Highlights
- Proteomic analyses reveal the complexity of the p38α regulated signaling networks in cancer cells
- p38α maintains cancer cell homeostasis by regulating cell adhesion, DNA replication and RNA metabolism
- p38α facilitates cancer cell adhesion through the regulation of ArgBP2
Abstract
Graphical abstract

Keywords
INTRODUCTION
- Selness S.R.
- Devraj R.V.
- Devadas B.
- Walker J.K.
- Boehm T.L.
- Durley R.C.
- Shieh H.
- Xing L.
- Rucker P.V.
- Jerome K.D.
- Benson A.G.
- Marrufo L.D.
- Madsen H.M.
- Hitchcock J.
- Owen T.J.
- Christie L.
- Promo M.A.
- Hickory B.S.
- Alvira E.
- Naing W.
- Blevis-Bal R.
- Messing D.
- Yang J.
- Mao M.K.
- Yalamanchili G.
- Vonder Embse R.
- Hirsch J.
- Saabye M.
- Bonar S.
- Webb E.
- Anderson G.
- Monahan J.B.
- Lali F.V.
- Hunt A.E.
- Turner S.J.
- Foxwell B.M.
EXPERIMENTAL PROCEDURES
Cell culture
HEK 293T transfection and lentiviral infection
Generation of ArgBP2 KO cells
Cell attachment assay
Cell detachment assay
3D spheroid formation assay
Quantitative real-time PCR
Immunoblotting
Spheroid immunofluorescence
SILAC cell culture
Protein digestion
Phosphopeptide enrichment
NanoLC-MS/MS analysis
Gene ontology
Mapping functional scores and p38α substrates
Identification of p38α interactors
- Orchard S.
- Ammari M.
- Aranda B.
- Breuza L.
- Briganti L.
- Broackes-Carter F.
- Campbell N.H.
- Chavali G.
- Chen C.
- del-Toro N.
- Duesbury M.
- Dumousseau M.
- Galeota E.
- Hinz U.
- Iannuccelli M.
- Jagannathan S.
- Jimenez R.
- Khadake J.
- Lagreid A.
- Licata L.
- Lovering R.C.
- Meldal B.
- Melidoni A.N.
- Milagros M.
- Peluso D.
- Perfetto L.
- Porras P.
- Raghunath A.
- Ricard-Blum S.
- Roechert B.
- Stutz A.
- Tognolli M.
- van Roey K.
- Cesareni G.
- Hermjakob H.
Kinase-Substrate Enrichment Analysis (KSEA)
Code availability
Experimental design and statistical rationale
RESULTS
Identification of proteome and phosphoproteome changes upon p38α deletion or inhibition in cancer cells
- Selness S.R.
- Devraj R.V.
- Devadas B.
- Walker J.K.
- Boehm T.L.
- Durley R.C.
- Shieh H.
- Xing L.
- Rucker P.V.
- Jerome K.D.
- Benson A.G.
- Marrufo L.D.
- Madsen H.M.
- Hitchcock J.
- Owen T.J.
- Christie L.
- Promo M.A.
- Hickory B.S.
- Alvira E.
- Naing W.
- Blevis-Bal R.
- Messing D.
- Yang J.
- Mao M.K.
- Yalamanchili G.
- Vonder Embse R.
- Hirsch J.
- Saabye M.
- Bonar S.
- Webb E.
- Anderson G.
- Monahan J.B.


Proteins and phosphoproteins regulated by p38α in cancer cells

Signaling networks regulated by p38α in cancer cells

p38α regulates DNA replication, RNA processing and cell adhesion in cancer cells
- Mootha V.K.
- Lindgren C.M.
- Eriksson K.F.
- Subramanian A.
- Sihag S.
- Lehar J.
- Puigserver P.
- Carlsson E.
- Ridderstråle M.
- Laurila E.
- Houstis N.
- Daly M.J.
- Patterson N.
- Mesirov J.P.
- Golub T.R.
- Tamayo P.
- Spiegelman B.
- Lander E.S.
- Hirschhorn J.N.
- Altshuler D.
- Groop L.C.

p38α facilitates cancer cell adhesion
- Hitti E.
- Iakovleva T.
- Brook M.
- Deppenmeier S.
- Gruber A.D.
- Radzioch D.
- Clark A.R.
- Blackshear P.J.
- Kotlyarov A.
- Gaestel M.

