology: Methods and Protocols, pp. 189-209, Springer New York, New York, NY
- Immunopeptidomics We Need a Sniper Instead of a Shotgun.PROTEOMICS. 2018; 181700464
- Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.Immunology. 2018; 154: 331-345
- Data-Independent Acquisition of HLA Class I Peptidomes on the Q Exactive Mass Spectrometer Platform.PROTEOMICS. 2017; 171700177
- Building proteomic tool boxes to monitor MHC class I and class II peptides.PROTEOMICS. 2017; 171600061
- Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics.Nature Protocols. 2019; 14: 1687-1707
- Peptide Presentation to T Cells: Solving the Immunogenic Puzzle.BioEssays. 2020; 421900200
- Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry.Nature Communications. 2016; 713404
- Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry.Science. 1992; 255: 1261
- Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis.Molecular & Cellular Proteomics. 2012; 11 (O111.016717)
- DIA mass spectrometry.Nature Methods. 2015; 12 (35): 35
- A multicenter study benchmarks software tools for label-free proteome quantification.Nature Biotechnology. 2016; 34: 1130-1136
- Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra.Nature Methods. 2004; 1: 39-45
- Mass spectrometry-based proteomics.Nature. 2003; 422: 198-207
- Mass-spectrometric exploration of proteome structure and function.Nature. 2016; 537: 347
- Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.Molecular Systems Biology. 2018; 14e8126
- An open-source computational and data resource to analyze digital maps of immunopeptidomes.eLife. 2015; 4e07661
- Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data.Molecular & Cellular Proteomics. 2016; 15: 1867
- Integrating Database Search and De Novo Sequencing for Immunopeptidomics with DIA Approach.J Biomol Tech. 2019; 30 (S23): S23
- Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.Molecular & Cellular Proteomics. 2021; 20
Kovalchik, K., Hamelin, D., and Caron, E. (2022) Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS. In: Corrales, F. J., Paradela, A., and Marcilla, M., eds. Clinical Proteomics: Methods and Protocols, pp. 137-147, Springer US, New York, NY
- Proteomics beyond trypsin.The FEBS Journal. 2015; 282: 2612-2626
- High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis.Nature Methods. 2019; 16: 519-525
- A tissue-based draft map of the murine MHC class I immunopeptidome.Scientific Data. 2018; 5180157
- Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.Bioinformatics. 2010; 26: 966-968
- The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics.Mass Spectrometry Reviews. 2020; 39: 229-244
- Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues.Molecular & Cellular Proteomics. 2015; 14 (1400)
- DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.Nature Methods. 2020; 17: 41-44
- Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry.Nature Methods. 2019; 16: 63-66
- Isolation of HLA Bound Peptides by Immunoaffinity Capture and Identification by Mass Spectrometry.Current Protocols. 2021; 1: e92
- Thermostability profiling of MHC-bound peptides: a new dimension in immunopeptidomics and aid for immunotherapy design.Nature Communications. 2020; 11: 6305
- Using iRT, a normalized retention time for more targeted measurement of peptides.PROTEOMICS. 2012; 12: 1111-1121
- Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles.Scientific Reports. 2017; 7: 8653
- Predicting Antigen Presentation—What Could We Learn From a Million Peptides?.Frontiers in Immunology. 2018; 9
- MHC class II epitope predictive algorithms.Immunology. 2010; 130: 319-328
- NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data.Nucleic Acids Research. 2020; 48: W449-W454
- GibbsCluster: unsupervised clustering and alignment of peptide sequences.Nucleic Acids Research. 2017; 45: W458-W463
- Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion.Nucleic Acids Research. 2012; 40: W281-W287
- BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams.BMC Genomics. 2008; 9: 488
- InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams.BMC Bioinformatics. 2015; 16: 169
- UpSet: Visualization of Intersecting Sets.IEEE transactions on visualization and computer graphics. 2014; 20: 1983-1992
- Prediction of peptide mass spectral libraries with machine learning.Nature Biotechnology. 2022;
- Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics.Nature Communications. 2021; 12: 3346
- DeepRescore: Leveraging Deep Learning to Improve Peptide Identification in Immunopeptidomics.PROTEOMICS. 2020; 20 (1900334)
- Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.Nature Methods. 2019; 16: 509-518
- Generating high quality libraries for DIA MS with empirically corrected peptide predictions.Nature Communications. 2020; 11: 1548
- Collisional Energy Dependence of Peptide Ion Fragmentation.Journal of the American Society for Mass Spectrometry. 2009; 20: 469-476
- The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics.Nucleic Acids Research. 2020; 48: D1145-D1152
- The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.Nucleic Acids Research. 2022; 50: D543-D552
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
In Brief
We benchmarked four commonly-used “peptide-centric” software tools – Skyline, Spectronaut, DIA-NN, and PEAKS – for spectral library-based DIA analysis of immunopeptidomics data.
Author contributions
M.S. performed the benchmarking study and research, analyzed the data, and wrote the manuscript.; M.S., P.T.I., and E.C.J. acquired data; M.S., S.H.R., P.F., N.P.C., and A.W.P. designed experiments and research; P.F., N.P.C., and A.W.P. developed the concepts and discussions, conducted research, and led the project.
Funding and additional information
This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC) (1165490, 2013631). AWP was supported by an NHMRC Principal Research Fellowship (1137739) and is a current NHMRC Investigator Fellow (2016596).
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy