


























Correlative Analysis of Proteomic and Image Data for BRCA

Fic. 4. Significantly enriched GO biological processes for morphological features based on proteomic data. Only positive correlations
between proteomic data and morphological features were included. Dots represent significantly enriched biological processes based on
Benjamini-Hochberg corrected false discovery rate (‘F.D.R.B.H’) with color coding: purple indicates high enrichment, red indicates low

enrichment.

lated processes and well-known cell cycle related proteins
such as CDCA8, CDC20, NDC80, and BUB1B. In addition,
Small_Nucleus_Area (implying small nuclei), Large_Nucleus_
Area (implying large nuclei)) Small_Aspect_Ratio (implying
round nuclei), Small_Major_Axis (implying small nuclej), Large_
Minor_Axis (implying large nuclei), Small_Mean_Distance (im-
plying high cell density), Small_Max_Distance (implying high
cell density), and Small_Min_Distance (implying high cell den-
sity) were all significantly correlated with metabolic pro-
cesses. Among the proteins associated with these pro-
cesses, mammalian mitochondrial ribosomal proteins (i.e.
MRPL9, MRPL21, MRPL39) showed high correlation, which

function in RNA synthesis and processing as well as protein
synthesis and translation in cytosol and/or mitochondria
and are necessary for the fast growth of tumor cells (36).
Although the detailed relationships between cancer cell nu-
clear size and protein expression as well as metabolism
have not been fully investigated, studies based on cancer
cell lines suggested protein synthesis rates are positively
correlated with cell size, which may be related to nuclear
size as well (37).

Moreover, morphological features like Small_Aspect_Ratio
(implying round nuclei) and Small_Mean_Distance (implying
high cell density), were significantly correlated with immune
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TABLE V
The summary of significantly enriched biology processes for proteins correlated with morphological features based on proteomic data

Morphology feature type Correlation type

Significantly enriched

Morphology feature biological process

Area

Ratio

Major_axis

Minor_axis

Max_distance

Min_distance

Positive correlation
Negative correlation
Positive correlation
Negative correlation
Positive correlation
Negative correlation
Positive correlation
Negative correlation
Positive correlation
Negative correlation
Positive correlation

Negative correlation

Small_Nucleus_Area
Large_Nucleus_Area
Small_Nucleus_Area
Large_Nucleus_Area
Small_Aspect_Ratio
Large_Aspect_Ratio
Small_Aspect_Ratio
Large_Aspect_Ratio
Small_Major_Axis
Large_Major_Axis
Small_Major_Axis
Large_Major_Axis
Small_Minor_Axis
Large_Minor_Axis
Small_Minor_Axis
Large_Minor_Axis
Small_Max_Distance
Large_Max_Distance
Small_Max_Distance
Large_Max_Distance
Small_Min_Distance
Large_Min_Distance
Small_Min_Distance
Large_Min_Distance

Cell cycle, Metabolic
Metabolic
Metabolic

Immune

Immune, Metabolic
ECM

ECM

Metabolic

Cell cycle, Metabolic
ECM

Metabolic
Metabolic

ECM

Metabolic
Metabolic
TME,Immune
Immune, Metabolic
ECM

ECM

Immune, Metabolic
Immune, Metabolic
ECM

TME, Metabolic
Immune, Metabolic

Mean_distance Positive correlation

Negative correlation

Small_Mean_Distance Immune, Metabolic
Large_Mean_Distance ECM
Small_Mean_Distance ECM
Large_Mean_Distance Immune, Metabolic

Note: ECM related biology processes includes: extracellular matrix (ECM), cell adhesion, cell migration, and vascular system GO functions;
Metabolic related biology process mostly include: Mitochondrial Ribosomal proteins (MRPs) and mRNA processing related GO functions.

processes. This is consistent with our knowledge in pathology
that many lymphocytes can be identified based on their typ-
ical small and round shape (12, 14) as well as densely aggre-
gated patterns. Immune response related proteins such as
FCN1, LY75, and major histocompatibility complex (MHC)
related proteins such as TAP1, TAP2, B2M were among the
ones that are highly correlated with these morphological
features.

Further, features such as Large_Aspect_Ratio (implying
elongated shape), Large_Major_Axis (implying large or elon-
gated nuclei), Small_Minor_Axis (implying small or elongated
nuclei), and Large_Mean_Distance (implying low cell density)
correlated with proteins that are significantly enriched with
ECM development, which is consistent with the development
of tumor stroma in the microenvironment. As stromal cells
such as fibroblasts are typically spindle-shaped with elon-
gated nuclei (12) and sparsely scattered in the stroma, they
are characterized by long major axes and/or large ratio be-
tween major and minor axes and low density compared with
epithelial cells. Collagen related proteins such as COL5A1,
COL5A2 and COL5AS, which are structural constituent of
EMC were identified. From the breast cancer biopsy samples
with immunohistochemical staining for COL5A1 in the Human

Protein Atlas (HPA) database, we indeed observed a high
percentage of stromal cell existing in breast cancer for the
ones with high COL5A1 staining (supplemental Fig. S5). Sim-
ilar results were also observed for MRC2 and COL3A1, which
were also highly correlated with morphological features linked
to stroma cells (supplemental Fig. S5). Together, the associ-
ated biological processes and well-known protein markers
support our understanding of the biological basis of different
cell type morphological features.

Like the positive correlations between proteomic data and
morphological features, such patterns of shared high-level
biological processes were also observed in proteins that are
negatively correlated with morphological features. Because
the values of the image features are relative (i.e. percentages)
based on distribution of the values, most of the enriched
biology processes associated with the selected extremal fea-
tures showed inverse enrichment (i.e. the proteins show pos-
itive correlations with the large feature values often show
negative correlations with the corresponding small aspect).
For negative correlations, metabolic process was shown
to be significantly associated with features including Small_
Nucleus_Area (implying small nuclei), Large_Aspect_Ratio
(implying elongated shape), Small_Major_Axis (implying small
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Fic. 5. Identification of prognostic
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able prognostic morphological feature;
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nuclei), Large_Major_Axis (implying large or elongated nuclei),
Small_Minor_Axis (implying small or elongated nuclei),
Large_Mean_Distance (implying low cell density), Large_
Max_Distance (implying low cell density), Small_Min_Distance
(implying high cell density), and Large_Min_Distance (implying
low cell density). Immune processes were significantly en-
riched in proteins negatively correlated with features such as
Large_Nucleus_Area (implying large nuclei), Large_Minor_Axis
(implying large nuclei), Large_Mean_Distance (implying low cell
density), Large_Max_Distance (implying low cell density), and
Large_Min_Distance (implying low cell density). The ECM re-
lated features were significantly enriched in Small_Aspect_
Ratio (implying round nuclei), Large_Minor_Axis (implying
large nuclei), Small_Mean_Distance (implying low cell den-
sity), Small_Max_Distance (implying low cell density), and
Small_Min_Distance (implying low cell density) (Table V and
supplemental Fig. S4).

In summary, four major types of biology process including
metabolism, immune, cell cycle and ECM development were
identified based on proteomic data because of strong asso-
ciations with morphological features.

Survival Analysis Based on the Morphological Features—
Because morphological parameters extracted from histopa-
thology images are essential for breast cancer diagnosis

Image feature value
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and prognosis by pathologists, we also investigated how
well these morphological features are associated with clin-
ical outcome of the patients as described in the Methods
section to assess the association between morphological
feature and patient overall survival information for all the
1,057 patients in the TCGA BRCA project. Morphological
features (p value < 0.001, HR > 1.2) associated with both
favorable and unfavorable prognosis have been identified
using the workflow described above. In Fig. 5, examples of
favorable and unfavorable prognostic morphological fea-
tures were shown, based on the optimal stratification p
value calculated using a similar approach as in (34) (detailed
information for other morphological features were provided
in supplemental Fig. S6). Five prognostic morphological
features that were strongly correlated with patients’ overall
survival were selected (Fig. 6). After examining these sur-
vival-associated variables, we found unfavorable prognostic
morphological features including Large_Nucleus_Area (im-
plying large nuclei), Large_Minor_Axis (implying large or
elongated nuclei), and Large_Max_Distance (implying low
cell density). These morphological features were linked to
large cell nuclei or large distances to neighboring cells,
which were highly associated with metabolic or ECM related
biology processes (Table VI). As for favorable prognostic
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Fic. 6. Forest plot for morphological features to predict the
overall survival (OS) of breast cancer. Abbreviations: HR = hazard
ratio; Cl = confidence interval.

morphological feature, they tended to be small distances to
neighboring cells (Small_Mean_Distance and Small_Min_
Distance), which were highly correlated with metabolic or
immune related processes (Table VI).

Morphological Features Significantly Associated with Clini-
cal Subtype Classification—As breast patients can be cate-
gorized into subtypes including Basal, Luminal A, Luminal B,
Her2 type based on histology and molecular signatures, we
performed Kruskal-Wallis Test for each selected image fea-
ture to test if they have significant associations with these
clinical subtypes. All the image features exhibit significant
differences between breast cancer subtypes except for
Small_Minor_Axis (supplemental Table S2). These results are
consistent with the fact that morphological features are criti-
cal to guide diagnosis and treatment.

DISCUSSION

Solid tumors such as breast cancer are highly heterogene-
ous, with multiple types of cells such as epithelial cells, im-
mune cells and other stromal cells. Given the importance of
tumor morphological features in diagnosis and prognosis,
investigating the relationship between the molecular data and
morphology can lead to potential new insight on the molecular
basis underlying cancer development and prognosis. Taking
advantage of the computational pathology workflow we es-
tablished for processing whole slide images, we were able to
extract quantitative morphological features from histopathol-
ogy slides of breast cancer tissues, thus enabling investigat-
ing relationships between tumor tissue morphology and om-
ics data. In addition, because mMRNA and protein data contain
related but different levels of molecular information, integrat-
ing both data with morphological features can lead to discov-
ery of different biological events associated with cancer tissue
morphology.

Based on the correlation analysis between morphological
features derived from whole slide images of tissue samples
and molecular data (MRNA or proteomic data), four major
types of biology processes, namely metabolic, cell cycle,
immune, and ECM development processes have been identi-
fied. These processes have all been strongly associated with
cancer hallmarks (6). Morphological features enriched with met-
abolic and cell cycle processes were associated with cancer
(epithelial) cells. Among these metabolic processes, we ob-
served strong signals for mitochondria related biology pro-
cesses, the protein translational process related to mitochon-
drial Ribosomal proteins (MRPs). Kim et al. (36) previously
demonstrated the important function of MRPs in regulating
apoptosis, cell cycle, and cell proliferation. As for cell cycle
processes, Yuan et al. have highlighted its close relationship
with cancer morphologic features (12). However, although it is
often anticipated that active cell cycle progress may be as-
sociated with large nuclei because of chromosome duplica-
tion and mitosis, our results suggest that they may also lead
to more smaller cells in breast cancer possibly because of
active division even though the detailed mechanism calls for
future in-depth investigation. In addition, ECM development
and immune response processes for tumor microenvironment
were associated with stromal cells and tumor infiltrating lym-
phocytes respectively (38-41). We found that these stromal
cells related features are most strongly associated with tumor
microenvironment (TME) development (e.g. ECM, cell adhe-
sion, cell migration). Previous studies have demonstrated that
the interaction between stromal cells (such as cancer-asso-
ciated fibroblasts, a typical stroma cell) and ECM has a crucial
role in tumor initiation, progression, and metastasis (42-44),
which is an important hallmark of cancers. Beck et al. previ-
ously demonstrated the importance of TME related morpho-
logical features in breast cancer prognosis (22) and our results
linked related features to the potential underlying genes. In
addition, cancer-associated fibroblast (CAF) is a typical stro-
mal cell and can recruit and bind collagen fibers (key compo-
nents of ECM) thus convert a loose stroma into a dense
stromal network (43, 44), this network acts as a barrier to drug
flow, thereby increasing chemoresistance. Lastly, Yuan et al.
also identified that immune related pathways were correlated
with the lymphocyte morphologic features (12), which is con-
sistent with our observation. Taken together, our approach
can identify the specific biological process associated with
individual morphological features. These results not only con-
firm our understanding of the molecular basis of morphology,
but also offer new insights and hypotheses regarding the
development of cancer tissues for future investigation.

When comparing the significantly enriched biological pro-
cesses associated with morphological features based on
mRNA and protein, we found that although most of the sig-
nificantly enriched biological process categories were similar,
some unique biological processes associated with morpho-
logical features were identified only based on proteomics data
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TABLE VI
Summary of survival-associated morphological features

Morphology feature p value Prognostic type Associated biology process
Large_Nucleus_Area 2.96E-09 unfavorable prognostic Metabolic
Large_Minor_Axis 6.11E-05 unfavorable prognostic Metabolic
Large_Max_Distance 9.71E-05 unfavorable prognostic ECM
Small_Mean_Distance 0.51E-03 favorable prognostic Immune, Metabolic
Small_Min_Distance 6.55E-06 favorable prognostic Immune, Metabolic

Note: p value formatting as the following example: 2.96E-09 is 0.00000000296.

(e.g. posttranscriptional related biological processes). In ad-
dition, the mitochondria-related metabolism processes also
stood out based on proteomic data. Latonen et al. recently
showed that post-transcriptional events take important roles
in the mitochondria during cancer progression (45). These
results strongly suggest that proteomic data are important in
fully characterizing the molecular events associated with mor-
phological changes at cellular and tissue levels and are im-
portant for understand the development of cancers.

Because histopathology images are essential for cancer
diagnosis and prognosis, we also identified favorable and
unfavorable prognostic morphological features and the cor-
responding biological process associated with them. Among
these unfavorable predictors, large values of long distance to
adjacent nuclei imply a high percentage of stromal compo-
nents in the in whole-slide images. Yuan et al. and Beck et al.
both demonstrated that stromal morphologic structure is an
important prognostic factor in breast cancer, patients with
higher stromal proportions had worse prognosis than other
patients (12, 22). In addition, we also observed that large
nuclear area is associated with poor survival. Previous studies
have highlighted that cancer cells with enlarged nuclei almost
always indicate more aggressive outcomes (46). Currently,
anti-estrogen therapy to decreased nuclear size in tumors are
used for preoperative treatment of breast cancer patients (46).
As for favorable predictors, most of them were related to
immune responses, suggesting that activation of immune sys-
tem plays critical roles in fighting cancer, which are consistent
with many recent studies on cancer immunology and immu-
notherapy (12, 47, 48).

Despite the extensive observations and results generated
from our analysis, some limitations of this study should be
noticed as well. First, the key molecular regulators for the cell
type morphology features were still unknown, even though the
associated biological processes were inferred because our
current study focuses on correlation analysis instead of
causal analysis. Deeper analysis for the regulatory and driver
genes and proteins using more sophisticated statistical meth-
ods combined with experimental validation will be carried out
soon. Second, we only included 73 breast cancer patients for
the correlation analysis between molecular data and morphol-
ogy phenotypes in this study because of the limitation of
available data. The image-protein and image-mRNA relation-
ships identified here may not represent all breast cancer

subtypes. Despite that the correlative relationships between
proteomic data and morphology were validated using
matched RPPA data, further confirmation using independent
datasets is still needed despite the lack of such data at the
meantime. Last but not the least, even though we showed that
the cell nucleic features suggested stromal or tumor cells, it is
difficult to distinguish different cell types accurately just based
on the nucleic morphology alone.

In summary, we carried out a unique systematic study on the
relationship between tumor tissue morphology and transcrip-
tomic as well as proteomic data in breast cancer. We observed
concordant distribution patterns of correlation coefficients be-
tween image-mRNA and image-protein at the genome scale.
Four major types of important biological processes related to
cancers have been associated with various morphological fea-
tures. Importantly, proteomic data are critical in identifying pro-
tein related biological processes associated with morphological
features, which cannot be captured by transcriptomic data. In
addition, morphological features associated with patient sur-
vival have been identified and their underlying molecular pro-
cesses based on the associated proteins can link these mor-
phological features to different hallmarks of cancers.

In conclusion, our analysis demonstrated the potential for
integrating morphological information and molecular data for
generating new biological hypothesis for cancer research. The
algorithmic development for computational pathology un-
leashes the potential for similar large-scale studies for differ-
ent cancers. More sophisticated modeling and integration
methods will lead to deeper understanding of the regulation of
the tissue morphology and importance of protein in this proc-
ess, contributing to the generation of new insights for cancer
biology and outcome prediction.
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CPTAC Data Portal. Histopathology images were downloaded
directly through the NCI GDC TCGA Data Portal, whereas
transcriptomic data were downloaded from the UCSC Xena
data portal (https://xena.ucsc.edu/public-hubs/). Matched
RPPA proteomic data were obtained from the Broad GDAC
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Firehose (https://gdac.broadinstitute.org). cell morphological
features and patient survival outcomes, 1,057 BRCA-type
breast patients with matched 1057 H&E-stained tissue im-
ages and corresponding clinical survival information were
used. The patient clinical data were obtained from UCSC
Xena. The analysis scripts that we used for this manuscript
are available at GitHub: https://github.com/xiaohuizhan/
cor_image_omics_BRCA.
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