Special Issue: Chromatin Biology and Epigenetics

Editorial

753 Reshaping the Chromatin and Epigenetic Landscapes with Quantitative Mass Spectrometry
Michael P. Washburn, Yingming Zhao, and Benjamin A. Garcia

Review

755 Histone H4 Lysine 20 (H4K20) Methylation, Expanding the Signaling Potential of the Proteome One Methyl Moiety at a Time
Rick van Nuland and Or Gozani

Special Issue Articles

765 Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma
Deepanwita Sengupta, Stephanie D. Byrum, Nathan L. Avaritt, Lauren Davis, Bradley Shields, Fade Mahmoud, Matthew Reynolds, Lisa M. Orr, Samuel G. Mackintosh, Sara C. Shalin, and Alan J. Tackett

776 Unabridged Analysis of Human Histone H3 by Differential Top-Down Mass Spectrometry Reveals Hypermethylated Proteoforms from MMSET/NSD2 Overexpression
Yupeng Zheng, Luca Fornelli, Philip D. Compton, Seema Sharma, Jesse Canterbury, Christopher Mullen, Vlad Zabrouskov, Ryan T. Fellers, Paul M. Thomas, Jonathan D. Licht, Michael W. Senko, and Neil L. Kelleher

On the Cover: “An Epigenetic Map”, commissioned by MCP, is a 20” x 20” oil painting by artist Julie Newdoll, 2015. This painting is part of a series in which the artist explores proteomics, and stems from a collaboration with MCP-editor-in-chief Al Burlingame and associate editor Ralph Bradshaw, with input from Benjamin A. Garcia, Ph.D., Presidential Associate Professor and Simone Sidoli, postdoctoral scholar of the University of Pennsylvania; and Michael Washburn, Director of Proteomics, of the Stowers Institute for Medical Research.

Description: In this Epigenetic Map, a phrase derived from CH Waddington’s concept of the Epigenetic Landscape, a chromosome-shaped island in the center has both inaccessible mountainous terrain and flat open areas. Running over the landscape is a red ribbon of DNA, wrapped around clusters of grapes that represent histones incorporated into nucleosomes, and decorated with leaves of various colors representing epigenetic markers. Around the outside of the island, the accessible DNA of the flat, open area of the map has been magnified, so we can see epigenetic modifications to proteins and DNA being performed by mythological characters representing the enzymes that carry out this process. Starting in the lower left, the red DNA strand emerges from a tight clump of inaccessible chromatin, buried in red and orange leaves which represent repressive and transient histone markers. Hermes, the Greek winged messenger god, is decorating the histones with green, activating marker leaves. In his hand, he holds a message to activate MLL, an example gene product and epigenetic modifier. The shields represent proteins, and are labelled with the gene product they represent. You can see the Set/MLL label on the blue shield next to Hermes. Above him, a centaur is painting the grapes purple, indicating fully active histones. The centaur represents the unknown control mechanism of the epigenetic process. Across the top, two DNA modification enzymes are represented by the winged female figures above the unfurled and enlarged portion of the red DNA strand, where DNA bases A, G, T, and C can be read. The more sinister, bird-bodied figure on the left is oxidizing methyl groups, which modifies expression of the gene, while the more pleasant character on the right is adding methyl groups to the cytosines on the DNA. Continuing clockwise, Aglaia, goddess of beauty standing on the compass, applies enzyme modifications to the various protein shields in the form of brightly colored jewels. Below her, the satyr applies transient histone markers represented by orange leaves, while his female muse applies repressive histone markers in the form of red leaves. At the bottom right, the DNA again dives into a tight clump of red and orange leaves, where it is no longer accessible, like the DNA in the mountains on the chromosome island in the center. Julie Newdoll’s fine art, journal covers, music and chemistry games can be found on www.brushwithscience.com

[S] Online version of this article contains supplemental material. × Author’s Choice
The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression
Sophie S. B. Giguère, Amanda J. Guise, Pierre M. Jean Beltran, Preeti M. Joshi, Todd M. Greco, Olivia L. Quach, Jeffery Kong, and Ileana M. Cristea

Comprehensive Assessment of Oxidatively Induced Modifications of DNA in a Rat Model of Human Wilson’s Disease
Yang Yu, Candace R. Guerrero, Shuo Liu, Nicholas J. Amato, Yogeshwar Sharma, Sanjeev Gupta, and Yinsheng Wang

Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence
Yu Chen, Michael E. Hoover, Xibe Dang, Alan A. Shomo, Xiaoyan Guan, Alan G. Marshall, Michael A. Freitas, and Nicolas L. Young

Monitoring Cellular Phosphorylation Signaling Pathways into Chromatin and Down to the Gene Level
Yumiao Han, Zuo-Fei Yuan, Rosalynn C. Molden, and Benjamin A. Garcia

Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification
Matthew M. Makowski, Esther Willems, Pascal W.T.C. Jansen, and Michiel Vermeulen

Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples
Roberta Noberini, Andrea Uggetti, Giancarlo Pruneri, Saverio Minucci, and Tiziana Bonaldi

Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells
Daniel Bode, Lu Yu, Peri Tate, Mercedes Pardo, and Jyoti Choudhary

Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics
Jonathan B. Olsen, Xing-Jun Cao, Bomie Han, Lisa Hong Chen, Alexander Horvath, Timothy I. Richardson, Robert M. Campbell, Benjamin A. Garcia, and Hannah Nguyen

Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells
Camila de Souza Palma, Mariana Lopes Grassi, Carolina Hassibe Thomé, Germano Aguiar Ferreira, Daniele Albuquerque, Mariana Tomazini Pinto, Fernanda Ursoli Ferreira Melo, Simone Kashima, Dimas Tadeu Covas, Sharon J. Pitteri, and Vitor M. Faça

Identification of the Post-translational Modifications Present in Centromeric Chromatin
Aaron O. Bailey, Tanya Panchenko, Jeffrey Shabanowitz, Stephanie M. Lehman, Dina L. Bai, Donald F. Hunt, Ben E. Black, and Daniel R. Foltz

Global Epitranscriptomics Profiling of RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the Epitranscriptomics of Stress Response
Rebecca E. Rose, Manuel A. Pazos II, M. Joan Curcio, and Daniele Fabris

A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin
Moritz Carl Völker-Albert, Miriam Caroline Pusch, Andreas Fedisch, Pierre Schilcher, Andreas Schmidt, and Axel Imhof

Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components
Mahadevan Lakshminarasimhan, Gina Boanca, Charles A. S. Banks, Gaye L. Hattem, Ana E. Gabriel, Brad D. Groppe, Christine Smoyer, Kate E. Malanowski, Allison Peak, Laurence Florens, and Michael P. Washburn
Technological Innovation and Resources

Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments
Lissa C. Anderson, Kelly R. Karch, Scott A. Ugrin, Mariel Coradin, A. Michelle English, Simone Sidoli, Jeffrey Shabanowitz, Benjamin A. Garcia, and Donald F. Hunt

Regular Articles

Research

Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates
Gene Hart-Smith, Daniel Yagoub, Aidan P. Tay, Russell Pickford, and Marc R. Wilkins

Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T Cells
Tahira Riaz, Ludvig Magne Solid, Ingrid Olsen, and Gustavo Antonio de Souza

Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties
Yuta Narushima, Hiroko Kozuka-Hata, Ryo Koyama-Nasu, Kouhei Tsumoto, Jun-ichiro Inoue, Tetsu Akiyama, and Masaaki Oyama

Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen
Sergei V. Kozlov, Ashley J. Waardenberg, Kasper Engholm-Keller, Jonathan W. Arthur, Mark E. Graham, and Martin Lavin

Reduced Mucin-7 (Muc7) Sialylation and Altered Saliva Rheology in Sjögren’s Syndrome Associated Oral Dryness

An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer

Immunohistochemical Markers Distinguishing Cholangiocellular Carcinoma (CCC) from Pancreatic Ductal Adenocarcinoma (PDAC) Discovered by Proteomic Analysis of Microdissected Cells
Juliet Padden, Maike Ahrens, Julia Kälsch, Stefanie Bertram, Dominik A. Megger, Thilo Bracht, Martin Eisenacher, Peri Kocabayoglu, Helmut E. Meyer, Bence Sipos, Hideo A. Baba, and Barbara Sitek

Targeted Proteomics Identifies Paraoxonase/Arylesterase 1 (PON1) and Apolipoprotein Cs as Potential Risk Factors for Hypoalphalipoproteinemia in Diabetic Subjects Treated with Fenofibrate and Rosiglitazone
Grazziella E. Ronsein, Gissette Reyes-Soffer, Yi He, Michael Oda, Henry Ginsberg, and Jay W. Heinecke

A Study into the collision-induced dissociation (CID) Behavior of Cross-Linked Peptides
Sven H. Giese, Lutz Fischer, and Juri Rappsilber

Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology
Adam Belsom, Michael Schneider, Lutz Fischer, Oliver Brock, and Juri Rappsilber
Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment

Technological Innovation and Resources

An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client
Johannes W. Bigenzahn, Astrid Fauster, Manuele Rebsamen, Richard K. Kandasamy, Stefania Scorzoni, Gregory I. Vladimer, André C. Müller, Matthias Gstaiger, Johannes Zuber, Keiryn L. Bennett, and Giulio Superti-Furga

Opening a SWATH Window on Posttranslational Modifications: Automated Pursuit of Modified Peptides
Andrew Keller, Samuel L. Bader, Ulrike Kusebauch, David Shteynberg, Leroy Hood, and Robert L. Moritz

proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data
Xiaojing Wang, Robbert J. C. Slebos, Matthew C. Chambers, David L. Tabb, Daniel C. Liebler, and Bing Zhang
AUTHOR INDEX

Ahrens, Maike, 1072
Akiyama, Tetsu, 1017
Albuquerque, Daniele, 906
Amato, Nicholas J., 810
Anderson, Lissa C., 975
Antonio de Souza, Gustavo, 1007
Arthur, Jonathan W., 1032
Askenazi, Manor, 1060
Avaritt, Nathan L., 765
Baba, Hideo A., 1072
Bader, Samuel L., 1151
Bai, Dina L., 918
Banks, Charles A., 960
Belsom, Adam, 1105
Bennett, Keiryn L., 1139
Bertram, Stefanie, 1072
Bigenzahn, Johannes W., 1139
Black, Ben E., 918
Boanca, Gina, 960
Bode, Daniel, 878
Bonaldi, Tiziana, 866
Bracht, Thilo, 1072
Brock, Oliver, 1105
Byrum, Stephanie D., 765
Campbell, Robert M., 892
Canterbury, Jesse, 776
Cao, Song, 1060
Cao, Xing-Jun, 892
Carl Völker-Albert, Moritz, 945
Caroline Pusch, Miriam, 945
Carpenter, Guy H., 1048
Carr, Steven A., 1060
Chambers, Matthew C., 1164
Chen, Daniel, 1060
Chaudhury, Nayab M. A., 1048
Choudhary, Jyoti, 878
Chen, Lisa Hong, 892
Chen, Xian, 1060
Chen, Yu, 818
Clauser, Karl R., 1060
Compton, Philip D., 776
Coradin, Mariel, 975
Covas, Dimas Tadeu, 906
Cristea, Ileana M., 791
Dang, Xibei, 818
Davies, Sherri R., 1060
Davis, Lauren, 765
de Souza Palma, Camila, 906
Ding, Li, 1060
Dubois, Laura G., 1117
Eisenacher, Martin, 1072
Ellis, Matthew J., 1060
Engholm-Keller, Kasper, 1032
English, A. Michelle, 975
Erdmann-Gilmore, Petra, 1060
Fabris, Daniele, 932
Faça, Vitor M., 906
Fauster, Astrid, 1139
Fedisch, Andreas, 945
Fellers, Ryan T., 776
Fenyö, David, 1060
Ferreira, Germano Aguiar, 906
Ferreira Melo, Fernanda Ursoli, 906
Fischer, Lutz, 1094, 1105
Florens, Laurence, 960
Flowers, Sarah A., 1048
Foltz, Daniel R., 918
Fornelli, Luca, 776
Freitas, Michael A., 818
Gabriel, Ana E., 960
Garcia, Benjamin A., 753, 892, 834, 975
Giese, Sven H., 1094
Giguère, Sophie S.B., 791
Ginsberg, Henry, 1083
Gozani, Or, 755
Graham, Mark E., 1032
Grassi, Mariana Lopes, 906
Greco, Todd M., 791
Groppe, Brad D., 960
Grover, Himanshu, 1060
Gstaiger, Matthias, 1139
Guo, Xiaoyan, 818
Guerrero, Candace R., 810
Guise, Amanda J., 791
Gunawardena, Harsha P., 1060
Gupta, Sanjeev, 810
Han, Bomie, 892
Han, Yumiao, 834
Hardison, Rachael L., 1117
Harrison, Alistair, 1117
Hart-Smith, Gene, 989
Hattem, Gaye L., 960
He, Yi, 1083
Heimlich, Derek R., 1117
Heinecke, Jay W., 1083
Hoadley, Katherine A., 1060
Hood, Leroy, 1151
Hoover, Michael E., 818
Horvath, Alexander, 892
Hunt, Donald F., 918, 975
Imhof, Axel, 945
Inoue, Jun-ichiro, 1017

Jansen, Pascal W.T.C., 854
Jean Beltran, Pierre M., 791
Joan Curcio, M., 932
John-Williams, Lisa St., 1117
Joshi, Preeti M., 791
Justice, Sheryl S., 1117

Kälsch, Julia, 1072
Kandasamy, Richard K., 1139
Karch, Kelly R., 975
Karlsson, Niclas G., 1048
Kashima, Simone, 906
Kelleher, Neil L., 776
Keller, Andrew, 1151
Kerschner, Joseph E., 1117
Kinsinger, Christopher R., 1060
Kocabayoglu, Peri, 1072
Kong, Jeffery, 791
Koyama-Nasu, Ryo, 1017
Kozlov, Sergei V., 1032
Kozuka-Hata, Hiroko, 1017
Kusebauch, Ulrike, 1151

Lakshminarasimhan, Mahadevan, 960
Lavin, Martin, 1032
Lehman, Stephanie M., 918
Licht, Jonathan D., 776
Liebler, Daniel C., 1060, 1164
Li, Shunqiang, 1060
Liu, Shuo, 810
Liu, Tao, 1060

Mackintosh, Samuel G., 765
Magne Sollid, Ludvig, 1007
 Maher, Christopher A., 1060
Mahmoud, Faed, 765
Makowski, Matthew M., 854
Malanowski, Kate E., 960
Marshall, Alan G., 818
Mason, Kevin M., 1117
McLellan, Michael D., 1060
Megger, Dominik A., 1072
Mertins, Philipp, 1060
Meyer, Helmut E., 1072
Minucci, Saverio, 866
Molden, Rosalynn C., 834
Moritz, Robert L., 1151
Moseley, M. Arthur, 1117
Mullen, Christopher, 776
Müller, André C., 1139

Narushima, Yuta, 1017
Nguyen, Hannah, 892
Noberini, Roberta, 866

Oda, Michael, 1083
Olsen, Ingrid, 1007
Olsen, Jonathan B., 892
Orr, Lisa M., 765
Oyama, Masaaki, 1017

Padden, Juliet, 1072
Panchenko, Tanya, 918
Pardo, Mercedes, 878
Payne, Samuel, 1060
Pazos II, Manuel A., 932
Peak, Allison, 960
Perou, Charles M., 1060
Pickford, Russell, 989
Pinto, Mariana Tomazini, 906
Pitteri, Sharon J., 906
Proctor, Gordon B., 1048
Pruner, Giancarlo, 866
Quach, Olivia L., 791

Rappsilber, Juri, 1094, 1105
Rebsamen, Manuele, 1139
Reid Townsend, R., 1060
Reyes-Soffer, Gisette, 1083
Reynolds, Matthew, 765
Riaz, Tahira, 1007
Richardson, Timothy L., 892
Rodland, Karen D., 1060
Rodriguez, Henry, 1060
Ronsein, Grazialetta E., 1083
Rose, Rebecca E., 932
Ruggles, Kelly V., 1060

Schilcher, Pierre, 945
Schmidt, Andreas, 945
Schneider, Michael, 1105
Scorzoni, Stefania, 1139
Sengupta, Deepanwita, 765
Senko, Michael W., 776
Shabanowitz, Jeffrey, 918, 975
Shalin, Sara C., 765
Sharma, Seema, 776
Sharma, Yogeshwar, 810
Shields, Bradley, 765
Shomo, Alan A., 818
Shteynberg, David, 1151
Sidoli, Simone, 975
Sipos, Bence, 1072
Sitek, Barbara, 1072
Slebos, Robbert, 1060
Slebos, Robbert J. C., 1164
Smith, Richard D., 1060
Smoyer, Christine, 960
Stoddard, Alexander, 1117
Sun, Shisheng, 1060
Superti-Furga, Giulio, 1139