Highlights
- •An atlas of genome, proteome and phosphoproteome of CRC is provided.
- •Integrative analysis of proteome and phosphoproteome data reveals the molecular heterogeneity in CRCs with APC mutations.
- •RAI14 has been identified as a key prognostic determinant for CRC patients with APC mutations.
- •High levels of RAI14 are associated with decreased response to chemotherapy and increased cell migration.
Abstract
Graphical abstract

Abbreviations:
APC (adenomatous polyposis coli), CRC (colorectal cancer), CPTAC (Clinical Proteomic Tumor Analysis Consortium), EMT (epithelial-mesenchymal transition), APC-MUT (APC-mutant), OS (overall survival), TCEP (tris(2-carboxyethyl) phosphine), ACN (anhydrous acetonitrile), RP-HPLC (high-performance liquid chromatography), FA (formic acid), AGC (automatic gain control), NCE (normalized collision energy), FDR (false discovery rate), NMF (non-negative matrix factorization), HRs (hazard ratios), Cis (confidence intervals), SDS (sodium deoxycholate), PVDF (polyvinylidene fluoride), WCH (West China Hospital), DNT (distant normal tissues), WES (whole-exome sequencing), TMT (Tandem mass tag), MS (mass spectrometry), QC (quality controls), APC-WT (APC-wildtype), SNVs (single nucleotide variants), TMB (tumor mutational burden), SCNAs (somatic copy number alterations), MMR (mismatch repair), PD (progressive disease), PCA (principal component analysis), RA (retinoic acid), FAP (familial adenomatous polyposis), ES (ectoplasmic specialization)Introduction
- Voloshanenko O.
- Erdmann G.
- Dubash T.D.
- Augustin I.
- Metzig M.
- Moffa G.
- Hundsrucker C.
- Kerr G.
- Sandmann T.
- Anchang B.
- Demir K.
- Boehm C.
- Leible S.
- Ball C.R.
- Glimm H.
- Spang R.
- Boutros M.
- Zhang B.
- Wang J.
- Wang X.
- Zhu J.
- Liu Q.
- Shi Z.
- Chambers M.C.
- Zimmerman L.J.
- Shaddox K.F.
- Kim S.
- Davies S.R.
- Wang S.
- Wang P.
- Kinsinger C.R.
- Rivers R.C.
- Rodriguez H.
- Townsend R.R.
- Ellis M.J.
- Carr S.A.
- Tabb D.L.
- Coffey R.J.
- Slebos R.J.
- Liebler D.C.
- Vasaikar S.
- Huang C.
- Wang X.
- Petyuk V.A.
- Savage S.R.
- Wen B.
- Dou Y.
- Zhang Y.
- Shi Z.
- Arshad O.A.
- Gritsenko M.A.
- Zimmerman L.J.
- McDermott J.E.
- Clauss T.R.
- Moore R.J.
- Zhao R.
- Monroe M.E.
- Wang Y.T.
- Chambers M.C.
- Slebos R.J.C.
- Lau K.S.
- Mo Q.
- Ding L.
- Ellis M.
- Thiagarajan M.
- Kinsinger C.R.
- Rodriguez H.
- Smith R.D.
- Rodland K.D.
- Liebler D.C.
- Liu T.
- Zhang B.
Experimental procedures
Sample Collection and Preparation
Proteomic and Phosphoproteomic Analyses
Protein extraction and digestion
TMT-10 labeling of peptides
Peptide fractionation
The enrichment of phosphorylated peptides
LC-MS/MS analysis in Orbitrap Exploris 480
LC-MS/MS analysis in Q Exactive HF-X
LC-MS/MS analysis in Q Exactive Plus
MS database searching
- Li J.
- Van Vranken J.G.
- Pontano Vaites L.
- Schweppe D.K.
- Huttlin E.L.
- Etienne C.
- Nandhikonda P.
- Viner R.
- Robitaille A.M.
- Thompson A.H.
- Kuhn K.
- Pike I.
- Bomgarden R.D.
- Rogers J.C.
- Gygi S.P.
- Paulo J.A.
Experimental Design and Statistical Rationale
Whole-exome Sequencing
Collection of Public Datasets
Somatic Copy Number Alteration Analysis
Mutational Signature Analysis
- Alexandrov L.B.
- Kim J.
- Haradhvala N.J.
- Huang M.N.
- Tian Ng A.W.
- Wu Y.
- Boot A.
- Covington K.R.
- Gordenin D.A.
- Bergstrom E.N.
- Islam S.M.A.
- Lopez-Bigas N.
- Klimczak L.J.