ArgBP2 mediates the regulation of cancer cell adhesion by p38α

DISCUSSION
- Lali F.V.
- Hunt A.E.
- Turner S.J.
- Foxwell B.M.
- Zhao L.
- Wang W.
- Huang S.
- Yang Z.
- Xu L.
- Yang Q.
- Zhou X.
- Wang J.
- Shen Q.
- Wang C.
- Le X.
- Feng M.
- Zhou N.
- Lau W.B.
- Lau B.
- Yao S.
- Yi T.
- Wang X.
- Zhao X.
- Wei Y.
- Zhou S.
- Backsch C.
- Rudolph B.
- Steinbach D.
- Scheungraber C.
- Liesenfeld M.
- Häfner N.
- Hildner M.
- Habenicht A.
- Runnebaum I.B.
- Dürst M.
DATA AVAILABILITY
- Perez-Riverol Y.
- Bai J.
- Bandla C.
- Garcia-Seisdedos D.
- Hewapathirana S.
- Kamatchinathan S.
- Kundu D.J.
- Prakash A.
- Frericks-Zipper A.
- Eisenacher M.
- Walzer M.
- Wang S.
- Brazma A.
- Vizcaino J.A.
Acknowledgments
Supplementary data
REFERENCES
- p38 MAP-kinases pathway regulation, function and role in human diseases.Biochim Biophys Acta. 2007; 1773: 1358-1375
- An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling.F1000Res 9. 2020; (Faculty Rev-653): F1000
- Diversity and versatility of p38 kinase signalling in health and disease.Nat Rev Mol Cell Biol. 2021; 22: 346-366
- Mechanisms and functions of p38 MAPK signalling.Biochem J. 2010; 429: 403-417
- 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms.Nucleic Acids Res. 2019; 47: D433-D441
- SnapShot: p38 MAPK substrates.Cell. 2013; 152: 924-924.e921
- Roles of p38alpha mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer.FEBS J. 2015; 282: 1841-1857
- The Stress Kinase p38α as a Target for Cancer Therapy.Cancer Res. 2015; 75: 3997-4002
- A compendium of ERK targets.FEBS Lett. 2017; 591: 2607-2615
- ERK signalling: a master regulator of cell behaviour, life and fate.Nat Rev Mol Cell Biol. 2020; 21: 607-632
- A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts.Skelet Muscle. 2012; 2: 5
- p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice.Commun Biol. 2021; 4: 788
- Regulation of the Golgi Apparatus by p38 and JNK Kinases during Cellular Stress Responses.Int J Mol Sci. 2021; 22: 9595
- p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage.Nat Commun. 2018; 9: 1017
- Discovery of PH-797804, a highly selective and potent inhibitor of p38 MAP kinase.Bioorg Med Chem Lett. 2011; 21: 4066-4071
- The selectivity of protein kinase inhibitors: a further update.Biochem J. 2007; 408: 297-315
- The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase.J Biol Chem. 2000; 275: 7395-7402
- An efficient proteomics method to identify the cellular targets of protein kinase inhibitors.Proc Natl Acad Sci U S A. 2003; 100: 15434-15439
- Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells.Cancer Cell. 2018; 33: 1094-1110.e1098
- A simple hanging drop cell culture protocol for generation of 3D spheroids.J Vis Exp. 2011; 51: 2720
- An accessible database for mouse and human whole transcriptome qPCR primers.Bioinformatics. 2013; 29: 1355-1356
- MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.Nat Biotechnol. 2008; 26: 1367-1372
- Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc Natl Acad Sci U S A. 2005; 102: 15545-15550
- The functional landscape of the human phosphoproteome.Nat Biotechnol. 2020; 38: 365-373
- The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases.Nucleic Acids Res. 2014; 42: D358-363
- Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions.Biochem J. 2003; 372: 1-13
- Docking domains and substrate-specificity determination for MAP kinases.Trends Biochem Sci. 2000; 25: 448-453
- Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol Mol Biol Rev. 2011; 75: 50-83
- limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res. 2015; 43: e47
R Development Core Team (2014) R: A language and environment for statistical computing. http://www.Rproject.org
- Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Mol Cell Proteomics. 2002; 1: 376-386
- A tissue-specific atlas of mouse protein phosphorylation and expression.Cell. 2010; 143: 1174-1189
- A conserved docking motif in MAP kinases common to substrates, activators and regulators.Nat Cell Biol. 2000; 2: 110-116
- p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes.Biochim Biophys Acta Mol Cell Res. 2019; 1866118557
- Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling.Protein Sci. 2020; 29: 1196-1210
- Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress.Mol Biol Cell. 2006; 17: 122-129
- The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2.Rna. 2008; 14: 950-959
