




UDP-glucose dehydrogenase was characterized by Spicer et
al. (75) and is noted for its role in converting UDP-glucose to
UDP-glucoronate, which is an essential component to the gly-
cosaminoglycans, such as hyaluronans which are needed for
cell proliferation and migration. It was found up-regulated 1.72-
fold in the 3% for 24 h stretch. It is known that in the absence
of this enzymes activity, embryogenesis fails to occur (76).
Further research has indicated that defects in the production,
activity or expression of this protein may lead to more general
defects in proteoglycan or glycosaminoglycan function (75). It
has also been shown that cells that are treated with TGF� gave
an increase in production of UDP-glucose dehydrogenase (77).
Similar results were reported following hypoxia (78). Clarkin et
al. (79) went on to implicate the role of UDP-glucose dehydro-
genase in mitogen-activated protein kinase (MAPK) pathways
and demonstrated how it may be a good therapeutic target
because of its role in the conservation of the extracellular matrix.

Annexin A4 (ANXA4) was up-regulated 2.0- and 1.6-fold in
3 and 12% stretch for 2 h, and 1.58-fold in the 12% stretch for

24 h. This protein is a member of the lipocortin family of
calcium-dependent phospholipid-binding proteins (80) and is
interesting as other members of its family have previously
been reported to be up-regulated in animal models of glau-
coma (81). In this latter study, ANXA1 and ANXA3 were pro-
posed to play a role in membrane repair or in the aggregation
of vesicles known to occur in axonal transport blockade.
ANXA2 has also been shown to play a role in angiogenesis
through colocalization and binding with a member of the s100
family (82). Although ANXA4 function is not well documented,
it may play a role similar to others in its family. It has been
shown to have numerous other cellular functions including cell
division, Ca2� signaling, growth regulation and inflammation
(83), and to colocalize on cell membrane surfaces (84), which
may indicate a role in the reaction to physical stress. It also
plays an important role in modulating the NF-�B signaling
pathway (85), which is important in regulating numerous
genes involved in the immune response, cell proliferation,
differentiation, survival, and apoptosis (86, 87).

FIG. 7. Integration of the identified proteins into the canonical pathways for astrocyte cell stretch of 12% for 24 h using Ingenuity
Pathway Analysis. Proteins were identified as being within the nucleus, the cell membrane, extracellular, or intracellular. Solid lines indicate
direct interaction. Dashed lines indicate indirect interactions. Red molecules were up-regulated and green molecules were down-regulated.
White molecules were not user specified, but were incorporated into the network through relationships with other molecules. Of particular note
were the network hubs centered on TP53, TNF, TGF�1, and CASP3.
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Another protein of interest belongs to the family of s100
proteins and is known to regulate the progression of inflam-
mation, innate immunity, tissue damage and wound healing
(88–90). In particular, s100-a13, is a protein that has been
reported to participate directly in the angiogenic process,
particularly of cancerous tissue types (82, 91). This protein
was up-regulated 2.00-fold and 1.52-fold in the 3% for 2 h
and 12% for 2 h stretch respectively. Previous research on
this protein in the eye showed an up-regulation following an

inflammation-associated corneal neovascularization (88). S100-
a13 has also been shown to play a role in damage-associated
molecular patterns, which interact with the NF-�B pathway and
various inflammatory cytokines such as IL-1B and IL-8, (92)
which implicates this important pathway in our model.

The functional pathways in Fig. 3 describe how an increase
in strain percentage or duration can affect the regulation of
the pathway. Normal protein patterns are associated with low
percentage strain, with cellular repair and DNA repair associ-

FIG. 8. Validation of iTRAQ proteomic results by Western blot for specific markers. A, Cultured human ONH astrocytes were submitted
to 0%, 3%, OR 12% stretch for 2 h. Total proteins were collected in lysis buffer, concentrated, and quantified by Bradford assay. Equal
amounts of protein from each condition were probed by Western blot for three markers that were differentially regulated in the iTRAQ results;
GOLGA2, ANXA4, and CRYAB. Detection and band densitometry was performed with a Li-Cor infrared imager and marker bands were
normalized to actin. B, Fold change was calculated from four separate cell lines by dividing the normalized result from each condition by the
0% stretch result and averaged, as alongside the original iTRAQ stretch results for comparison. (WB: Western blot, iTRAQ: preliminary iTRAQ
results).

FIG. 9. Increased staining of GFAP in ONH astrocytes submitted to increasing amounts of stretch. A, Cultured human ONH astrocytes
were submitted to 0%, 3%, OR 12% stretch for 2 h. Total proteins were collected in lysis buffer, concentrated with ultrafiltration columns, and
quantified by Bradford assay. Equal amounts of protein from each condition were probed by Western blot for GFAP and actin. B, Detection
and band densitometry was performed with a Li-Cor infrared imager and GFAP bands were normalized to actin. Fold increase was calculated
by dividing the normalized result from each condition by the 0% stretch result.
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ated with the higher percentage strain and longer exposure. In
Fig. 3A metabolic activity is the most regulated pathway in the
2 h stretch models, with the highest levels seen following 3%
stretch. This would indicate that at 3%, 2 h, the cells are
adjusting to the initial insult. There was no major increase of
other diseased or damaged cell functional pathways following
3% stretch. In cellular assembly and organization (Fig. 3B),
the largest change was seen following the 3% for 24 h stretch.
Regulated proteins, such as golgi proteins (GOLGA2) and
collagens (COL1A1, COL1A2), are associated with normal
cellular processes such as cellular division (93) and cellular
structure of the eye (94). Cell cycle functions (Fig. 3C) follow-
ing 12% strain resulted in proteins that are associated with
both normal and diseased cellular processes. Normal func-
tioning proteins include kinesin family 14 (KIF14) (95) and
kinase anchor proteins (AKAPs), both of which are important
in microtubule organization (96). However AKAPs are also
associated with cancer (97–99) and is an important ana-
phase promoting complex (100). Fig. 3D demonstrated that
following 12% stretch for 24 h, DNA replication, recombi-
nation and repair showed the greatest functional response.
Of the top proteins involved in DNA replication, recombina-
tion and repair, promyelocytic leukemia is one of the most
important and has been shown to play in role in apoptosis,
senescence and cell death. It has recently been proposed
as a possible target for therapeutic approaches to a variety
of diseases (101) and has also been associated with single
nucleotide polymorphisms in glaucoma (102). Together Fig.
3, demonstrates an increasing response to increasing bio-
mechanical strain.

In summary, we investigated multiple stress interactions of
time and stretch on the activation of human optic nerve head
astrocytes. Lysates from each time/stretch condition were
prepared as part of a 6-plex iTRAQ quantitative proteomic
analysis with the goal of better understanding the activation of
astrocytes and the role astrocyte activation plays in the
pathogenesis of glaucoma. An additional aim was to identify
potential biomarkers for ONH astrocyte activation. We inves-
tigated proteins involved in cellular differentiation and mor-
phogenesis that may have a role in the early activation of
astrocytes, eventually leading to the apoptotic death of retinal
ganglion cells in glaucoma. The proteomics strategy used has
been previously validated to identify proteins of interest and
potential biomarkers (103–105). We have identified a number
of proteins of potential interest, including PEA15, UDP-glu-
cose dehydrogenase, ANXA4, and s100a13.
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Hecker, M., and Becher, D. (2006) Gel-free and gel-based proteomics in
Bacillus subtilis: a comparative study. Mol. Cell. Proteomics 5, 1183–1192

104. Shadforth, I. P., Dunkley, T. P., Lilley, K. S., and Bessant, C. (2005) i-Tracker:
for quantitative proteomics using iTRAQ. BMC Genomics. 6, 145
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