Highlights
- •The histidine rich glycoprotein (HRG) contains 5 minor allele frequencies (MAFs)
- •Proteogenomics is used to probe correlations between these MAFs in the human population
- •Some mutations are mutually exclusive, others preferentially co-occur
- •When studying HRG, accounting for allelic variants is crucial
- •HRG mutations appeared late in evolution, and led to partial loss of N-glycosylation
Abstract
Graphical abstract

List of used abbreviations:
HRG (Histidine-rich glycoprotein), MAF (minor allele frequencies), HRR (domain: histidine-rich domain), PRR1 and PRR2 domain (proline-rich domains), N domain (N-terminal domain), C domain (C-terminal domain), AHSG (α2-Heremans Schmid-glycoprotein), FETUB (fetuin-B), KNG (kininogen), aPTT (activated partial thromboplastin time), EUR (European), SAS (south Asian), AFR (African), AMR (American), EAS (east Asian), IMAC (immobilized metal affinity chromatography), A1AT (alpha-1-antitrypsin), SDC (sodium deoxycholate), TCEP (tris(2-carboxyethyl)phosphine), CAA (chloroacetamide), HCD (higher-energy collisional dissociation), GWAS (genome-wide association studies), NWO (Netherlands Organization for Scientific Research)Keywords
Introduction

- Thulin A.
- Ringvall M.
- Dimberg A.
- Kårehed K.
- Väisänen T.
- Väisänen M.-R.
- Hamad O.
- Wang J.
- Bjerkvig R.
- Nilsson B.
- Pihlajaniemi T.
- Akerud H.
- Pietras K.
- Jahnen-Dechent W.
- Siegbahn A.
- Olsson A.-K.
- Hennis B.C.
- van Boheemen P.A.
- Wakabayashi S.
- Koide T.
- Hoffmann J.J.
- Kievit P.
- Dooijewaard G.
- Jansen J.G.
- Kluft C.
- Hong M.-G.
- Dodig-Crnković T.
- Chen X.
- Drobin K.
- Lee W.
- Wang Y.
- Edfors F.
- Kotol D.
- Thomas C.E.
- Sjöberg R.
- Odeberg J.
- Hamsten A.
- Silveira A.
- Hall P.
- Nilsson P.
- Pawitan Y.
- Uhlén M.
- Pedersen N.L.
- Hägg S.
- Magnusson P.K.
- Schwenk J.M.
Materials and Methods
Study cohort
HRG protein purification
In-solution proteolysis
Bottom-up proteomics
Proteomics database search and data analysis
Thousand genome analysis
- Cunningham F.
- Allen J.E.
- Allen J.
- Alvarez-Jarreta J.
- Amode M.R.
- Armean I.M.
- Austine-Orimoloye O.
- Azov A.G.
- Barnes I.
- Bennett R.
- Berry A.
- Bhai J.
- Bignell A.
- Billis K.
- Boddu S.
- Brooks L.
- Charkhchi M.
- Cummins C.
- Da Rin Fioretto L.
- Davidson C.
- Dodiya K.
- Donaldson S.
- El Houdaigui B.
- El Naboulsi T.
- Fatima R.
- Giron C.G.
- Genez T.
- Martinez J.G.
- Guijarro-Clarke C.
- Gymer A.
- Hardy M.
- Hollis Z.
- Hourlier T.
- Hunt T.
- Juettemann T.
- Kaikala V.
- Kay M.
- Lavidas I.
- Le T.
- Lemos D.
- Marugán J.C.
- Mohanan S.
- Mushtaq A.
- Naven M.
- Ogeh D.N.
- Parker A.
- Parton A.
- Perry M.
- Piližota I.
- Prosovetskaia I.
- Sakthivel M.P.
- Salam A.I.A.
- Schmitt B.M.
- Schuilenburg H.
- Sheppard D.
- Pérez-Silva J.G.
- Stark W.
- Steed E.
- Sutinen K.
- Sukumaran R.
- Sumathipala D.
- Suner M.-M.
- Szpak M.
- Thormann A.
- Tricomi F.F.
- Urbina-Gómez D.
- Veidenberg A.
- Walsh T.A.
- Walts B.
- Willhoft N.
- Winterbottom A.
- Wass E.
- Chakiachvili M.
- Flint B.
- Frankish A.
- Giorgetti S.
- Haggerty L.
- Hunt S.E.
- IIsley G.R.
- Loveland J.E.
- Martin F.J.
- Moore B.
- Mudge J.M.
- Muffato M.
- Perry E.
- Ruffier M.
- Tate J.
- Thybert D.
- Trevanion S.J.
- Dyer S.