- McPherson J.R.
- Morganella S.
- Sabarinathan R.
- Wheeler D.A.
- Mustonen V.
- Group P.M.S.W.
- Getz G.
- Rozen S.G.
- Stratton M.R.
- Consortium P.
Univariate Survival Analysis
Consensus Clustering Analysis
Variable Selection Analysis
- Sinha A.
- Huang V.
- Livingstone J.
- Wang J.
- Fox N.S.
- Kurganovs N.
- Ignatchenko V.
- Fritsch K.
- Donmez N.
- Heisler L.E.
- Shiah Y.J.
- Yao C.Q.
- Alfaro J.A.
- Volik S.
- Lapuk A.
- Fraser M.
- Kron K.
- Murison A.
- Lupien M.
- Sahinalp C.
- Collins C.C.
- Tetu B.
- Masoomian M.
- Berman D.M.
- van der Kwast T.
- Bristow R.G.
- Kislinger T.
- Boutros P.C.
Cross validation of RF-based machine learning models
Western Blotting Analysis
Cell Lines and Cell Culture
Cell Migration Assay
Wound Healing Assay
Immunofluorescence
Results
Multi-omics characterization of colon cancer in Eastern Asians
Genomics characteristics of APC-MUT tumors
- Vasaikar S.
- Huang C.
- Wang X.
- Petyuk V.A.
- Savage S.R.
- Wen B.
- Dou Y.
- Zhang Y.
- Shi Z.
- Arshad O.A.
- Gritsenko M.A.
- Zimmerman L.J.
- McDermott J.E.
- Clauss T.R.
- Moore R.J.
- Zhao R.
- Monroe M.E.
- Wang Y.T.
- Chambers M.C.
- Slebos R.J.C.
- Lau K.S.
- Mo Q.
- Ding L.
- Ellis M.
- Thiagarajan M.
- Kinsinger C.R.
- Rodriguez H.
- Smith R.D.
- Rodland K.D.
- Liebler D.C.
- Liu T.
- Zhang B.
- Guda K.
- Veigl M.L.
- Varadan V.
- Nosrati A.
- Ravi L.
- Lutterbaugh J.
- Beard L.
- Willson J.K.
- Sedwick W.D.
- Wang Z.J.
- Molyneaux N.
- Miron A.
- Adams M.D.
- Elston R.C.
- Markowitz S.D.
- Willis J.E.
- Giannakis M.
- Mu X.J.
- Shukla S.A.
- Qian Z.R.
- Cohen O.
- Nishihara R.
- Bahl S.
- Cao Y.
- Amin-Mansour A.
- Yamauchi M.
- Sukawa Y.
- Stewart C.
- Rosenberg M.
- Mima K.
- Inamura K.
- Nosho K.
- Nowak J.A.
- Lawrence M.S.
- Giovannucci E.L.
- Chan A.T.
- Ng K.
- Meyerhardt J.A.
- Van Allen E.M.
- Getz G.
- Gabriel S.B.
- Lander E.S.
- Wu C.J.
- Fuchs C.S.
- Ogino S.
- Garraway L.A.
- Brannon A.R.
- Vakiani E.
- Sylvester B.E.
- Scott S.N.
- McDermott G.
- Shah R.H.
- Kania K.
- Viale A.
- Oschwald D.M.
- Vacic V.
- Emde A.K.
- Cercek A.
- Yaeger R.
- Kemeny N.E.
- Saltz L.B.
- Shia J.
- D'Angelica M.I.
- Weiser M.R.
- Solit D.B.
- Berger M.F.
- Hoadley K.A.
- Yau C.
- Hinoue T.
- Wolf D.M.
- Lazar A.J.
- Drill E.
- Shen R.
- Taylor A.M.
- Cherniack A.D.
- Thorsson V.
- Akbani R.
- Bowlby R.
- Wong C.K.
- Wiznerowicz M.
- Sanchez-Vega F.
- Robertson A.G.
- Schneider B.G.
- Lawrence M.S.
- Noushmehr H.
- Malta T.M.
- Stuart J.M.
- Benz C.C.
- Laird P.W.
- Liu J.
- Lichtenberg T.
- Hoadley K.A.
- Poisson L.M.
- Lazar A.J.
- Cherniack A.D.
- Kovatich A.J.
- Benz C.C.
- Levine D.A.
- Lee A.V.
- Omberg L.
- Wolf D.M.
- Shriver C.D.
- Thorsson V.
- Hu H.
- Sanchez-Vega F.
- Mina M.
- Armenia J.
- Chatila W.K.
- Luna A.
- La K.C.
- Dimitriadoy S.
- Liu D.L.
- Kantheti H.S.
- Saghafinia S.
- Chakravarty D.
- Daian F.
- Gao Q.
- Bailey M.H.
- Liang W.W.
- Foltz S.M.
- Shmulevich I.
- Ding L.
- Heins Z.
- Ochoa A.
- Gross B.
- Gao J.
- Zhang H.
- Kundra R.
- Kandoth C.
- Bahceci I.
- Dervishi L.
- Dogrusoz U.
- Zhou W.
- Shen H.
- Laird P.W.
- Way G.P.
- Greene C.S.
- Liang H.
- Xiao Y.
- Wang C.
- Iavarone A.
- Berger A.H.
- Bivona T.G.
- Lazar A.J.
- Hammer G.D.
- Giordano T.
- Kwong L.N.
- McArthur G.
- Huang C.
- Tward A.D.
- Frederick M.J.
- McCormick F.
- Meyerson M.
- Van Allen E.M.
- Cherniack A.D.
- Ciriello G.
- Sander C.
- Schultz N.

Proteomics and phosphoproteomics reveal the heterogeneity of APC-MUT colon cancer


RAI14 is a key prognostic determinant for APC-MUT colon cancer patients

B., B. A., P., V. A., M., A.-H. M., N., A., J., C. Y., K., C. K., S., C., S., C. H., D., D., I., G.-L., L., G. J., R., H. J., S., H., J., H., S., H., L., J. K., N., K., S., K., J., M., A., M. W., J., M., D., M. E., F., M. M., S., N., J., O. M., A., P., H., P., K., P., L., S., C., S., D., S., M., S. J., T., S. C., E., S.-H., A., T., G., W. C., and G., W. (2022) Colon Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Version 2.2022-October 27, 2022
RAI14 modulates cell adhesion-related phosphoproteome to affect cancer cell migration



Discussion
- Zhang B.
- Wang J.
- Wang X.
- Zhu J.
- Liu Q.
- Shi Z.
- Chambers M.C.
- Zimmerman L.J.
- Shaddox K.F.
- Kim S.
- Davies S.R.
- Wang S.
- Wang P.
- Kinsinger C.R.
- Rivers R.C.
- Rodriguez H.
- Townsend R.R.
- Ellis M.J.
- Carr S.A.
- Tabb D.L.
- Coffey R.J.
- Slebos R.J.
- Liebler D.C.
- Guinney J.
- Dienstmann R.
- Wang X.
- de Reyniès A.
- Schlicker A.
- Soneson C.
- Marisa L.
- Roepman P.
- Nyamundanda G.
- Angelino P.
- Bot B.M.
- Morris J.S.
- Simon I.M.
- Gerster S.
- Fessler E.
- De Sousa E.M.F.
- Missiaglia E.
- Ramay H.
- Barras D.
- Homicsko K.
- Maru D.
- Manyam G.C.
- Broom B.
- Boige V.
- Perez-Villamil B.
- Laderas T.
- Salazar R.
- Gray J.W.
- Hanahan D.
- Tabernero J.
- Bernards R.
- Friend S.H.
- Laurent-Puig P.
- Medema J.P.
- Sadanandam A.
- Wessels L.
- Delorenzi M.
- Kopetz S.
- Vermeulen L.
- Tejpar S.
- Zhang B.
- Wang J.
- Wang X.
- Zhu J.
- Liu Q.
- Shi Z.
- Chambers M.C.
- Zimmerman L.J.
- Shaddox K.F.
- Kim S.
- Davies S.R.
- Wang S.
- Wang P.
- Kinsinger C.R.
- Rivers R.C.
- Rodriguez H.
- Townsend R.R.
- Ellis M.J.
- Carr S.A.
- Tabb D.L.
- Coffey R.J.
- Slebos R.J.
- Liebler D.C.
- Guinney J.
- Dienstmann R.
- Wang X.
- de Reyniès A.
- Schlicker A.
- Soneson C.
- Marisa L.
- Roepman P.
- Nyamundanda G.
- Angelino P.
- Bot B.M.
- Morris J.S.
- Simon I.M.
- Gerster S.
- Fessler E.
- De Sousa E.M.F.
- Missiaglia E.
- Ramay H.
- Barras D.
- Homicsko K.
- Maru D.
- Manyam G.C.
- Broom B.
- Boige V.
- Perez-Villamil B.
- Laderas T.
- Salazar R.
- Gray J.W.
- Hanahan D.
- Tabernero J.
- Bernards R.
- Friend S.H.
- Laurent-Puig P.
- Medema J.P.
- Sadanandam A.
- Wessels L.
- Delorenzi M.
- Kopetz S.
- Vermeulen L.
- Tejpar S.
- Zhang B.
- Wang J.
- Wang X.
- Zhu J.
- Liu Q.
- Shi Z.
- Chambers M.C.
- Zimmerman L.J.
- Shaddox K.F.
- Kim S.
- Davies S.R.
- Wang S.
- Wang P.
- Kinsinger C.R.
- Rivers R.C.
- Rodriguez H.
- Townsend R.R.
- Ellis M.J.
- Carr S.A.
- Tabb D.L.
- Coffey R.J.
- Slebos R.J.
- Liebler D.C.
- Zhang T.
- Ahn K.
- Emerick B.
- Modarai S.R.
- Opdenaker L.M.
- Palazzo J.
- Schleiniger G.
- Fields J.Z.
- Boman B.M.
- Lee H.-O.
- Hong Y.
- Etlioglu H.E.
- Cho Y.B.
- Pomella V.
- Van den Bosch B.
- Vanhecke J.
- Verbandt S.
- Hong H.
- Min J.-W.
- Kim N.
- Eum H.H.
- Qian J.
- Boeckx B.
- Lambrechts D.
- Tsantoulis P.
- De Hertogh G.
- Chung W.
- Lee T.
- An M.
- Shin H.-T.
- Joung J.-G.
- Jung M.-H.
- Ko G.
- Wirapati P.
- Kim S.H.
- Kim H.C.
- Yun S.H.
- Tan I.B.H.
- Ranjan B.
- Lee W.Y.
- Kim T.-Y.
- Choi J.K.
- Kim Y.-J.
- Prabhakar S.
- Tejpar S.
- Park W.-Y.
Author contributions
Ethical approval
Data availability
- Chen T.
- Chen X.
- Zhang S.
- Zhu J.
- Tang B.
- Wang A.
- Dong L.
- Zhang Z.
- Yu C.
- Sun Y.
- Chi L.
- Chen H.
- Zhai S.
- Sun Y.
- Lan L.
- Zhang X.
- Xiao J.
- Bao Y.
- Wang Y.
- Zhang Z.
- Zhao W.
Declaration of competing interest
Acknowledgments
Supplementary Data
References
- Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell. 2017; 169: 985-999
- Cell biology of canonical Wnt signaling.Annual review of cell and developmental biology. 2021; 37: 369-389
- Multiple roles of APC and its therapeutic implications in colorectal cancer.Journal of the National Cancer Institute. 2017; 109
- Wnt signaling in colorectal cancer: pathogenic role and therapeutic target.Molecular Cancer. 2022; 21: 144
- Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer.Cell. 2015; 161: 1539-1552
- Mathematical model of colorectal cancer initiation.Proceedings of the National Academy of Sciences of the United States of America. 2020; 117: 20681-20688
- Colorectal cancer.Lancet (London, England). 2019; 394: 1467-1480
- Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.Science translational medicine. 2016; 8: 361ra140
- Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells.Nature communications. 2013; 4: 2610
- The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration.The Journal of cell biology. 1996; 134: 165-179
- Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration.Genes & development. 2004; 18: 1385-1390
- The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma.Gut. 2005; 54: 1283-1286
- A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC.Nature communications. 2016; 711743
- Prognostic and therapeutic implications of Apc mutations in colorectal cancer.The surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland. 2008; 6: 350-356
- Loss-of-function mutation survey revealed that genes with background-dependent fitness are rare and functionally related in yeast.Proceedings of the National Academy of Sciences. 2022; 119e2204206119
- Cancer proteogenomics: current impact and future prospects.Nature Reviews Cancer. 2022; 22: 298-313
- A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies.Molecular Cell. 2021; 81: 4076-4090.e4078
- Integrated multi-omics characterization of KRAS mutant colorectal cancer.Theranostics. 2022; 12: 5138-5154
- Proteogenomic characterization of human colon and rectal cancer.Nature. 2014; 513: 382-387
- Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities.Cell. 2019; 177: 1035-1049.e1019
- TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples.Nature methods. 2020; 17: 399-404
- DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res. 2022;
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat Protoc. 2009; 4: 44-57
- Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat Commun. 2019; 10: 1523
- LinkedOmics: analyzing multi-omics data within and across 32 cancer types.Nucleic Acids Res. 2018; 46: D956-D963
- The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov. 2012; 2: 401-404
- Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci Signal. 2013; 6: pl1
- GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers.Genome Biol. 2011; 12: R41
- Deciphering signatures of mutational processes operative in human cancer.Cell Rep. 2013; 3: 246-259
- The repertoire of mutational signatures in human cancer.Nature. 2020; 578: 94-101
- ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking.Bioinformatics. 2010; 26: 1572-1573
- The Proteogenomic Landscape of Curable Prostate Cancer.Cancer Cell. 2019; 35: 414-427 e416
- Proteomic maps of human gastrointestinal stromal tumor subgroups.Molecular & cellular proteomics : MCP. 2019; 18: 923-935
- Age-associated proteomic signatures and potential clinically actionable targets of colorectal cancer.Molecular & cellular proteomics : MCP. 2021; 20100115
- Novel recurrently mutated genes in African American colon cancers.Proceedings of the National Academy of Sciences of the United States of America. 2015; 112: 1149-1154
- Genomic correlates of immune-cell infiltrates in colorectal carcinoma.Cell reports. 2016; 15: 857-865
- Integrated Omics of Metastatic Colorectal Cancer.Cancer Cell. 2020; 38: 734-747 e739
- Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions.Genome biology. 2014; 15: 454
- Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer.Cell. 2018; 173: 291-304.e296
- An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell. 2018; 173: 400-416.e411
- Oncogenic signaling pathways in The Cancer Genome Atlas.Cell. 2018; 173: 321-337.e310
- Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines.Cell systems. 2018; 6: 271-281.e277
B., B. A., P., V. A., M., A.-H. M., N., A., J., C. Y., K., C. K., S., C., S., C. H., D., D., I., G.-L., L., G. J., R., H. J., S., H., J., H., S., H., L., J. K., N., K., S., K., J., M., A., M. W., J., M., D., M. E., F., M. M., S., N., J., O. M., A., P., H., P., K., P., L., S., C., S., D., S., M., S. J., T., S. C., E., S.-H., A., T., G., W. C., and G., W. (2022) Colon Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Version 2.2022-October 27, 2022
- Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas.Science advances. 2021; 7 (eabj0512)
- The consensus molecular subtypes of colorectal cancer.Nature medicine. 2015; 21: 1350-1356
- Comprehensive molecular characterization of human colon and rectal cancer.Nature. 2012; 487: 330-337
- Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein.Biochemical and biophysical research communications. 2006; 345: 1333-1341
- Molecular characterization and developmental expression of NORPEG, a novel gene induced by retinoic acid.The Journal of biological chemistry. 2001; 276: 2831-2840
- Ankyrin repeat-containing N-Ank proteins shape cellular membranes.Nature Cell Biology. 2019; 21: 1191-1205
- APC mutations in human colon lead to decreased neuroendocrine maturation of ALDH+ stem cells that alters GLP-2 and SST feedback signaling: Clue to a link between WNT and retinoic acid signalling in colon cancer development.PloS one. 2020; 15e0239601
- RAI14 (retinoic acid induced protein 14) is an F-actin regulator: Lesson from the testis.Spermatogenesis. 2013; 3e24824
- Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis.PloS one. 2013; 8e60656
- Retinoic Acid Induced Protein 14 (Rai14) is dispensable for mouse spermatogenesis.PeerJ. 2021; 9e10847
- Ankycorbin: a novel actin cytoskeleton-associated protein.Genes to cells : devoted to molecular & cellular mechanisms. 2000; 5: 1001-1008
- How integrin phosphorylations regulate cell adhesion and signaling.Trends in biochemical sciences. 2022; 47: 265-278
- Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and βPIX.Sci Rep. 2019; 911430
- cAMP/PKA-induced filamin A (FLNA) phosphorylation inhibits SST2 signal transduction in GH-secreting pituitary tumor cells.Cancer letters. 2018; 435: 101-109
- Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer.Nature Genetics. 2020; 52: 594-603
- Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy.Journal of Hematology & Oncology. 2019; 12: 86
- RAI14 is a prognostic biomarker and correlated with immune cell infiltrates in gastric cancer.Technology in cancer research & treatment. 2020; 191533033820970684
- The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types.Genomics, proteomics & bioinformatics. 2021; 19: 578-583
- Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022.Nucleic Acids Res. 2022; 50: D27-d38
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
In brief statement
The prognostic phenotype is heterogeneous in colorectal cancer (CRC) patients with APC mutations, while the diagnositic biomarkers remain largely unknown. Here, we described the phenotypic heterogeneity of APC-mutant tumors and identified RAI14 as a key prognostic determinant for APC-mutant colon cancer patients. The prognostic utility of RAI14 in APC-mutant colon cancer will provide early warning and increase the chance of successful treatment.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy