






FIG. 6. Validation of a novel cytosolic tRNA ligase clustering complex in Arabidopsis. Effects of aimp1l on predicted protein complex
subunits based on the cytosol300 clustering result. A, AIMP1L is predicted to be a subunit of a novel cytosolic tRNA ligase complex based on
the composition of cluster 64. B, The raw elution profiles for predicted interactors of AIMP1L. AIMP1L was detected in wild type plants and
not detected protein in aimp1l (GABI-kat-220E08, AT2G40660) extracts (upper left). Profiles of putative AIM1L-complex subunits in wild-type
(light and dark blue profiles) and aimp1l (yellow and orange profiles): Ribosomal protein S8A (RPS8A, AT5G20290), Isoleucine-tRNA
synthetase/ligase (ILERS, AT4G10320), Lysine-tRNA synthetase/ligase (LysRS, AT3G11710) (bottom right), and tubulin Beta-6 (TUB6,
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there was a slight shift of AlaRS to a smaller apparent mass
and a clear secondary peak centered at �150 kDa (Fig. 6C).
Perhaps LysRS and AlaRS complexes are indirectly affected
by the removal of AIMP1L.

Validation of the Protein Complex Predictions: Coimmuno-
precipitation—Another approach to validate protein complex
predictions is CoIP-MS. Antibody-based purification should
identify the same stable protein complexes that we detect
here; however, this is unlikely to be true in all cases as
different antibodies to the same protein can identify widely
varying sets of interacting proteins (85). In a recent publi-
cation, Aryal et al., 2017 performed CoIP analysis to identify
a novel chloroplast-localized complex that contained
NITRILASE1 (NIT1), CHAPERONIN 60 SUBUNIT BETA 2
(CPN60B2) and CHAPERONIN 60 SUBUNIT BETA 1

(CPN60B1). When the chloroplast200 prediction was queried,
NIT1 (cluster 121), was found very close to CPN60B1 and
CPN60B2 in cluster 123 (Fig. 7A). The profiles indicate NIT1,
CPN60B have nearly identical peaks in SEC but, there is a
slight fraction shift in the IEX separation that is driving NIT1
and the CPN proteins into slightly different clusters (Fig. 7B).
This shows the utility of searching nearby clusters for putative
interactors.

Additional CoIP experiments revealed potential artifacts
likely caused by protein complex disassembly during separa-
tion on the IEX column. CoIP experiments were performed in
triplicate using antibodies specific to ACTIN and GFP (to
purify YFP-tagged Glyceraldehyde-3-phosphate-dehydro-
genase (GAPC)) (43) and a no antibody control. Antibody
purified proteins were accepted if they were absent in the

AT5G12250). C, Additional tRNA synthetases with altered profiles that were reproducibly detected only in the aimp1 profile experiment:
Glutamyl-tRNA synthetase (GluRS, AT5G26710). And Alanine tRNA synthetase (AlaRS, AT5G22800). D, The remaining tRNA synthetases that
were detected in the aimp1l profiling experiment but did not have an altered elution profile in the mutant: Leucine tRNA synthetase (LeuRS,
AT1G09620), three Serine tRNA synthetase (SerRS, AT1G11870, AT5G27470 and AT5G6680), and Arginine tRNA synthetase (AT4G26300).

FIG. 7. Coimmunoprecipitation experiments to characterize the chloroplast200 and cytosol300 protein complex predictions. A, The
expanded dendrogram that contains Nitrilase 1 (AT3G44310), CPN60B1 (AT1G55490) and CPN60B2 (AT3G13470) that have been shown to
interact by CoIP analyses. The y axis indicates the tree height and the red lines show were the tree is split when cut at 50 cluster increments.
The dendrogram is color coded to show the complexes that were predicted when the tree was cut at 200 clusters. B, Nitrilase was predicted
to form a complex with CPN60B2 and CPN60B1 by CoIP analysis in a previously published manuscript (21). The top panel shows the SEC and
IEX elution profiles for cluster 121 that contains two proteins, NIT1 and GAPA1 (AT3G26650). The two known interactors, CPN60B1 and
CPN60B2 were in cluster 123 that is close to cluster 121 containing NIT1. The lower panel shows the elution profiles for cluster 122 that falls
near the NIT1 cluster and cluster 123 that contains the known interactors. C, CoIP with an ACTIN antibody identified multiple putative
interactors that coeluted with actin in the SEC experiments (left fractions), but had distinct profiles on the IEX column (right fractions).
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negative control and detected in at least two of the three test
case pull downs. Proteins that were detected in the pull
downs and included in our clustering dataset were analyzed
further. The actin CoIP identified included two actin isoforms
and 10 additional proteins (supplemental Fig. S7A). CoIP of
YFP:GAPC identified the target protein and the ACTIN 2 and
ACTIN 7 isoforms. The actin and GAPC complex was also
identified in the actin CoIP. There was considerable coelution
on the SEC column of actin, GAPC, and many of the addi-
tional actin-interacting proteins identified by CoIP. For exam-
ple, both ACTIN isoforms and six additional proteins coeluted
at �950 kDa (Fig. 7C). GAPC and the actin isoforms also
coeluted on the SEC column (supplemental Fig. S7B). How-
ever, there was very little coelution on the IEX column (Fig. 7C,
supplemental Fig. S7B). We suspect that these actin-contain-
ing complexes are relatively unstable, and perhaps the com-
bination of the TRIS-buffer exchange and high salt elution that
was associated with the IEX separation caused artifactual
disassembly of subsets of protein complexes. Clusters con-
taining this type of false negative would have a relatively small
number of proteins in the cluster, but the individual proteins
would have a large apparent mass.

DISCUSSION

Protein complexes integrate metabolism, transport, and
signal transduction to enable complex behaviors (9, 10, 86–
90). Consequently, large scale datasets that relate to protein
oligomerization are highly desired (14, 22–24, 29, 30). Protein
oligomerization is also dynamic: their binding-partners, as-
sembly status, and localization change over time. Open-
ended proteomic analyses of endogenous protein complexes
are powerful because they provide information on subcellular
partitioning (21) or how protein complexes rearrange in re-
sponse to a signal (31). Obtaining large-scale datasets is
challenging. A single cell type expresses over �10,000 pro-
teins and based on previous protein profiling studies oligo-
merization is widespread (14, 18, 20, 35). In Arabidopsis
leaves more than 1/3 of all proteins are predicted to oligomer-
ize (13, 21, 32). Here we conducted orthogonal separations of
protein mixtures by size and charge to reduce the confound-
ing effect of chance coelution and developed a robust label-
free proteomic profiling and data analysis pipeline to make
hundreds of protein complex composition predictions.

Creation and Partial Validation of a Protein Correlation Pro-
filing Method for Protein Complex Prediction—Our “guilt by
association” method is based on the expected coelution of
subunits of stable protein complexes. The parallel size- and
charge-based separations generated highly reproducible elu-
tion profiles with peaks distributed widely across all column
fractions (Fig. 3A). Although there is coverage cost with con-
catenation of the SEC and IEX profile data, it decreased noise
and generated dendrograms with an increased resolving
power (Fig. 3B). Orthogonal separations enabled us to provide

a highly useful dataset on predicted protein complex compo-
sitions in leaf cells.

Validation experiments showed that many clusters were
highly enriched for subunits of known protein complexes
(Figs. 3–5). Subunits of the 20S proteasome core particle and
the RuBisCO complex (at two different assembly states, clus-
ters 109 and 172 in the chloroplast dendrogram) were pre-
dicted with near perfect accuracy. Unannotated proteases
with high sequence similarity to proteasome subunits were
assigned as proteasome-associated proteins based on this
analysis (Fig. 5). We do not claim that the predictions are
perfect. The chloroplast interacting protein pair Nitrilase and
CPN-family chaperones were in proximity in the chloroplast
dendrogram, but not in the same cluster. For this reason, data
users who are testing for candidate interactors of a protein of
interest are referred to supplemental Table S3, which provides
protein groupings at a range of cluster numbers. There are
also many instances of false positives because of chance
coelution and false negatives because of inadequate protein
coverage or noise in the profile data (Fig. 4D). Complex insta-
bility during high salt elution from the IEX likely disrupted
actin-containing complexes and may have revealed the rela-
tive instability of GRF1, GRF6, and GRF9 subunits. Therefore,
metrics for the reliability and type of each cluster were pro-
vided for data users in supplemental Table S2, column M).

Discovery of a Novel tRNA Ligase Clustering Complex—Our
validation studies using a AIMP1L mutant identifies true- and
false-positive subunits of a novel aminoacyl tRNA synthetase
containing complex. AIMP1L has weak homology with a ver-
tebrate ARS complex subunit and was clustered with two
class I tRNA ligases, the ribosomal protein RPS8A, and
TUBB6. Removal of AIMP1L caused unexpected behaviors of
predicted subunits: RPS8A, ILERS, and GLURS (a tRNA li-
gase that was reproducibly detected in the profiles aimp1 with
the Thermo QE but not in the clustering analysis dataset) had
subtle increases in apparent mass in the mutant. The pre-
dicted interactors LYSRS and TUBB6 coeluted in the SEC
column in the clustering dataset, but did not coelute in the
mutant profiling experiment, suggesting they are false posi-
tives or more labile subunits. However, the oligomerization
states of LYSRS and ALARS (another tRNA ligase that was
reproducibly detected in the profiles aimp1 with the Thermo
QE) were altered in aimp1l (Fig. 6B and 6C). These tRNA
ligases may be indirectly influenced by loss of AIMP1L and
physically interact with proteins that have altered abundance
or protein binding activities in aimp1l. This altered elution
pattern in aimp1l was not observed with 5 other tRNA ligases
that did not coelute with AIMP1L (Fig. 6D). The data are
pointing to a broad AIMP1L-dependent protein interaction
network involving many proteins protein translation. Although
the aimp1l plant has no obvious whole-plant phenotype, this
profiling analysis is a new type of phenotyping tool that can be
used to develop hypotheses about gene function.
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Useful Predictions of Self-interaction—Homo-oligomeriza-
tion is a common method of enzyme regulation (3, 91) and has
a strong influence on the evolution and connectivity of protein
interaction networks (92). The combined use of our profiling
clustering result and experimentally determined apparent
masses allowed us to identify 75 cytosolic and 69 chloroplast
localized proteins that are predicted to either form higher
order homooligomers or assemble into complexes with a high
subunit stoichiometry. This list of predicted self-interactors is
riddled with proteins that have previously been shown to form
homomers in nonplant species. Some proteins had an ex-
tremely high Rapp. For example, the PHOSPHOFRUCTOKI-
NASE7 (PFK7) had an Rapp of 18. The vertebrate PFK-L or-
tholog has a very high degree of polymerization, and forms
filaments at the �100 nm spatial scale. The oligomerization of
PFK7 likely has a structural importance in addition to its
enzymatic function. The homomer classification also flagged
NAP1 as a cytosolic homo-hexamer that may control the flux of
newly synthesized histones into the nucleus. Glucosinolate pro-
duction is an important form of plant chemical defense against
herbivory. Based on the ability of PYK10-binding protein 1
(PYKBP1) to sediment the glucosinolate hydrolysis activity of
PYK10 in vitro, PYK10BP1 was hypothesized to oligomerize
(93). In our analysis, PYK10BP1 fell into its own cluster and had
an extremely high Rapp value of �16. Our data predicts that
PYK10BP1 exists as a stable 16 subunit homo-oligomer under
normal growth conditions. Perhaps in response to stress-de-
pendent signal, PYK10BP1 clusters and activates PYK10. Our
data also have relevance the biology of the dehydrin/COR pro-
teins that have a known importance in plant abiotic stress
response but unclear modes of action. COR family proteins
have long been known to form complexes (94), and COR47 can
homodimerize (95). Our data show that under nonstressed lab-
oratory conditions the cytosolic pool of COR47 exists as a
higher order oligomer (Rapp � 7). Perhaps the oligomerization
state and/or binding partners of COR47 change in response to
environmental stress. These selected examples were chosen to
illustrate how this dataset can be used to better understand the
evolution and importance of self-interaction in a wide array of
physiological contexts.

Conclusions and Future Perspectives—Here we predict the
composition of hundreds of novel protein complexes from Ara-
bidopsis leaves. The endogenous protein correlation profiling
method requires no gene cloning or tagging and can be applied
to any organism with an accurate proteome. The response of
putative AIMP1L-containing protein complexes to subunit re-
moval was analyzed (Fig. 6B and 6C). This demonstrates the
utility of this method to analyze the dynamics of systems of
protein complexes in response to mutation, changing environ-
mental conditions, or developmental programs. We hope that
these protein complex predictions will be used by the research
community to test hypotheses and provide a more complete
assessment of the reliability of the dataset. Certainly, there is
room for improvement. The IEX separation needs to be opti-

mized to eliminate the buffer exchange, and better coverage will
come from the continued use of the Thermo QE instrument.
Additional orthogonal separations and separations done in se-
ries will help to reduce the primary technical challenge of
chance coelution and occurrences of false positives. Efficient
cell fractionation and the analysis of organelles will also de-
crease sample complexity and increase the coverage and ac-
curacy of protein complex predictions. Our mass spec data,
data filtering scripts (https://github.com/dlchenstat/Protein-
ComplexPredict), and final results (supplemental Tables S1–S3)
are all publicly available, with the hope that these data and this
method gain wide use to analyze the systems-level behaviors of
endogenous protein complexes.
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