- Harrison P.W.
- Howe K.L.
- Yates A.D.
- Zerbino D.R.
- Flicek P.
Phylogenetic context
- Cunningham F.
- Allen J.E.
- Allen J.
- Alvarez-Jarreta J.
- Amode M.R.
- Armean I.M.
- Austine-Orimoloye O.
- Azov A.G.
- Barnes I.
- Bennett R.
- Berry A.
- Bhai J.
- Bignell A.
- Billis K.
- Boddu S.
- Brooks L.
- Charkhchi M.
- Cummins C.
- Da Rin Fioretto L.
- Davidson C.
- Dodiya K.
- Donaldson S.
- El Houdaigui B.
- El Naboulsi T.
- Fatima R.
- Giron C.G.
- Genez T.
- Martinez J.G.
- Guijarro-Clarke C.
- Gymer A.
- Hardy M.
- Hollis Z.
- Hourlier T.
- Hunt T.
- Juettemann T.
- Kaikala V.
- Kay M.
- Lavidas I.
- Le T.
- Lemos D.
- Marugán J.C.
- Mohanan S.
- Mushtaq A.
- Naven M.
- Ogeh D.N.
- Parker A.
- Parton A.
- Perry M.
- Piližota I.
- Prosovetskaia I.
- Sakthivel M.P.
- Salam A.I.A.
- Schmitt B.M.
- Schuilenburg H.
- Sheppard D.
- Pérez-Silva J.G.
- Stark W.
- Steed E.
- Sutinen K.
- Sukumaran R.
- Sumathipala D.
- Suner M.-M.
- Szpak M.
- Thormann A.
- Tricomi F.F.
- Urbina-Gómez D.
- Veidenberg A.
- Walsh T.A.
- Walts B.
- Willhoft N.
- Winterbottom A.
- Wass E.
- Chakiachvili M.
- Flint B.
- Frankish A.
- Giorgetti S.
- Haggerty L.
- Hunt S.E.
- IIsley G.R.
- Loveland J.E.
- Martin F.J.
- Moore B.
- Mudge J.M.
- Muffato M.
- Perry E.
- Ruffier M.
- Tate J.
- Thybert D.
- Trevanion S.J.
- Dyer S.
- Harrison P.W.
- Howe K.L.
- Yates A.D.
- Zerbino D.R.
- Flicek P.
Polyacrylamide gel electrophoresis
Results and Discussion
Characterization of allelic frequencies in serum proteomics data

Pairwise co-occurrences of allele specific mutations in the proteomics data

BB | Bb | bb | |
---|---|---|---|
AA | AA × BB | AA × Bb | AA × bb |
Aa | Aa × BB | Aa × Bb | Aa × bb |
aa | aa × BB | aa × Bb | aa × bb |
- Howe K.L.
- Achuthan P.
- Allen J.
- Allen J.
- Alvarez-Jarreta J.
- Amode M.R.
- Armean I.M.
- Azov A.G.
- Bennett R.
- Bhai J.
- Billis K.
- Boddu S.
- Charkhchi M.
- Cummins C.
- Da Rin Fioretto L.
- Davidson C.
- Dodiya K.
- El Houdaigui B.
- Fatima R.
- Gall A.
- Garcia Giron C.
- Grego T.
- Guijarro-Clarke C.
- Haggerty L.
- Hemrom A.
- Hourlier T.
- Izuogu O.G.
- Juettemann T.
- Kaikala V.
- Kay M.
- Lavidas I.
- Le T.
- Lemos D.
- Gonzalez Martinez J.
- Marugán J.C.
- Maurel T.
- McMahon A.C.
- Mohanan S.
- Moore B.
- Muffato M.
- Oheh D.N.
- Paraschas D.
- Parker A.
- Parton A.
- Prosovetskaia I.
- Sakthivel M.P.
- Salam A.I.A.
- Schmitt B.M.
- Schuilenburg H.
- Sheppard D.
- Steed E.
- Szpak M.
- Szuba M.
- Taylor K.
- Thormann A.
- Threadgold G.
- Walts B.
- Winterbottom A.
- Chakiachvili M.
- Chaubal A.
- De Silva N.
- Flint B.
- Frankish A.
- Hunt S.E.
- IIsley G.R.
- Langridge N.
- Loveland J.E.
- Martin F.J.
- Mudge J.M.
- Morales J.
- Perry E.
- Ruffier M.
- Tate J.
- Thybert D.
- Trevanion S.J.
- Cunningham F.
- Yates A.D.
- Zerbino D.R.
- Flicek P.
- Howe K.L.
- Achuthan P.
- Allen J.
- Allen J.
- Alvarez-Jarreta J.
- Amode M.R.
- Armean I.M.
- Azov A.G.
- Bennett R.
- Bhai J.
- Billis K.
- Boddu S.
- Charkhchi M.
- Cummins C.
- Da Rin Fioretto L.
- Davidson C.
- Dodiya K.
- El Houdaigui B.
- Fatima R.
- Gall A.
- Garcia Giron C.
- Grego T.
- Guijarro-Clarke C.
- Haggerty L.
- Hemrom A.
- Hourlier T.
- Izuogu O.G.
- Juettemann T.
- Kaikala V.
- Kay M.
- Lavidas I.
- Le T.
- Lemos D.
- Gonzalez Martinez J.
- Marugán J.C.
- Maurel T.
- McMahon A.C.
- Mohanan S.
- Moore B.
- Muffato M.
- Oheh D.N.
- Paraschas D.
- Parker A.
- Parton A.
- Prosovetskaia I.
- Sakthivel M.P.
- Salam A.I.A.
- Schmitt B.M.
- Schuilenburg H.
- Sheppard D.
- Steed E.
- Szpak M.
- Szuba M.
- Taylor K.
- Thormann A.
- Threadgold G.
- Walts B.
- Winterbottom A.
- Chakiachvili M.
- Chaubal A.
- De Silva N.
- Flint B.
- Frankish A.
- Hunt S.E.
- IIsley G.R.
- Langridge N.
- Loveland J.E.
- Martin F.J.
- Mudge J.M.
- Morales J.
- Perry E.
- Ruffier M.
- Tate J.
- Thybert D.
- Trevanion S.J.
- Cunningham F.
- Yates A.D.
- Zerbino D.R.
- Flicek P.
Total number of HRG genetic variants present in the human population

Enriched observed HRG genotypes are consequences of evolutionary divergence
Functional consequences of specific HRG genotypes
- Hong M.-G.
- Dodig-Crnković T.
- Chen X.
- Drobin K.
- Lee W.
- Wang Y.
- Edfors F.
- Kotol D.
- Thomas C.E.
- Sjöberg R.
- Odeberg J.
- Hamsten A.
- Silveira A.
- Hall P.
- Nilsson P.
- Pawitan Y.
- Uhlén M.
- Pedersen N.L.
- Hägg S.
- Magnusson P.K.
- Schwenk J.M.
Concluding remarks
- Hong M.-G.
- Dodig-Crnković T.
- Chen X.
- Drobin K.
- Lee W.
- Wang Y.
- Edfors F.
- Kotol D.
- Thomas C.E.
- Sjöberg R.
- Odeberg J.
- Hamsten A.
- Silveira A.
- Hall P.
- Nilsson P.
- Pawitan Y.
- Uhlén M.
- Pedersen N.L.
- Hägg S.
- Magnusson P.K.
- Schwenk J.M.
Data availability
- Perez-Riverol Y.
- Bai J.
- Bandla C.
- García-Seisdedos D.
- Hewapathirana S.
- Kamatchinathan S.
- Kundu D.J.
- Prakash A.
- Frericks-Zipper A.
- Eisenacher M.
- Walzer M.
- Wang S.
- Brazma A.
- Vizcaíno J.A.
Acknowledgments
Supplementary data
References
- Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma.Blood. 2011; 117: 2093-2101
- Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein.Front Biosci (Landmark Ed). 2009; 14: 2911-2922
- SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Research. 2018; 46: W296-W303
- Plasma free fatty acid levels influence Zn(2+) -dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin.J Thromb Haemost. 2015; 13: 101-110
- High affinity binding of serum histidine-rich glycoprotein to nickel-nitrilotriacetic acid: the application to microquantification.Life Sci. 2003; 73: 93-102
- Purification of rabbit serum histidine-proline-rich glycoprotein via preparative gel electrophoresis and characterization of its glycosylation patterns.PLoS One. 2017; 12e0184968
- Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: implications for angiogenic regulation.Blood. 2014; 123: 1948-1955
- Detection of histidine-rich glycoprotein and fibrinogen with nickel-enzyme conjugates: Purification of rabbit HRG.Anal Biochem. 2017; 525: 67-72
- New method for purifying histidine-rich glycoprotein from human plasma redefines its functional properties.IUBMB Life. 2013; 65: 550-563
- [Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S- 2 -glycoportein (CM-protein I)].Hoppe-Seyler’s Zeitschrift fur physiologische Chemie. 1972; 353: 1133-1140
- Histidine-rich glycoprotein is a novel plasma pattern recognition molecule that recruits IgG to facilitate necrotic cell clearance via FcgammaRI on phagocytes.Blood. 2010; 115: 2473-2482
- Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein.The Journal of biological chemistry. 1980; 255: 10214-10222
- Interaction of histidine-rich glycoprotein with fibrinogen and fibrin.The Journal of clinical investigation. 1986; 77: 1305-1311
- Interaction of heme with a synthetic peptide mimicking the putative heme-binding site of histidine-rich glycoprotein.Biochemical and biophysical research communications. 1987; 149: 1070-1076
- Interactions of the histidine-rich glycoprotein of serum with metals.Biochemistry. 1981; 20: 1054-1061
- Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycoprotein.Molecular cancer research : MCR. 2009; 7: 1792-1802
- A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization.Cancer Res. 2004; 64: 599-605
- Histidine-Rich Glycoprotein Can Prevent Development of Mouse Experimental Glioblastoma.PLOS ONE. 2009; 4e8536
- Histidine-rich glycoprotein binds to human IgG and C1q and inhibits the formation of insoluble immune complexes.Biochemistry. 1997; 36: 6653-6662
- Histidine-rich glycoprotein functions cooperatively with cell surface heparan sulfate on phagocytes to promote necrotic cell uptake.Journal of leukocyte biology. 2010; 88: 559-569
- Histidine-rich glycoprotein protects from systemic Candida infection.PLoS pathogens. 2008; 4e1000116
- (2002) Histidine-rich glycoprotein binds to DNA and Fc gamma RI and potentiates the ingestion of apoptotic cells by macrophages.Journal of immunology (Baltimore, Md. 1950; 169: 4745-4751
- Histidine-rich glycoprotein specifically binds to necrotic cells via its amino-terminal domain and facilitates necrotic cell phagocytosis.The Journal of biological chemistry. 2005; 280: 35733-35741
- Enhanced blood coagulation and fibrinolysis in mice lacking histidine-rich glycoprotein (HRG).Journal of Thrombosis and Haemostasis. 2005; 3: 865-872
- Histidine-rich glycoprotein: a possible modulator of coagulation and fibrinolysis.Seminars in thrombosis and hemostasis. 2011; 37: 389-394
- dbSNP: the NCBI database of genetic variation.Nucleic acids research. 2001; 29: 308-311
- Identification and genetic analysis of a common molecular variant of histidine-rich glycoprotein with a difference of 2kD in apparent molecular weight.Thrombosis and haemostasis. 1995; 74: 1491-1496
- Profiles of histidine-rich glycoprotein associate with age and risk of all-cause mortality.Life science alliance. 2020; 3
- The Central Role of KNG1 Gene as a Genetic Determinant of Coagulation Pathway-Related Traits: Exploring Metaphenotypes.PloS one. 2016; 11e0167187
- Human plasma protein N-glycosylation.Glycoconj J. 2016; 33: 309-343
- Proteomics Reveals Plasma Biomarkers for Ischemic Stroke Related to the Coagulation Cascade.J Mol Neurosci. 2020; 70: 1321-1331
- Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations.J Proteome Res. 2010; 9: 798-805
- Histidine-rich glycoprotein as an excellent biomarker for sepsis and beyond.Crit Care. 2018; 22: 209
- A global reference for human genetic variation.Nature. 2015; 526: 68-74
- Ensembl 2022.Nucleic Acids Research. 2022; 50: D988-D995
- Ensembl 2021.Nucleic Acids Research. 2021; 49: D884-D891
- Proteoform Profiles Reveal That Alpha-1-Antitrypsin in Human Serum and Milk Is Derived From a Common Source.Front Mol Biosci. 2022; 9858856
- Aminode: Identification of Evolutionary Constraints in the Human Proteome.Sci Rep. 2018; 8: 1357
- The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.Nucleic Acids Res. 2022; 50: D543-D552
- The SWISS-MODEL Repository—new features and functionality.Nucleic Acids Research. 2017; 45: D313-D319
- Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective.ELECTROPHORESIS. 2009; 30: S162-S173
- QMEANDisCo—distance constraints applied on model quality estimation.Bioinformatics. 2020; 36: 1765-1771
- Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology.Sci Rep. 2017; 710480
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
In Brief statement
Histidine-rich glycoprotein (HRG) is a liver-produced protein found abundantly in human blood, exhibiting at least 5 minor allele frequencies (MAFs). Proteogenomics analysis on individual donors reveals that certain mutations are mutually exclusive, while others preferentially co-occur. These HRG mutations appeared late in evolution and led to partial loss of N-glycosylation. HRG mutations may affect the protein's abundance, structure, post-translational modifications, and thus function. Therefore, when studying HRG, accounting for allelic variants is crucial.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy