










cadherins, the protein can be phosphorylated by glycogen
synthase kinase 3 (GSK-3) prior to ubiquitin-dependent
degradation by proteasomes (29). �-catenin can also be
degraded via lysosomal trafficking, resulting in the inhibition
of �-catenin’s transcriptional function (30). We observed
that APF treatment induced �-catenin accumulation as dis-
crete puncta in the cytoplasm within 6 h (Fig. 4A), implying
that �-catenin was being internalized and routed toward a
proteolytic degradation pathway. Consistent with this inter-
pretation, APF treatment led to the colocalization of
�-catenin with proteasome subunit Rpt1 and with Lyso-
Tracker, a fluorescent acidotropic probe that decorates
acidic organelles, predominantly lysosomes (Fig. 4B). Treat-
ing the cells with specific inhibitors of proteasomal or lyso-
somal degradation (MG132 or leupeptin) suppressed
�-catenin degradation, resulting in higher levels of
�-catenin (Fig. 4C). These data indicate that APF down-
regulates �-catenin, at least in part, by proteasomal and
lysosomal protein degradation.

To assess the biological consequences of �-catenin down-
regulation, we performed loss- and gain-of-function analyses.
We first measured the proliferation rate of T24 cells after
depletion of �-catenin by RNA interference. Silencing of

FIG. 2. Network modeling and Western blotting validation of the SILAC quantitation results. A, Network model describes cellular
processes that the regulated proteins are primarily involved in. Large circles or ovals are modules and small circles are nodes. The color of the
nodes represents proteins whose levels are increased (red), unchanged/undetected (white), or decreased (green) in response to APF.
Brightness of color reflects fold change of protein expression in comparison to control. Large circles or ovals surrounding several nodes
represent modules, and colors indicate increased (pink) or decreased (cyan) expression. The connection (edges) between nodes shows the
regulation or physical interaction between proteins. Arrows indicate direct activation, T-shaped lines direct repression, dashed arrows indirect
activation, and lines physical interaction. B, Western blotting validation of the SILAC quantitation results for nine proteins including seven within
the network model. Blots are representative of at least three independent experiments. “SILAC ratio” represents the APF/Mock (L/L) ratio for
each protein and “Mock” represents mock APF peptides.

FIG. 3. APF induces the down-regulation of �-catenin. A,
Western blot analysis shows that APF treatment resulted in the
down-regulation of total, nuclear, as well as membrane-associated
�-catenin. T24 cells were treated with APF peptide or mock APF
peptide (abbreviated as Mock) for 3 days. Total cell lysates, nuclear
extracts and membrane fractions were prepared for immunoblot-
ting. �-actin, lamin A/C, or caveolin-1 was used as a loading control
for whole-cell lysates, nuclear proteins, or membrane proteins,
respectively. B, Immunofluorescence analysis shows that APF
treatment led to the downmodulation of nuclear and plasma mem-
brane-associated �-catenin. T24 cells were treated with APF or
mock APF for 6 hours prior to labeling cells with anti-�-catenin
primary antibody and Cy3.5 conjugated secondary antibody. Nuclei
were stained with DAPI.
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�-catenin using siRNA oligonucleotides resulted in a substan-
tial reduction of cell proliferation in the absence of APF (Fig.
5A). Importantly, inhibitory effects of APF and the siRNAs
were not additive, consistent with the hypothesis that
�-catenin is a key mediator of APF’s antiproliferative activity.
Moreover, enforced expression of a nondegradable �-catenin

mutant, which lacks all serine/threonine phosphorylation tar-
get residues (31), led to robust rescue of growth inhibition in
response to APF (Fig. 5B).

To rule out the possibility that the key role of �-catenin in
APF-induced cell proliferation inhibition is restricted to T24
bladder cancer cells, we used an hTERT-immortalized human

FIG. 4. APF treatment induces �-catenin internalization and degradation. A, Internalization of �-catenin in response to APF. Immuno-
fluorescence staining for �-catenin in T24 cells was performed 6 hours after treatment with APF or mock APF. �-catenin was labeled with
anti-�-catenin primary antibody and Cy3.5 conjugated secondary antibody. B, A pool of �-catenin localizes to proteasomes (upper panels) and
lysosomes (lower panels) after APF treatment. T24 cells were fixed 6 hours after APF treatment and stained with specific antibodies against
�-catenin and proteasome subunit Rpt1, lysosomal probe LysoTracker, or DAPI. C, Inhibition of proteasomal and lysosomal degradation
reduces �-catenin degradation, resulting in higher levels of �-catenin. Pretreatment of T24 cells with 10 �M MG132, a specific and potent
proteasome inhibitor, or 100 �g/ml leupeptin, which inhibits lysosomal cysteine proteases, suppressed �-catenin degradation in the presence
of APF. Blots are representative of at least three independent experiments.

FIG. 5. Gene silencing of �-catenin inhibits cell proliferation whereas overexpressing nondegradable �-catenin rescues growth
inhibition in response to APF. A, Gene silencing of �-catenin suppresses cell proliferation. �-catenin level was down-regulated using gene
silencing with siRNA transfection. To confirm the knockdown of �-catenin, whole-cell lysates from T24 cells nontransfected (abbreviated as
NT Ctrl), transfected with control siRNAs (siCtrl), or transfected with �-catenin siRNAs (si�-catenin) were blotted with anti-�-catenin antibody.
Results presented here are representative of three independent experiments. Cell proliferation rate was measured using crystal violet staining.
B, Overexpression of nondegradable �-catenin (ND �-catenin) rescues cell proliferation inhibition caused by APF treatment. A nondegradable
�-catenin construct (or vector only) was expressed in T24 cells. 36 hours after transfection, cells were treated with APF or mock APF peptides
for an additional 3 days. Expression levels of �-catenin protein were determined using Western blotting. Cell proliferation rate was measured
using the crystal violet assay.
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bladder epithelial cell line (TRT-HU1) that we recently gener-
ated and characterized (16). Fig. 6A shows that TRT-HU1 cell
proliferation can be substantially inhibited by APF treatment.
Fig. 6B shows that TRT-HU1 cells responded to APF with
decreased expression of �-catenin and increased expression
of p53 and a p53 target protein, NDRG1, consistent with the
findings in T24 cells (Fig. 2B and ref(10)). As in T24 cells,
ectopic expression of nondegradable �-catenin in TRT-HU1
cells resulted in significant rescue of APF-induced inhibition of
cell growth (Fig. 6C). These findings suggest that �-catenin is
a key mediator of APF’s antiproliferative effect in human blad-
der cells generally.

APF Evokes an Inflammatory Response by Down-modulat-
ing �-Catenin—Our network model (Fig. 2A) suggested that
prostaglandin G/H synthase 2 (PTGS2), more commonly
known as cyclooxygenase-2 (COX-2), lies downstream of the
�-catenin module and is up-regulated by APF treatment.
Given that COX-2 is an inducible enzyme critical for the bio-
synthesis of proinflammatory prostaglandin E2 (PGE2) (32, 33)
and that IC is characterized by chronic inflammation of the
bladder wall, we hypothesized that APF evokes an inflamma-
tory response by downmodulating �-catenin and conse-

quently up-regulating COX-2 and PGE2. Indeed, consistent
with the increase in COX-2 levels, PGE2 production was re-
markably increased in the presence of APF (Fig. 7A). In addi-
tion, siRNA knockdown of �-catenin increased COX-2 ex-
pression in the absence of APF stimulation, which was not
further enhanced in the presence of APF (Fig. 7B). Moreover,
forced expression of nondegradable �-catenin signficantly
inhibited APF-induced up-regulation of COX-2 (Fig. 7B). Col-
lectively, the results confirmed that APF evokes an inflamma-
tory response by down-modulating �-catenin, which in turn
increases COX-2 expression and PGE2 production.

�-Catenin Expression is Suppressed Whereas COX-2 Ex-
pression is Increased in IC—The biological activity of APF is
detectable in urine specimens from over 94% of IC patients
(34). To determine whether bladder epithelial cell explants
from IC patients have reduced protein levels of �-catenin and
increased levels of COX-2 similar to those observed in APF-
treated T24 cells, we performed Western blot analysis of
protein lysates from bladder epithelial cells explanted from IC
patients and age- and gender-matched healthy controls. As
shown in Fig. 8, the protein level of �-catenin was significantly
lower whereas that of COX-2 was significantly higher in blad-

FIG. 6. APF inhibits the proliferation rate of immortalized human bladder epithelial cells (TRT-HU1) via a �-catenin-dependent
pathway. A, APF inhibits the proliferation of TRT-HU1 cells. Cells were incubated with APF or mock APF peptides for 3 days. Cell proliferation
rate was determined using crystal violet assay. ** indicates p � 0.01. B, APF regulates the expression of �-catenin, p53, and NDRG1 in
TRT-HU1 cells. The protein levels of �-catenin, p53, and NDRG1 were determined by Western blot analysis. �-actin was used as a loading
control and blots are representative of at least three independent experiments. C, Ectopic expression of nondegradable �-catenin rescues cell
proliferation inhibition caused by APF. A nondegradable �-catenin construct or vector only was transiently transfected into TRT-HU1 cells. Cell
proliferation was evaluated using crystal violet 3 days after APF or mock APF treatment. In this figure, “Mock” stands for mock APF peptide
and “ND �-catenin” represents nondegradable �-catenin.

FIG. 7. APF treatment increases the production of PGE2, a COX-2 product, and the expression of COX-2 by a �-catenin-dependent
mechanism. A, APF treatment increases the production of PGE2, a byproduct of COX-2. Conditioned medium at different time points was
collected for ELISA to measure PGE2 concentration in the medium. “Mock” represents mock APF peptides and *** indicates p � 0.001. B, APF
induces the overexpression of COX-2 by a �-catenin-dependent mechanism. Cells were transiently transfected with siRNAs (upper panel) or
plasmids (lower panel), stimulated with APF or mock APF for 3 days and cell lysates were prepared for Western blot analysis. �-actin was used
as a loading control. In this figure, blots are representative of at least three independent experiments. “NT Ctrl,” nontransfected control; siCtrl,
control siRNAs; si�-catenin, �-catenin-targeting siRNAs; ND �-catenin, nondegradable �-catenin.
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der epithelial cells derived from IC patients than from paired
healthy controls, consistent with the findings observed in the
cell culture models.

DISCUSSION

Using an unbiased approach on a proteome scale, we have
described a provisional molecular network downstream from
APF, a urine biomarker associated with IC (34). Comprehen-
sive proteomic analysis using SILAC led to the identification of
more than 2000 proteins, including over 1300 proteins with
high confidence, representing one of the largest protein da-
tabases of human bladder cells ever assembled. To the best
of our knowledge, this is the first quantitative proteomics
study aiming to elucidate the molecular mechanisms under-
lying IC pathogenesis.

SILAC analysis followed by network modeling and func-
tional assays suggested that �-catenin, a cell adhesion pro-
tein and a transcription factor, is a pivotal component in the
APF-regulated protein network. However, it remains unclear
how APF suppresses the expression of �-catenin in human
bladder cells. Though the peptide portion of APF is 100%
homologous to the putative sixth transmembrane domain of
Frizzled-8, a Wnt receptor (1), it is unknown whether APF
arises from specific proteolytic cleavage of Frizzled-8. More-

over, unlike Wnt-antagonizing secreted Frizzled-related pro-
teins, which are �300 amino acids in length (35, 36), APF is
only a nine-residue sialoglycopeptide and its peptide portion
is very hydrophobic. Thus, it is unlikely that APF can interact
with Wnt and consequently lead to the down-regulation of
�-catenin. Instead, APF might down-modulate �-catenin by
inhibiting the production of HB-EGF (8) and/or antagonizing
the binding of tissue plasminogen activator (tPA) with CKAP4,
a high-affinity receptor for APF (6, 7). This speculation is
based on previous findings that HB-EGF may activate the
phosphatidylinositol 3-kinase/Akt pathway and in turn inhibit
GSK3� and stabilize �-catenin (37), and that CKAP4 is also a
receptor for tPA (38), which may activate �-catenin signaling
by transactivating EGFR (39). In addition, the down-modula-
tion of EGFR by APF (see Fig. 2) may play a role in APF-
induced �-catenin down-regulation.

Interestingly, our findings suggest that inflammation asso-
ciated with IC may be caused, at least in part, by APF.
FDA-approved COX-2 inhibitors, nonsteroidal anti-inflamma-
tory drugs (e.g. celecoxib and refecoxib) or their chemical
derivatives, which to our knowledge have not been applied to
treat IC as monotherapy, may be beneficial to IC patients by
suppressing inflammation and inhibiting certain APF-regu-
lated pathways. However, we found that NS-398, a potent
COX-2-specific nonsteroidal anti-inflammatory drugs (40), did
not change �-catenin level and significantly inhibited rather
than increased T24 cell proliferation (supplemental Fig. S3).
This finding is suggestive of the possibility that, although
nonsteroidal anti-inflammatory drugs may reduce inflamma-
tion, they may promote rather than reduce the destruction of
bladder mucosal cells caused by APF. This possibility waits to
be tested in animal models.

In summary, a quantitative proteomics analysis revealed,
for the first time, a signaling network at the protein level
downstream from APF. We verified that �-catenin is a pivotal
component within this network and that COX-2 is regulated
by APF, at least in part, through a �-catenin-dependent path-
way. These findings reinforce published data that proteins
participating in intercellular junctions are affected by APF (41),
and provide new insight that targeting the �-catenin signaling
pathway in addition to APF itself may be a rational approach
toward treating IC with novel therapeutics.
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FIG. 8. �-catenin expression is suppressed whereas COX-2 ex-
pression is increased in epithelial cells explanted from bladder
tissue from IC patients compared with healthy controls. A, Human
bladder epithelium was harvested from six IC patients and six age-
and gender-matched healthy controls. Protein extracts from primary
cell culture of those explants were subjected to Western blot analysis
to detect �-catenin and COX-2 protein expression. Blots are repre-
sentative of at least three independent experiments. NB, normal blad-
der. B, Densitometry analysis of the Western blots. Western blots were
quantified using ImageJ software. The intensities of �-catenin or COX-2
bands were normalized against corresponding �-actin blot bands. The
normalized intensities were then used to compute the relative protein
expression of �-catenin or COX-2 in epithelial cells derived from IC
bladder and paired normal bladder (abbreviated as NB).
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