- P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity.FEBS Lett. 2004; 564: 205-211
- Improved visualization of protein consensus sequences by iceLogo.Nat Methods. 2009; 6: 786-787
- The iceLogo web server and SOAP service for determining protein consensus sequences.Nucleic Acids Res. 2015; 43: W543-546
- MAPK-Activated Protein Kinases: Servant or Partner?.Annu Rev Biochem. 2022; 91: 505-540
- Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells.Sci Signal. 2013; 6: rs6
- KinomeXplorer: an integrated platform for kinome biology studies.Nat Methods. 2014; 11: 603-604
- PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.Nucleic Acids Res. 2015; 43: D512-520
- The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics.Bioinformatics. 2017; 33: 3489-3491
- A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins.Cell. 1994; 78: 1027-1037
- mTOR signalling and cellular metabolism are mutual determinants in cancer.Nat Rev Cancer. 2018; 18: 744-757
- A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1.Mol Cell Biol. 2010; 30: 481-495
- PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.Nat Genet. 2003; 34: 267-273
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat Protoc. 2009; 4: 44-57
- Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element.Mol Cell Biol. 2006; 26: 2399-2407
- p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint.Mol Cell Biol. 2009; 29: 4341-4351
- Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells.Sci Rep. 2018; 8: 1151
- ArgBP2 and the SoHo family of adapter proteins in oncogenic diseases.Cell Adh Migr. 2009; 3: 167-170
- ArgBP2-dependent signaling regulates pancreatic cell migration, adhesion, and tumorigenicity.Cancer Res. 2008; 68: 4588-4596
- MK2 degradation as a sensor of signal intensity that controls stress-induced cell fate.Proc Natl Acad Sci U S A. 2021; 118e2024562118
- DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation.Mol Cell. 2018; 71: 117-128.e113
- The MAP kinase-interacting kinases (MNKs) as targets in oncology.Expert Opin Ther Targets. 2019; 23: 187-199
- p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst.PLoS One. 2013; 8e59528
- p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition.J Cell Sci. 2010; 123: 4321-4331
- Arg Kinase-binding Protein 2 (ArgBP2) Interaction with α-Actinin and Actin Stress Fibers Inhibits Cell Migration.The Journal of Biological Chemistry. 2014; 290: 2112-2125
- The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts.Genome Biol. 2018; 19: 35
- Correction to: RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability.Cell Death Dis. 2021; 12: 1062
- An integrative functional genomic and gene expression approach revealed SORBS2 as a putative tumour suppressor gene involved in cervical carcinogenesis.Carcinogenesis. 2011; 32: 1100-1106
- Sorbin and SH3 domain-containing protein 2 (SORBS2) is a component of the acto-myosin ring at the apical junctional complex in epithelial cells.PLoS One. 2017; 12e0185448
- Genetic variants related to gap junctions and hormone secretion influence conception rates in cows.Proc Natl Acad Sci U S A. 2013; 110: 19495-19500
- Nanoscale architecture of integrin-based cell adhesions.Nature. 2010; 468: 580-584
- GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling.Mol Cell. 2020; 79: 782-796.e786
- Role of p-21-activated kinases in cancer progression.Int Rev Cell Mol Biol. 2014; 309: 347-387
- The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.Nucleic Acids Res. 2022; 50: D543-D552
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
In Brief
We have used proteomic and phosphoproteomic analyses to study the rewiring of signalling pathways in breast cancer cells upon interfering with p38α function. The identification of a set of differentially expressed proteins and phosphorylation changes allowed us to propose a network of protein kinases and cellular processes regulated by p38α. We also show that p38α can control cancer cell adhesion through the modulation of the protein ArgBP2.
Author contributions
Y.D., N.R., and B.C. performed the experiments and analyzed the data. M.G., G.A., and M.V. performed the mass spectrometry analyses. A.F.-T. and P.A. were involved in the bioinformatic analyses. Y.D., B.C. and A.R.N. wrote the article with contributions from all the authors. A.R.N. was involved in experimental design and data analysis, supervised the study and secure funding.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy