






pool of potential peptide identifications is further reduced as a
result of selective enrichment for a particular class of pep-
tides, e.g. cysteine-containing peptides in quantitative pro-
teomic experiments based on ICAT reagents (3). The identifi-

cation of some peptides can be prevented by unexpected
post-translational modifications. Furthermore because multi-
ple different peptide ions are injected in the mass spectrom-
eter (operated in top-down ion selection mode) at any given

FIG. 2. Sequences of identified pep-
tides often do not allow discrimination
between different protein isoforms. A,
multiple peptides are identified that are
present in two different splice forms,
P47756-1 and P47756-2, of the F-actin
capping protein � subunit. The align-
ment of the sequences of the two iso-
forms is shown, and the sequences of
the identified peptides are shown in
bold. The isoforms are indistinguishable
given the available data. The discrimina-
tion would be possible if peptides span-
ning the areas where the sequences di-
verge, e.g. SIDAIPDNQK (unique to
P47756-1) and SVQTFADK (unique to
P47756-2), were identified. B, protein
isoforms of epithelial protein lost in neo-
plasm. Three isoforms result from splic-
ing of several consecutive exons located
at the 5�-end in the gene sequence.
Given the sequences of the identified
peptides (shown in bold), it is not possi-
ble to determine precisely which isoform
is present. The sequences of the two
shorter isoforms (Q9UHB6-2 and
Q9UHB6-3) are included in the se-
quence of the longer isoform (Q9UHB6-
1). Identification of a peptide from the
region present in the isoform � only (se-
quence shown in a box) would allow
conclusive identification of this isoform
(no such peptides were actually ob-
served in the experiment). Conclusive
identification of the shorter isoforms
would be difficult because they do not
contain any unique sequence.
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time, low intensity ions, produced by low abundance or poorly
ionizing peptides, are less likely to be selected for MS/MS
sequencing (1). Finally some peptides, due to their physical-
chemical properties, cannot be efficiently ionized or fragment
in an atypical way producing MS/MS spectra unidentifiable by
the current database search tools. As a result, more than 30%
of all proteins that are detected in a typical shotgun proteomic
experiment, including many low molecular weight or low
abundance proteins, are identified by a single peptide.

ASSEMBLING PEPTIDES INTO PROTEINS

Results of large scale proteomic experiments are often
presented as lists of protein identifications. At present, signif-
icant inconsistencies exist in the way different research
groups assign peptides to proteins and deal with biological
and database redundancies. The criteria for calling a protein
“identified” are not always described, and there is no gener-
ally accepted way to do it. Shared peptides (peptides present
in more than one sequence database entry) are sometimes

FIG. 3. An example of a protein family. Eleven tryptic peptides are identified that are shared between the members of the �-tubulin family.
None of the proteins is identified by a peptide that is unique to it, thus making it impossible to determine which particular member(s) of the
family is present in the sample.

FIG. 4. Sequence database redun-
dancies complicate the analysis of
shotgun proteomic data. Four separate
entries in the Entrez Protein database
represent the same protein, heat shock
70-kDa protein 9B. Three of them (en-
tries 2–4) are derived from mRNA se-
quences containing small sequence
variations.
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assigned to a particular protein among several possibilities in
a random fashion. Different sequence database entries could
be counted as separate protein identifications when in fact all
of them share the same set of peptides and, therefore, are
indistinguishable. In most cases not only do these redundan-
cies inflate the total number of proteins reported as identified,
but they can also lead to incorrect biological interpretation of
the data. The problem is further complicated when no statis-
tical analysis is performed to determine the validity of peptide
and protein identifications (10, 29). Thus, there is a need to
develop a common nomenclature and a set of guidelines for
assigning peptides to proteins and for interpreting resulting
protein identification datasets.

The nomenclature described below provides a consistent
way for presenting the results of large scale proteomic exper-
iments. In creating a protein summary list that accurately
represents the data, various peptide grouping scenarios have
to be considered that are schematically illustrated in Fig. 5
(22, 30). The diagram in Fig. 5a describes a case of two
distinct proteins, A and B, each identified by distinct7 peptides
only, i.e. peptides corresponding to that one protein and no
other proteins (peptides 1 and 2 are unique to protein A, and
peptides 3 and 4 are unique protein B). Fig. 5b shows a case
of two differentiable proteins, which are identified by at least

one distinct peptide (peptide 1 is unique to A, and peptide 4
is unique to protein B) but also by one or more shared pep-
tides (peptides 2 and 3 are shared between the two proteins).
A different scenario is shown in Fig. 5c where all peptides are
shared between proteins A and B. These two proteins are
indistinguishable given the sequences of the identified pep-
tides, and either protein A, protein B, or both can be present
in the sample. Fig. 5, d and e, each show a situation where all
identified peptides corresponding to protein B are shared and
can be accounted for by another protein (protein A in Fig. 5d)
or a combination of several other proteins (proteins A and C in
Fig. 5e) certain to be in the sample because they are identified
by at least one distinct peptide. In general, no conclusion can
be made regarding the presence of a subset (protein B in Fig.
5d) or a subsumable (Protein B in Fig. 5e) protein in the
sample. A special case is shown in Fig. 5f where all identified
peptides are shared by a group of proteins. The presence of
protein A in the sample is sufficient to explain all observed
peptides (B and C are subset protein identifications). Although
protein A is the most likely candidate, its presence in the
sample is not required to explain the data; it is identified by
shared peptides only. In the absence of protein A, a combi-
nation of proteins B and C would account for all four peptides.
Such situations are often observed in the case of extended
protein families, such as the tubulin example shown in Fig. 3.
The examples discussed above are exhaustive, i.e. it should
be possible to explain more complicated cases observed in
real datasets by reducing them to a combination of several
basic grouping scenarios.

The nomenclature described here, coupled with the Oc-
cam’s razor constraint (22), would provide a minimal list of
proteins sufficient to explain all observed peptides. Such a
minimal list would contain all distinct and differentiable pro-
teins, e.g. proteins A and B in Fig. 5, a and b, and proteins A
and C in Fig. 5e but no subsumable or subset proteins, e.g.
only protein A would be included in the list in the cases shown
in Fig. 5, d and f. In the case of indistinguishable protein
identifications, Fig. 5c, it would be most accurate to collapse
all such identifications into a single entry in the protein sum-
mary report as there is often no basis to eliminate any of them.

Presenting results of large scale shotgun experiments in
terms of such minimal lists of protein identifications has sev-
eral advantages. It significantly simplifies the interpretation of
the data by allowing the user to focus on proteins that are
conclusively determined to be present in the sample. It also
allows calculation of a consistent measure for the number of
proteins identified in the experiment as the smallest number of
proteins that can explain all observed peptides (i.e. the num-
ber of entries in the minimal protein list).

At the same time, presenting only the minimal list of pro-
teins has limitations. For example, a researcher interested in a
particular gene might want to observe all related protein iso-
forms annotated in the protein sequence database that are
implicated by at least one peptide identified in the experiment.7 Also referred to as discrete peptides (see Ref. 30).

FIG. 5. Basic peptide grouping scenarios. a, distinct protein iden-
tifications. b, differentiable protein identifications. c, indistinguishable
protein identifications. d, subset protein identification. e, subsumable
protein identification. f, an example of a protein group where one
protein can explain all observed peptides, but its identification is not
conclusive.
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Moreover the strict implementation of the Occam’s razor ap-
proach can be misleading when applied to complex protein
families. In the �-tubulin protein family example shown in Fig.
3, none of the identified peptides are unique to the tubulin �-1
protein. Thus, although this protein can explain all observed
peptides, its identification is not conclusive. In fact, in the
absence of the �-1 tubulin, all peptides can be accounted for
by a combination of several other tubulins, e.g. �-3 and �-6.
Because it is not possible to determine which particular mem-
ber(s) of that family is present in the sample, in creating a
minimal list it is more accurate and informative to present all
members together as a group (22). Therefore, the most ad-
vantageous presentation would include the following: (a) a
minimal list with indistinguishable proteins collapsed into a
single entry (but showing all protein names) and with all mem-
bers of protein groups listed and (b) means to observe the
proteins implicated by at least one peptide that cannot be
called conclusively identified. A simplified illustration of such a
format of presentation is shown in Fig. 6.

COMPUTATIONAL TOOLS

A number of computational tools for assembling peptides
into proteins in large scale shotgun proteomic experiments
have been described (22, 28, 30, 37, 38). In general, the
process of peptide assembly consists of the following steps.
First, peptide assignments obtained by searching acquired
MS/MS spectra against a protein sequence database using
algorithms such as SEQUEST (14) or Mascot (16) are filtered
using a user-specified set of criteria to remove false identifi-
cations. Second, accession numbers and annotations of pro-
tein sequence database entries corresponding to each pep-
tide are retrieved from the sequence database. Third,

peptides are grouped by their corresponding sequence data-
base entries. Fourth, shared peptides are apportioned among
all corresponding proteins, and a summary protein list is
created. Ideally the apportionment of peptides to proteins
should be done using a probability-based approach, i.e. tak-
ing into account the probabilities of peptide assignments (22).
This has an advantage in that it allows calculation of statistical
confidence measures for protein identifications and estima-
tion of false identification error rates resulting from filtering the
data (10, 22).

The format in which the results of shotgun proteomic ex-
periments are presented to the user varies between the tools.
In ProteinProphet (22), each separate entry in the protein
summary file is assigned a probability that the corresponding
protein is present in the sample. Indistinguishable proteins are
collapsed into a single entry, and all members of protein
groups, such as the �-tubulin family shown in Fig. 3, are
presented together. All subset and subsumable protein en-
tries are assigned zero probability, which is to be interpreted
as the absence of conclusive evidence for the presence of
those proteins in the sample. The subset and subsumable
protein entries can be located and viewed using interactive
web-based options. In the Experimental Peptide Identification
Repository (EPIR) (38), the notion of protein groups intro-
duced in Ref. 22 is extended, and all entries with shared
peptides are organized into a single group. The protein that
contains most of the peptides is selected as an anchor, and all
group members that are identified by at least one distinct
peptide are marked as conclusively identified. Additional vi-
sualization tools, e.g. a tool for aligning the sequences of all
proteins within a protein group, are provided to assist in the
interpretation of the data. Other software tools such as Iso-

FIG. 6. A simplified example of a
protein summary list. Peptides are ap-
portioned among all their corresponding
proteins, and the minimal list of proteins
is derived that can explain all observed
peptides. Proteins that are impossible to
differentiate on the basis of identified
peptides are collapsed into a single entry
(F and G) or presented as a group (H, I,
and J). Shared peptides are marked with
an asterisk. Proteins that cannot be con-
clusively identified are shown at the end
of the list but do not contribute toward
the protein count.
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form Resolver (28) and DBParser (30) create protein summary
lists containing all protein sequence database entries identi-
fied by at least one peptide with proteins that share a set of
peptides placed adjacent to each other. In Isoform Resolver,
the protein summary lists are presented in a text format, and
a peptide-centric numbering scheme is used to specify what
proteins are identified conclusively. DBParser outputs the
results in an interactive web-based format that allows the user
to view both the redundant and the minimal list of proteins.

DTASelect (39) is another widely used tool for processing of
shotgun proteomic data. However, it does not provide any
statistical confidence measures for protein and peptide iden-

tifications, and its approach for assembling peptides into
proteins in the presence of shared peptides has not been fully
described. In addition, new tools are being developed at
increasing speed, including commercial programs that com-
bine the process of peptide identification and the subsequent
assembly of peptides into proteins (40).8 This diversity of
computational tools, a positive development reflecting the
increased used of shotgun proteomics, nevertheless presents
a significant challenge for developing any kind of standards
for the analysis and journal publication of proteomic datasets

8 SpectrumMill (www.chem.agilent.com).

TABLE I
Summary of the protein sequence databases that are commonly used in shotgun proteomic analysis

Database sizes and the number of sequences are given for the human subset of each database only. EBI, European Bioinformatics Institute;
SIB, Swiss Institute of Bioinformatics.

Database, date
(version)

Number of sequences;
size of file (human)

Description;
source databases

Organisms
Release; update

frequency;
maintained by

Uni-Prot/Swiss-Prot,
02/15/2005

11,898; 7.8 Mb Expertly curated; high level of annotation;
minimum level of redundancy; high level of
integration with other databases.

Many Release every 4 months;
updates every 2
weeks; EBI, SIB,
Georgetown University

Uni-Prot/TrEMBL,
02/15/2005

52,052; 23.3 Mb Computer-annotated supplement to Uni-Prot/
Swiss-Prot. Contains translated coding
sequences from GenBankTM nucleotide
database, protein sequences extracted
from the literature or submitted to Uni-Prot/
Swiss-Prot but not yet manually curated.

Many Release every 4 months;
updates every 2
weeks; EBI, SIB,
Georgetown University

RefSeq, 08/26/2004
(R 9)

27,960; 17.7 Mb Ongoing curation by NCBI staff;
non-redundant; explicitly linked nucleotide
and protein sequences; stable reference;
high level of integration with other
databases.

Many Release every �3
months; NCBI

Ensembl, 02/2005
(version 28-35a)

33,860; 21.1 Mb Created using automated genome annotation
pipeline; eukaryotic genomes only; explicitly
linked nucleotide and protein sequences;
stable reference; high level of integration
with other databases. Peptides identified by
MS/MS can be mapped to the genome via
Ensembl Protein database and visualized
using Ensembl Genome Browser.

16 organisms Every 1–2 months; EBI
and Wellcome Trust
Sanger Institute

IPI, 02/2005
(version 3.03)

48,953; 28.9 Mb Good balance between degree of redundancy
and completeness; references to the
primary data sources; attempts to maintain
stable identifiers (with incremental
versioning), but still in flux. Assembled from
Uni-Prot (Swiss-Prot � TrEMBL), RefSeq,
Emsembl, H-Invitational database.

5 organisms Monthly; EBI

Entrez Protein (NCBInr),
02/17/2005

115,926; 58.5 Mb More complete with regard to sequence
polymorphisms and splice forms;
annotations extracted from curated
databases; high degree of sequence
redundancy makes interpretation difficult.
Assembled from GenBankTM and RefSeq
coding sequence translations, Protein
Information Resource (PIR), Protein Data
Bank (PDB), Uni-Prot/Swiss-Prot, Protein
Research Foundation (PRF).

Many Frequent updates; NCBI
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(10, 29). It is thus essential that the computational tools are
made transparent (published) and extensively tested and that
the methods for assembling peptides into proteins and pre-
senting the results all follow the same set of general guidelines
such as those described in this article.

PROTEIN SEQUENCE DATABASES

Computational analysis and biological interpretation of
shotgun proteomic data requires selection of a reference pro-
tein sequence database. For some organisms, e.g. human,
several different databases exist that vary in terms of com-
pleteness, degree of redundancy, and quality of sequence
annotation (42). Table I and Fig. 7 summarize some of the
existing protein sequence databases that are commonly used
with mass spectrometry data. The choice of a particular da-
tabase should be based on the goals of the experiment.

When peptides are assigned to MS/MS spectra using the
database search approach, the universe of all potential pep-
tide assignments is limited to the sequences present in the
searched protein sequence database. The completeness of
the sequence database thus can be a decisive factor in ex-
periments where identification of sequence polymorphisms is
crucial for the biological interpretation of the data. In those
cases, a large database such as Entrez Protein (also known as
the non-redundant NCBI database, NCBInr) (43) would have
an advantage over smaller databases such as Uni-Prot/
Swiss-Prot (44) or RefSeq (45). The Entrez Protein database,
for example, contains twice as many unique tryptic peptide
sequences as Uni-Prot/Swiss-Prot (Fig. 7A). At the same time,
large sequence databases contain, in addition to true biolog-
ically significant sequence variants, numerous artificial redun-
dancies arising e.g. from partial mRNAs or sequencing errors
(see example in Fig. 4). Fig. 7B plots the average number of
database entries containing each unique tryptic (with no
missed cleavages) peptide sequence as a function of peptide
molecular weight. For example, in the range of molecular
weights around 1000, the majority of tryptic peptides in the
Swiss-Prot database are distinct (Ntot/Nunique � 1), whereas in
the Entrez Protein database each peptide is present on aver-
age in three different entries (Ntot/Nunique � 3). In the absence
of good sequence annotation in large protein sequence da-
tabases such as Entrez Protein database, it becomes neces-
sary to perform time-consuming manual analysis and elimi-
nation of database redundancies. Furthermore searching
such large databases makes it more difficult to separate the
correct from random (incorrect) peptide assignments to
MS/MS spectra.

When the quality of the sequence annotation and the ease
of data interpretation are more important than the ability to
identify sequence variants, it is more appropriate to use well
curated databases such as Swiss-Prot or RefSeq. A good
balance between the completeness and the level of redun-
dancy is found in the International Protein Index (IPI) database
(46), which is available for a number of organisms including

human and mouse. The sequence- and identifier-based con-
struction of this database significantly reduces the need for
manual filtering while maintaining cross-references to all its
source data, which include Ensembl (47), Uni-Prot (Swiss-
Prot and its supplement TrEMBL) (44), and RefSeq (45). Minor
sequence variants, however, are not represented in the IPI
database.

Genomic databases can also be used for MS/MS database
searching (48, 49), which can lead to the identification of novel

FIG. 7. Protein sequence databases differ in terms of their com-
pleteness and the degree of sequence redundancy. A, the total
number of tryptic peptides with no missed cleavages (Ntot) and the
number of unique sequences among them (Nunique), in the range of
molecular weights between 600 and 3000, in each of the human
protein sequence databases listed in Table I. B, a measure of the
database sequence redundancy (average number of database entries
containing each unique tryptic peptide sequence), estimated by tak-
ing the ratio Ntot/Nunique, plotted as a function of peptide molecular
weight (bin size of 50 mass units) for the same databases. SP,
Swiss-Prot.
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alternative splice forms and sequence polymorphisms not
present in the protein sequences databases. However, this
type of computational analysis can be computer-intensive
because of the large size of those databases. It is also com-
plicated due to frameshifts, incorrectly predicted open read-
ing frames, and poor quality of many EST sequences. This
combined with the poor quality of many experimental MS/MS
spectra can lead to high numbers of false identifications. A
more efficient strategy for the identification of novel alterna-
tive splice forms or sequence variants is to perform compu-
tational analysis in an iterative fashion. In this approach, the
analysis would start with searching MS/MS spectra against a
well annotated database (e.g. RefSeq or IPI). The high quality
spectra left unassigned in the initial search are then reana-
lyzed more extensively, first searching for post-translationally
modified peptides and only then against large genomic
databases.9

An important caveat to keep in mind when interpreting
shotgun proteomic data is that the protein sequence data-
bases are constantly in flux especially with regard to minor
sequence variants, alternative splice forms, and other less
well characterized gene products. With each new database
update, some protein sequences disappear, the annotation
and accession numbers of the remaining sequences can
change, and new sequences can be added. The instability of
the current sequence databases is largely due to a substantial
amount of work being carried out to improve their complete-
ness and the quality of sequence annotation, a process that is
likely to continue for a significant period of time. This has
significant implications in that interpretation of the MS/MS-
based proteomic data, e.g. assignment of peptides to entries
in the protein sequence database and conclusions about the
presence of a particular protein isoform in the sample, de-
pends on the version of the protein sequence database used
in the analysis. Frequent updating of the sequence databases
by the database providers can complicate ongoing proteomic
experiments. Researchers using these databases in the anal-
ysis of their data often have to reanalyze previously acquired
and processed MS/MS spectra using a new version of the
database or develop bioinformatic tools for automated map-
ping of peptide sequences, identified by searching MS/MS
spectra against an older version of the database, to the
latest version of that database. It is important to note that
the data coming from MS-based proteomic experiments
can itself be used to assist in the process of improving
protein sequence databases provided a mechanism is de-
veloped for communicating the sequences of peptides iden-
tified by searching those databases back to the database
developers and annotators (50, 51).

IDENTIFICATION OF MATURE FORMS OF PROTEINS

The discussion so far has mostly focused on the problem of
assigning peptides to proteins and distinguishing between
different protein forms whose sequences are present in the
protein sequence database. A closely related issue is the
difficulty of using shotgun proteomic data to provide conclu-
sive information regarding the mature form of the sample
proteins. First, most existing protein sequence databases
contain entries that are derived from full cDNAs encoding
preprocessed forms. Thus, they do not typically contain the
mature forms derived from various post-translational proc-
essing mechanisms, e.g. removal of the leading methionine,
cleavage of the signal or transit peptide, etc. Second, even if
all mature forms were annotated in the protein sequence
database, distinguishing between different protein isoforms
would be difficult. For example, a mere observation that none
of the identified peptides are coming from the N-terminal
region of the protein does not necessarily indicate the cleav-
age of the presequence. It can be explained by other factors,
e.g. the absence of identifiable tryptic peptides in that region.

In some cases, post-translational processing events can be
inferred using the knowledge regarding the specificity of the
proteolytic enzyme used to digest proteins into peptides. For
example, the enzyme trypsin cleaves after arginine and lysine
residues. A peptide resulting from trypsin digestion should
contain Lys or Arg at its C terminus (unless it is located at the
C terminus of the protein), and in the sequences of its corre-
sponding protein the residue immediately preceding the pep-
tide should also be Lys or Arg (or the peptide is located at the
N terminus). Thus, identification of a peptide whose sequence
does not adhere to the enzymatic digestion constraint at one
of its termini could indicate that the mature form of the protein
is present in the sample. One such example is shown in Fig.
8A where identification of a “partially tryptic” peptide (not
tryptic at its N terminus), assigned to the “Basigin precursor”
database entry (Swiss-Prot accession number P35613), sug-
gests that the mature form of that protein resulting from the
proteolytic cleavage of the 22-residue-long signal peptide is
present in the biological sample. In general, identifying pep-
tides that are not tryptic (assuming no protein cleavage) and
are located close to the N terminus of the protein can be a
useful strategy for inferring signal peptide cleavage sites or
other proteolytic cleavage events, thus confirming, refining, or
adding to the annotations currently available in the protein
databases such as Swiss-Prot. In some cases, it can also
assist in discrimination between different protein isoforms
resulting from alternative splicing. It should be noted, how-
ever, that some partially tryptic peptides can be observed due
to in-source or in-solution fragmentation of the originally tryp-
tic peptides. Thus, conclusions based on the observation of
partially tryptic peptides require additional scrutiny.

Another example is shown in Fig. 8B where several pep-
tides were identified and assigned to a single protein se-9 A. I. Nesvizhskii et al., manuscript in preparation.
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quence database entry “ubiquinol-cytochrome c reductase
iron-sulfur subunit, mitochondrial precursor” (Swiss-Prot ac-
cession number P47985, Rieske protein). Two of the peptides,
RPLVASVGLNVPASVCY and SHTDIKVPDFSEYR, are par-
tially tryptic and located adjacent to each other in the protein
sequence, which suggests the cleavage of the 78-amino acid
presequence (annotated in Swiss-Prot as “transit” peptide).
Interestingly the identification of several peptides assigned to
the N-terminal region of the protein indicates that the prese-
quence has not been degraded. This observation is consist-
ent10 with the results of previous studies suggesting that the

Rieske protein in the mammalian systems is processed in a
single proteolytic step after it becomes associated with the
cytochrome bc1 complex and that the processed prese-
quence remains as a subunit of the complex (52).

The strategy for the detection of proteolytic cleavage
events, described above, relies on the identification of the N-
and C-terminal peptides. However, in shotgun analysis of
complex protein mixtures, the protein coverage (the number
of identified peptides per protein) is typically low especially in
the case of low abundance proteins. Thus, such events would

10 Validation of the biological significance of this observation would
require additional analysis to eliminate the possibility that the cleav-

age of the protein occurred at the digestion stage because of non-
biological reasons, e.g. chymotrypsin-like secondary activity of
trypsin.

FIG. 8. Identification of mature forms of proteins in shotgun proteomics. A, identification of a partially tryptic peptide, AAGTVFTTV-
EDLGSK, indicates the removal of the 22-residue-long signal peptide. B, identification of two partially tryptic peptides, RPLVASVGLNVPASVCY
and SHTDIKVPDFSEYR, located adjacent to each other in the protein sequence indicates the cleavage of the 78-amino acid presequence of
the ubiquinol-cytochrome c reductase iron-sulfur subunit. The processed presequence remains as a subunit of a protein complex.
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only be detected for a fraction of all proteins, typically those of
high abundance. The efficiency of the method can be im-
proved by using targeted protein identification strategies de-
signed to increase the likelihood of identifying N- and C-
terminal peptides. One such strategy is based on isolation of
N-terminal peptides from in vivo N-terminus-blocked proteins
using fractional diagonal chromatography (53). The method
can be further improved by optimizing the computational
MS/MS data interpretation strategies to specifically look for
peptides indicative of the proteolytic cleavage (54).

QUANTITATIVE PROTEOMICS

Mass spectrometry is increasingly used not only for the
identification of proteins but also for their quantification
(quantitative proteomics) (for recent reviews, see Refs. 1 and
55–57). The two problems are interdependent and in fact
complementary, e.g. the quantitative information can be used
to resolve some of the peptide grouping ambiguities.

Although methods are being developed for the determina-
tion of absolute protein abundance levels (58–60), most cur-
rent quantitative proteomic experiments are based on the
determination of relative protein expression levels between
two or more different pools of proteins. In the most straight-
forward application, the quantitative proteomics is used as
the equivalent of the microarray gene expression profiling
approach (61) except that the measurement is performed at
the protein, rather than mRNA, level. The shotgun proteomic
approach can be made quantitative by applying stable iso-
tope labeling of proteins or peptides. This is illustrated in Fig.
9A using the most common case of a two-sample compari-
son. The compared samples can represent two different cell
states (e.g. before and after a perturbation) or cells grown
under different conditions. The proteins are labeled separately
with either light (sample 1) or heavy (sample 2) stable iso-
topes. The labeling can be done in a number of ways, e.g.
chemically (ICAT, iTRAQ, etc.) or metabolically (e.g. SILAC)
(for reviews, see Refs. 1 and 55–57). Proteins from both
samples are mixed and enzymatically digested into peptides.
Labeled peptides are separated and subjected to sequencing
and quantification using mass spectrometry. Peptides are
identified from MS/MS spectra as described previously, and
the quantitative information is extracted either from MS spec-
tra (e.g. in ICAT- or SILAC-based quantitative methods) or
directly from MS/MS spectra (iTRAQ) using software tools
specifically developed for that purpose (62–65). Quantifica-
tion is based on measuring relative ion intensity of heavy and
light labeled peptide ions. Relative abundances of peptides
between the two samples are then combined to compute the
relative protein abundances. In addition to global protein pro-
filing experiments, the same quantitative strategy can be used
in a targeted way, e.g. for distinguishing members of macro-
molecular complexes or cell organelles from nonspecifically
co-purifying proteins (66–69). It should also be mentioned
that although the discussion here is centered on the quanti-

tative proteomic approach based on isotopic labeling, it ap-
plies equally to semiquantitative methods based on simple
peptide counts (70, 71) or on peptide ion current profiling (72,
73).11

The relative protein abundance ratios between the com-
pared samples are computed based on the ratios of observed
peptides. For a distinct peptide, its relative abundance ratio is
a direct measure of the abundance ratio of its corresponding
protein.12 In contrast, the relative abundance ratio in the case
of a shared peptide is a weighted average of the abundance
ratios of all its corresponding proteins with the weighting
factors being determined by the absolute abundance of those
proteins in the samples. This is illustrated in Fig. 9A where two
differentiable proteins, A and B, are inferred to be present in
the samples based on the identification of three peptides
(proteins C and D are discussed later in this section). In this
example, one of the peptides (peptide 2) is shared between
the two proteins, and the other two peptides (peptides 1 and
3) are unique to protein A or B, respectively. The relative
protein abundance ratios of these proteins, RA and RB, can be
measured using the relative abundance ratios of their distinct
peptides, r1 and r3, respectively (see Fig. 9B). The relative
abundance ratio of the shared peptide 2, r2, can be anywhere
between the protein ratios RA and RB depending on the
absolute abundances of A and B in both samples that are
being compared, NA, NB (sample 1) and NA�, NB� (sample 2).

An example of this kind is shown in Fig. 10. In that exper-
iment, lipid rafts were isolated from both control and stimu-
lated Jurkat human T cells, and the protein samples were
quantitatively compared using the ICAT method (27). A num-
ber of peptides were identified that are shared between sev-
eral members of the guanine nucleotide-binding protein (G
protein) family, including � inhibiting activity polypeptides 1, 2,
and 3. Isotopically labeled peptides for which quantitative
information is available (Cys-containing ICAT-labeled pep-
tides) are shown in Fig. 10. The identification of Gi �3 and �2

proteins was also supported by several additional unlabeled
distinct peptides for which no quantitative information is avail-
able (sequences not shown). The quantification of the protein
Gi �3 was based on one distinct ICAT-labeled peptide that
was found to be present at higher abundance in the stimu-
lated sample compared with the control sample (relative pep-
tide abundance ratio close to 2:1). At the same time, quanti-
fication of Gi �2 was based on five distinct ICAT-labeled
peptides showing no significant difference in their abun-
dances between the two samples (average relative abun-
dance ratio close to 1:1). Thus, although protein quantification

11 The issues discussed here are relevant to non-mass spectrom-
etry-based protein quantification methods as well. For example, con-
firmation by Western blots can be equally misleading especially if
anti-peptide antibodies are used and the peptide is shared.

12 This is not entirely correct because peptides can be differentially
modified (e.g. phosphorylated) under different conditions.
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based on a single distinct peptide should be interpreted with
caution, it appears likely that these two members of the same
gene family exhibited a different response to the external
stimulation with Gi �3 being up-regulated and Gi �2 not
changing. Interestingly the relative abundance ratios of the
other two ICAT-labeled peptides that were shared between Gi

�3 and Gi �2 were much closer to that of peptides unique to
Gi �2 (the shared peptides are also present in another member
of the gene family, Gi �1, but no distinct peptides were iden-
tified that would suggest the presence of that protein in the
sample). This indicates that the absolute abundance level of
the protein Gi �2 was greater than that of Gi �3 in agreement

with a rough protein abundance measure such as the number
of matched MS/MS spectra, 79 versus 27, determined for Gi

�2 and Gi �3 proteins, respectively.
Quantitative information can therefore be used to resolve

some cases of shared peptides or suggest the presence of
multiple protein isoforms having a different biological func-
tion. This is again illustrated in Fig. 10 where protein C is
identified by peptides 4 and 5 having relative peptide abun-
dance ratios r4 and r5, respectively. Peptide 5 is also present
in protein D. Because there are no distinct peptides in the
dataset that correspond to protein D, it is not possible to
conclude that this protein is present in the sample given the

FIG. 9. Quantitative shotgun proteomic analysis using stable isotopes. A, in one quantitative method (ICAT), proteins are labeled using
light or heavy mass tags and then digested into peptides. Labeled peptides are captured and sequenced using tandem mass spectrometry.
Peptides are identified from MS/MS spectra using database searching and used to infer which proteins are present in the sample. Relative
abundances of peptides between the compared samples are extracted from MS data, and then the relative protein abundance ratios are
computed based on the ratios of observed peptides. The relative abundance ratio of a distinct peptide is a direct measure of the abundance
ratio of its protein (for peptide 1, protein A; for peptide 3, protein B; and for peptide 4, protein C), whereas it is a weighted average of the
abundance ratios of all its corresponding proteins in the case of a shared peptide (peptides 2 and 5). B, connection between the relative
quantification observed at peptide and protein levels. Distinct peptides 1 and 3 directly measure the relative protein abundance ratios of their
corresponding proteins A and B, RA and RB. The relative abundance ratio of the shared peptide 2, r2, can be anywhere between the protein
ratios RA and RB depending on the absolute abundances of A and B. Quantitative information can be used to resolve some cases of shared
peptides. If peptides 4 and 5 have significantly different ratios r4 and r5, it can be explained by the presence of protein D is the sample.
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sequences of identified peptides alone (subset protein iden-
tification). At the same time, if protein D is in the sample, its
presence would be reflected in the relative abundance ratio of
the shared peptide 5, whereas the relative abundance ratio of
the distinct peptide 4 would always be determined solely by
the relative abundance of protein C. Thus, significantly differ-
ent ratios r4 and r5 would indicate the presence of protein D in
the sample. Note that the reverse is not necessary true, i.e.
observation of consistent peptide ratios does not rule out the
presence of protein D because it can simply reflect a signifi-
cantly lower abundance level of protein D compared with
protein C.

Furthermore observation of peptides with inconsistent rel-
ative abundance ratios when all peptides appear to be distinct
(according to the protein sequence database used in the
analysis) can point to the presence of a novel biologically
significant protein form (e.g. novel splice variant, product of
protein degradation, etc.). One such interesting example has
been noticed recently in a quantitative proteomic study con-
cerned with the identification of a human transcription factor
using an ICAT proteomic approach (74). Among six identified
peptides that were assigned to cellular nucleic acid-binding
protein (CNBP), three peptides from the N terminus of the
protein had an average relative abundance ratio (enriched
sample versus control) of less than 3:1, whereas the other
three peptides derived from the C-terminal portion of the
protein had ratios of more than 7:1. Thus, it has been sug-
gested that two different forms of CNBP (or CNBP and its
homologue) are present in the sample. In other cases, incon-
sistencies in the relative peptide abundance ratio can be due
to post-translational modification of the protein, e.g. if one of
the peptides is phosphorylated and its abundance (in the
unmodified form) is different in the compared samples.

A close connection between the problem of assembling
peptides into proteins and determining protein abundance
ratios suggests a new integrated approach for dealing with
quantitative proteomic data. At present, these two tasks are
performed separately with the protein ratios computed using
peptide ratios and the apportionment of shared peptides
among their corresponding proteins performed independently
of the quantitative data. Instead the apportionment of shared
peptide and creation of the protein summary lists can be
made dependent on the quantitative information observed at
the peptide and protein level. This should enhance the inter-
pretation of the data by resolving some of the ambiguities
discussed above. However, such an approach would require
high quality quantitative proteomic data. At present, the ac-
curacy of relative peptide abundance ratios extracted from
mass spectra using automated software tools often requires
manual validation. This is especially true in the case of peptide
“outliers,” i.e. peptides whose relative abundance ratios are
significantly different from the ratios observed for other peptides
assigned to the same protein, which are of utmost interest in the
context of this discussion. The development of such integrated
tools is an imminent task for shotgun proteomics.

INTEGRATION OF PROTEOMIC AND TRANSCRIPTIONAL DATA

Quantitative MS/MS-based proteomic analysis and DNA
microarray analysis are two complementary technologies that
measure gene expression at the protein and RNA levels,
respectively. Due to its technically more advanced stage, the
microarray technology (61) allows monitoring of RNA expres-
sion levels for the number of genes that is significantly larger
than the number of proteins that can be accurately identified
and quantified in a typical proteomic experiment, and it can
be effectively used for the analysis of alternative splicing and

FIG. 10. Identification and quantification of a group of peptides shared between several members of the guanine nucleotide-binding
protein (G protein) family, � inhibiting activity polypeptides 1, 2, and 3 (Swiss-Prot accession numbers P04898, P04899, and P08754).
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genome annotation (75, 76). However, due to post-transcrip-
tional regulatory mechanisms such as protein translation,
post-translational modifications, and degradation, the mi-
croarray measurements of mRNA expression patterns alone
are not sufficient for understanding protein expression and
function (77, 78). Thus, by combining transcriptional and pro-
teomic analysis of the same samples, it becomes possible to
achieve a better understanding of complex biological sys-
tems. A number of integrative proteomic and transcriptional
analyses have been recently performed, including studies on
model organisms and mammalian cells and tissues (79–82). A
recent review on the subject of integrating microarray and pro-
teomic data can be found in Ref. 83, and the discussion here will
be limited to the issues related to the protein inference problem.

Integration of different data types requires a good under-
standing of the underlying technologies and their limitations.
Although a detailed review of the microarray technology goes
beyond the scope of this article, it is interesting to note that
many of the difficulties discussed here in the context of quan-
titative MS-based proteomic experiments are also present in
the analysis of gene expression using microarrays. Unlike
quantitative shotgun proteomics, in the case of oligonucleo-
tide arrays the sequences of DNA probes present on the array
are known in advance (the sequences of peptide “probes” in
shotgun proteomics are determined from the spectra). Still
ambiguities remain in connecting DNA probes to the target
mRNAs (84). For example, multiples probes can map to the
same gene; the same probe can map to different products of
the same gene or even to multiple genes. Multiple probes
mapping to the same gene can produce significantly different
expression ratios; outliers might indicate the presence of sev-
eral alternative splice forms, but they could also be a result of
inaccurate quantification (75). Furthermore cross-hybridiza-
tion, i.e. binding of the labeled RNA to non-target homologous
probe sequence, introduces additional errors (85).

Integration of proteomic and transcriptional data is hin-
dered by lack of relevant annotations and the use of different
accessioning schemes. The information available for each
probe present on an Affymetrix chip, for example, includes an
arbitrary identification number, the GenBankTM accession
number of the target RNA sequence, and brief functional
annotation. In the case of MS-based proteomics, experimen-
tal MS/MS spectra are assigned peptides, and then peptides
are assembled into proteins using a variety of protein se-
quence databases. Each protein sequence database has its
unique accessioning scheme, and the degree of sequence
annotation does not always allow easy cross-reference be-
tween different protein sequence databases or between pro-
tein and genomic sequence databases.

Correlating mRNA and protein data can be facilitated by
selecting a well annotated database, e.g. UniGene, as a com-
mon reference (86) (Fig. 11). The UniGene database is created
by an automated partitioning of GenBankTM sequences into a
non-redundant set of gene-oriented clusters with each cluster

containing sequences representing a unique gene. A number
of tools have been described recently that can link the probes
from Affymetrix arrays to the UniGene cluster identifiers (87).
In turn, MS-derived protein identification datasets can be
related to the UniGene clusters using the known connection
between the RefSeq protein sequence database and Uni-
Gene. A tool for direct mapping of Affymetrix probes to Ref-
Seq sequences has also been described (84).

Although UniGene and RefSeq can provide a common ref-
erence for connecting proteomic and transcriptional data, a
one-to-one correspondence will not always be possible. For
example, some DNA probes cannot be linked to any UniGene
clusters because their target sequences have been removed
from the latest version of GenBankTM or deemed to be redun-
dant and excluded from the UniGene build process. Further-
more in many proteomic studies, proteins are identified by
searching MS/MS spectra against more complete protein se-
quence databases than RefSeq, e.g. IPI or Entrez Protein.
Connecting protein sequences that are not annotated in Ref-
Seq to the UniGene clusters is not straightforward. One of the
main difficulties again comes from alternative splice forms.
Without the ability to resolve different alternative splice forms,
both on the part of proteomic and transcriptional analyses, the
association between the two data types is not unique. As a
result, the integration and correlation between proteomic and
transcriptional data in some cases can be performed only at the
gene level with mRNA and protein expression ratios averaged
over multiple products of the same gene. Despite these difficul-
ties, integrated analysis of mRNA and protein data can provide
very valuable insights into complex biological systems.

FIG. 11. Integration of proteomic and transcriptional data.
mRNA and proteomic data can be linked using a common reference
database such as UniGene.
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INTEGRATION OF MULTIPLE SHOTGUN PROTEOMIC DATASETS AND
GENE-CENTERED DATA INTERPRETATION

The discussion so far has been limited to the analysis and
interpretation of the data generated in a “single” experiment
where all MS/MS data are acquired on a particular biological
sample of interest. However, due to technical limitations of
current proteomic technologies, in any given large scale pro-
teomic experiment only a subset of the entire proteome is
identified. In repeated analysis of the same type, the cumu-
lative number of identified peptides and proteins quickly
reaches a saturation point. A more comprehensive character-
ization of the entire proteome can be achieved by combining
the data from multiple diverse experiments (different tissues
or cell types, enrichment schemes, etc.) (50, 51, 88, 89).

Furthermore performing secondary, centralized analysis of
the datasets previously analyzed and published by individual
laboratories can uncover interesting global trends not appar-
ent in the analysis of any single dataset alone (Fig. 12).

The task of combining and comparing multiple large scale
datasets generated using different biological samples (e.g.
different cell states or tissues) requires the development of
new approaches and computational tools. Due to the peptide-
centric nature of shotgun proteomics, diverse datasets (from
the same organism) can be best combined at the peptide level
by linking the sequences of the identified peptides to a com-
mon gene index. One such approach, based on the mapping
of peptides observed in a large group of proteomic experi-
ments to the Ensembl genome, has been described recently

FIG. 12. Submission of mass spectrometry data to public repositories allows extraction of additional valuable information that
otherwise would be missed in the analysis of a single experiment by an individual laboratory. More comprehensive characterization of
the entire proteome can be achieved by combining the data from multiple diverse experiments (different tissues or cell types, enrichment
schemes, etc.). In one such example, the PeptideAtlas project, MS/MS datasets from different laboratories are processed using the same high
throughput pipeline. Identified peptides are mapped to the genome via the Ensembl gene index. Peptide sequences along with the
chromosomal locations, sample annotation, and other information are stored in a relational database. The data can be visualized in the Ensembl
genome browser, and the database itself can be mined to study global trends of protein expression. Peptide identification data, if
communicated back to the database developers and annotators, can also be used to improve the quality of the protein sequence databases.
Reanalysis of high quality MS/MS spectra that are left unassigned in a typical database search against a protein sequence database can lead
to the identification of new open reading frames, novel splice forms, and sequence polymorphisms.
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(51) and implemented in a public resource, PeptideAtlas (ww-
w.peptideatlas.org). In this approach, peptide identifications
passing a certain probability threshold are matched to pro-
teins in the Ensembl database. The chromosomal coordi-
nates, or multiple sets of coordinates in the case of peptides
matching to more than one gene, and Ensembl protein ac-
cession numbers are retrieved for all matched peptides. The
results are stored in a relational database and can be visual-
ized using the Ensembl genome browser Distributed Annota-
tion System (DAS) (90).

By connecting the sequences of the identified peptides with
the genome, PeptideAtlas allows gene-centered interpreta-
tion of the results of shotgun proteomic experiments in line
with previous suggestions (26). Most of the identified peptides
have a unique association with the genome, and in those
cases it is possible to state with certainty that a product of a
certain gene has been identified. Some peptides map to sev-
eral different locations on the genome due to the presence of
gene paralogues, repeated protein domains, or simple se-
quence redundancy. PeptideAtlas database, and other emerg-
ing repositories of this kind (91), should be useful for validation
and improved annotation of the human genome by comple-
menting other types of data currently used for that purpose,
such as mRNA and EST data, with large scale proteomic data.

In turn, peptide identification data can be used to improve
the quality of the protein sequence databases by making
them more complete and accurate. For example, the identifi-
cation of a peptide from a certain protein by searching MS/MS
spectra against a protein sequence database would ensure
that the sequence of that protein does not disappear from the
database in the future (a situation not that uncommon at
present). The use of mass spectrometry data can be further
extended to go beyond genome validation (confirming the
proteins already present in the current sequence databases)
to the discovery of novel gene products and variants. For
example, high quality MS/MS spectra that are left unassigned
when searched against protein sequence databases such as
IPI could be reanalyzed more comprehensively by searching
genomic databases with the purpose to discover open read-
ing frames missed by the current gene prediction programs,
novel splice forms, or sequence polymorphisms.

The information stored in PeptideAtlas, which includes ex-
perimental conditions and the type of cell or tissue analyzed,
could also be used to statistically explore global trends of
differential protein expression. Similar to the method of meas-
uring gene expression using the number of corresponding
expressed sequence tags in EST databases (92–94), the cor-
relation between splice forms and disease states or tissue
types can potentially be investigated at the level of proteins
using, e.g. MS/MS spectrum counts as a rough measure of
protein abundance. It can also be used to study the correla-
tion between the physical-chemical properties of peptides
and the likelihood of them being detected by a mass spec-
trometer (60). It can be anticipated that eventually the com-

putational tools (e.g. MS/MS database search tools or the
tools for assembling peptides into proteins) will not treat all
peptides equally but will use a weighting scheme to account
for the probability of detecting a peptide. It will also be useful
for selecting synthetic peptides for the absolute protein quan-
tification using mass spectrometry or peptide arrays. The
ability to perform these different analyses could make a sig-
nificant contribution to our understanding of complex biolog-
ical systems, thus significantly enhancing the overall value of
shotgun proteomics.

CONCLUDING REMARKS

Shotgun proteomic technology has matured to a point
where it can be used for routine identification and, when
coupled with stable isotope labeling, accurate relative quan-
tification of thousands of peptides in a single experiment. A
significant effort has been made in recent years to improve
various aspects of the technology, including extensive work
on developing computational tools for identifying peptides
from MS/MS spectra. It has also been recognized that the
analysis of large scale shotgun proteomic datasets requires
the application of transparent and tested statistical tools to
estimate the confidence measures of peptide and protein
identifications and to estimate false identification error rates in
the published data. At the same time, significant inconsisten-
cies still exist in how the information derived at the peptide
level can be used to draw conclusions regarding the identities
and quantities of the sample proteins and how the resulting
protein identifications are interpreted in a biological context
and published in the literature.

The peptide-centric nature of shotgun proteomics becomes
apparent in the analysis of data acquired on higher eukaryote
organisms where a significant fraction of identified peptides
can be assigned to more than one entry in the protein se-
quence database. In the best case scenario, seldom observed
in shotgun proteomics, the sequences of the identified pep-
tides would allow fairly complete characterization of the cor-
responding mature protein form expressed in the sample. This
necessarily requires very high protein sequence coverage,
including identification of the N-terminal peptide, and deter-
mination of the type and location of any post-translational
modification. However, the identification of N-terminal pep-
tides is not always possible (especially without specific en-
richment for those peptides), and identification of post-trans-
lational modifications or sequence polymorphisms is also
difficult. Thus, more often, observed peptide data allow iden-
tification of a certain protein but not accurate characterization
of its mature form. In many cases, the sequences of the
identified peptides would not be sufficient to allow differenti-
ation between two or more splice forms of a particular gene.
Furthermore in some cases it would only be possible to state
with certainty that one or more members of a particular pro-
tein family are identified but not to single out any of them. The
examples and discussion presented in this article should as-
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sist in the data interpretation process by providing general
guidelines and a nomenclature for describing all these various
protein identification scenarios. It is also hoped that this dis-
cussion will contribute to the development of more formal
guidelines for publishing protein identification datasets ob-
tained using shotgun proteomic strategy in the literature. Fur-
thermore efforts are currently underway to develop common
standards and schema for the representation, interchange,
and storage of the results of proteomic experiments (95–97).
The issues discussed here should be taken into consideration
in developing such standards.

Understanding of these data interpretation difficulties is
helpful for deciding upon what experimental strategy is most
appropriate given the aims of each particular experiment as
well as for the development of new experimental and compu-
tational approaches. Higher protein coverage, which leads to
improved ability to differentiate between protein isoforms and
to identify sites of post-translational modifications, in some
cases can be achieved by using multiple digestion enzymes
(98, 99). Another strategy is based on generation of synthetic
peptides that are unique to a particular isoform of interest (59,
60, 100). Such peptides can be selected (using computational
approaches maximizing the likelihood of those peptides being
detected by a mass spectrometer), synthesized, isotopically
labeled, and spiked into an isotopically labeled biological
sample. This should allow selective sequencing and quantifi-
cation of peptides that are unique to the proteins of interest.
It has also been suggested that peptide sequencing can be
performed in two stages. After peptides are identified from the
MS/MS spectra acquired at the first stage, indistinguishable
sequence database entries are aligned, and peptides that
discriminate between different isoforms are predicted from
unique stretches. The second stage of the MS/MS sequenc-
ing process would then be directed toward the analysis of
those predicted distinct peptides (26).

The shotgun proteomic approach alone does not appear to
be sufficient to comprehensively and unambiguously charac-
terize the proteome. Complementary to shotgun proteomics
(often called the “bottom-up” proteomic approach), the “top-
down” proteomic approaches that deal with intact proteins (or
involve extensive protein separation prior to digestion) offer
certain advantages with regard to the discrimination between
protein isoforms and characterization of post-translational
modifications. The most established of these methods are
based on 2D gels (7, 31–33). However, gel-based methods
have known limitations such as low detection sensitivity, bias
toward high abundance proteins, and difficulty in resolving
internal membrane or basic proteins. Non-gel-based multidi-
mensional protein separation methods are being developed
and can circumvent some of these limitations (101–104). An-
other promising top-down protein characterization technique
is based on MS/MS sequencing of intact proteins (5, 6, 105).
Although still not at the level of automation and data through-
put currently achievable in shotgun proteomics, this technol-

ogy has experienced significant advances in the last few
years. An attractive approach is to integrate the measure-
ments performed on the same systems both at the level of
peptides and intact proteins (101, 102, 106–109). In this
method, the molecular weights of intact proteins are meas-
ured using high mass accuracy instruments such as ESI-
FTMS or ESI-TOF. In parallel, proteins are digested, and
peptides are sequenced using a typical shotgun proteomics
set-up and/or using a peptide fingerprinting method. The
advantage of this approach (in the context of the protein
inference problem) is that the process of assembling peptides
into proteins and discrimination between protein isoforms can
be assisted by the knowledge of the molecular weights of the
sample proteins. Other proposed approaches include gener-
ation of isoform-specific affinity ligands such as antibodies or
peptides for selective targeting of proteins of interest (110,
111). Additional insights can be obtained by integrating meas-
urements performed on the same biological systems but at
different levels, e.g. proteomic and transcriptional measure-
ments. The knowledge available from microarray experiments
regarding the presence or absence of a certain mRNA tran-
script can assist in the process of assigning peptides to the
corresponding protein isoforms observed in proteomic
experiments.

It has been stressed already that shotgun proteomic data-
sets should be analyzed using transparent computational
tools that are well documented and made generally available
to the scientific community. Even when this is the case, how-
ever, publication of long lists of protein and peptide identifi-
cations by itself has only a limited value. As databases be-
come updated, new protein sequences are added, some
sequences are removed, and annotations or accession
schemes change, those lists become obsolete and can no
longer be easily interpreted or correlated with other data.
Thus, the authors should be encouraged to provide access to
all raw data, or at least to MS/MS spectra, as a part of the
publication. This would allow re-evaluation of the primary MS
data using the most up-to-date protein sequence databases.
Coupled with the development of open MS data formats (96,
97), centralized data repositories (41, 51, 91, 112), and infra-
structure for processing and integrating datasets from differ-
ent experiments (41, 51, 91), this would allow new uses of
proteomic data such as validation of genes that are expressed
on the protein level or elucidation of global protein expression
patterns that would otherwise be missed in an analysis of a
single experiment. Finally if communicated back to the data-
base developers and annotators, MS-derived proteomic data
could become a useful resource in the process of annotating
the genomes of the corresponding organisms.

Acknowledgments—We acknowledge fruitful discussions with Karl
Clauser, Frank Desiere, Eric Deutsch, Jimmy Eng, Anne-Claude
Gingras, Andrew Keller, Jeff Kowalack, Xiao-jun Li, Parag Mallick, Jeff
Ranish, Katheryn Resing, Julian Watts, and Bernd Wollscheid. We are
particularly grateful to Anne-Claude Gingras, Jeff Ranish, and Bernd

Interpretation of Shotgun Proteomic Data

1436 Molecular & Cellular Proteomics 4.10

 by guest on Septem
ber 17, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/


Wollscheid for reading the manuscript and to Nichole King and James
Eddes for help with Table I and Fig. 7.

* This work was funded in part with federal funds from the NHLBI,
National Institutes of Health under Contract Number N01-HV-28179.
The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 U.S.C. Section 1734
solely to indicate this fact.

§ To whom correspondence should be addressed: Inst. for Sys-
tems Biology, 1441 N. 34th St., Seattle, WA 98103. Tel.: 206-732-
1245; Fax: 206-732-1299; E-mail: nesvi@systemsbiology.org.

REFERENCES

1. Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteom-
ics. Nature 422, 198–207

2. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R.,
Garvik, B. M., and Yates, J. R. (1999) Direct analysis of protein com-
plexes using mass spectrometry. Nat. Biotechnol. 17, 676–682

3. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold,
R. (1999) Quantitative analysis of complex protein mixtures using iso-
tope-coded affinity tags. Nat. Biotechnol. 17, 994–999

4. Washburn, M. P., Wolters, D., and Yates, J. R. (2001) Large-scale analysis
of the yeast proteome by multidimensional protein identification tech-
nology. Nat. Biotechnol. 19, 242–247

5. Reid, G. E., and McLuckey, S. A. (2002) “Top down” protein character-
ization via tandem mass spectrometry. J. Mass Spectrom. 37, 663–675

6. Meng, F., Forbes, A. J., Miller, L. M., and Kelleher, N. L. (2005) Detection
and localization of protein modifications by high resolution tandem
mass spectrometry. Mass Spectrom. Rev. 24, 126–134

7. Gorg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional
electrophoresis technology for proteomics. Proteomics 4, 3665–3685

8. Patterson, S. D. (2003) Data analysis—the Achilles heel of proteomics.
Nat. Biotechnol. 21, 221–222

9. Boguski, M. S., and McIntosh, M. W. (2003) Biomedical informatics for
proteomics. Nature 422, 233–237

10. Nesvizhskii, A. I., and Aebersold, R. (2004) Analysis, statistical validation
and dissemination of large-scale proteomics datasets generated by
tandem MS. Drug Discov. Today 9, 173–181

11. Johnson, R. S., Davis, M. T., Taylor, J. A., and Patterson, S. D. (2005)
Informatics for protein identification by mass spectrometry. Methods
35, 223–236

12. Russell, S. A., Old, W., Resing, K. A., and Hunter, L. (2004) Proteomic
informatics. Int. Rev. Neurobiol. 61, 129–157

13. Baldwin, M. A. (2004) Protein identification by mass spectrometry: issues
to be considered. Mol. Cell. Proteomics 3, 1–9

14. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to
correlate tandem mass spectral data of peptides with amino acid se-
quences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989

15. Mann, M., and Wilm, M. (1994) Error-tolerant identification of peptides in
sequence databases by peptide sequence tags. Anal. Chem. 66,
4390–4399

16. Perkins, D. N., Pappin, D. J., Creasy D. M., and Cottrell, J.C. (1999)
Probability-based protein identification by searching sequence data-
bases using mass spectrometry data. Electrophoresis 20, 3551–3567

17. Clauser, K. R., Baker, P., and Burlingame, A. L. (1999) Role of accurate
mass measurement (�10 ppm) in protein identification strategies em-
ploying MS or MS/MS and database searching. Anal. Chem. 71,
2871–2882

18. Field, H. I., Fenyo, D., and Beavis, R. C. (2002) RADARS, a bioinformatics
solution that automates proteome mass spectral analysis, optimizes
protein identification, and archives data in a relational database. Pro-
teomics 2, 36–47

19. Craig, R., and Beavis R. C. (2004) TANDEM: matching proteins with
tandem mass spectra. Bioinformatics 20, 1466–1467

20. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard,
D. M., Yang, X., Shi, W., and Bryant, S. H. (2004) Open mass spectrom-
etry search algorithm. J. Proteome Res. 3, 958–964

21. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical
statistical model to estimate the accuracy of peptide identifications

made by MS/MS and database search. Anal. Chem. 74, 5383–5392
22. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statis-

tical model for identifying proteins by tandem mass spectrometry. Anal.
Chem. 75, 4646–4658

23. Fenyo, D., and Beavis, R. C. (2003) A method for assessing the statistical
significance of mass spectrometry-based protein identifications using
general scoring schemes. Anal Chem. 75, 768–774

24. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003)
Evaluation of multidimensional chromatography coupled with tandem
mass spectrometry (LC/LC-MS/MS) for large scale protein analysis: the
yeast proteome. J. Proteome Res. 2, 43–50

25. Sadygov, R. G., and Yates, J. R. (2003) A hypergeometric probability
model for protein identification and validation using tandem mass spec-
tral data and protein sequence databases. Anal. Chem. 75, 3792–3798

26. Rappsilber, J., and Mann, M. (2002) What does it mean to identify a
protein in proteomics? Trends Biochem. Sci. 27, 74–78

27. Von Haller, P. D., Yi, E., Donohoe, S., Vaughn, K., Keller, A., Nesvizhskii,
A. I., Eng, J., Li, X. J., Goodlett, D. R., Aebersold, R., and Watts, J. D.
(2003) The application of new software tools to quantitative protein
profiling via ICAT and tandem mass spectrometry: II. Evaluation of
tandem mass spectrometry methodologies for large-scale protein anal-
ysis and the application of statistical tools for data analysis and inter-
pretation. Mol. Cell. Proteomics 2, 428–442

28. Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D.,
Jonscher, K. R., Pierce, K. G., Old, W. M., Cheung, H. T., Russell, S.,
Wattawa, J. L., Goehle, G. R., Knight, R. D., and Ahn, N. G. (2004)
Improving reproducibility and sensitivity in identifying human proteins
by shotgun proteomics. Anal. Chem. 76, 3556–3568

29. Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., and
Nesvizhskii, A. (2004) The need for guidelines in publication of peptide
and protein identification data. Mol. Cell. Proteomics 3, 531–533

30. Yang, X., Dondeti, V., Dezube, R., Maynard, D. M., Geer, L. Y., Epstein, J.,
Chen, X., Markey, S. P., Kowalak, J. A. (2004) DBParser: web-based
software for shotgun proteomic data analyses. J. Proteome Res. 3,
1002–1008

31. Pedersen, S. K., Harry, J. L., Sebastian, L., Baker, J., Traini, M. D.,
McCarthy, J. T., Manoharan, A., Wilkins, M. R., Gooley, A. A., Righetti,
P. G., Packer, N. H., Williams, K. L., and Herbert, B. R. (2003) Unseen
proteome: mining below the tip of the iceberg to find low abundance
and membrane proteins. J. Proteome Res. 2, 303–311

32. Fung, K. Y., Glode, L. M., Green, S., and Duncan, M. W. (2004) A com-
prehensive characterization of the peptide and protein constituents of
human seminal fluid. Prostate 61, 171–181

33. Godovac-Zimmermann, J., Kleiner, O., Brown, L. L., and Drukier, A. L.
(2005) Perspectives in splicing up proteomics with splicing. Proteomics
5, 699–709

34. Black, D. L. (2000) Protein diversity from alternative splicing: a challenge
for bioinformatics and post-genome biology. Cell 103, 367–370

35. Delalande, F., Carapito, C., Brizard, J. P., Brigidou, C., and Dorsselaer,
A. V. (2005) Multigenic families and proteomics: Extended protein char-
acterization as a tool for paralog gene identification. Proteomics 5,
450–460

36. Sam-Yellowe, T. Y., Florens, L., Johnson, J. R., Wang, T., Drazba, J. A., Le
Roch, K. G., Zhou, Y., Batalov, S., Carucci, D. J., Winzeler, E. A., and
Yates, J. R. (2004) A Plasmodium gene family encoding Maurer’s cleft
membrane proteins: structural properties and expression profiling. Ge-
nome Res. 14, 1052–1059

37. Kislinger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J., and Emili, A.
(2003) PRISM, a generic large scale proteomic investigation strategy for
mammals. Mol. Cell. Proteomics 2, 96–106

38. Kristensen, D. B., Brond, J. C., Nielsen, P. A., Andersen, J. R., Sorensen,
O. T., Jorgensen, V., Budin, K., Matthiesen, J., Veno, P., Jespersen,
H. M., Ahrens, C. H., Schandorff, S., Ruhoff, P. T., Wisniewski, J. R.,
Bennett, K. L., and Podtelejnikov, A. V. (2004) Experimental Peptide
Identification Repository (EPIR): an integrated peptide-centric platform
for validation and mining of tandem mass spectrometry data. Mol. Cell.
Proteomics. 3, 1023–1038

39. Tabb, D. L., McDonald, W. H., and Yates, J. R. (2002) DTASelect and
Contrast: tools for assembling and comparing protein identifications
from shotgun proteomics. J. Proteome Res. 1, 21–26

40. Allet, N., Barrillat, N., Baussant, T., Boiteau, C., Botti, P., Bougueleret, L.,

Interpretation of Shotgun Proteomic Data

Molecular & Cellular Proteomics 4.10 1437

 by guest on Septem
ber 17, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/


Budin, N., Canet, D., Carraud, S., Chiappe, D., Christmann, N., Colinge,
J., Cusin, I., Dafflon, N., Depresle, B., Fasso, I., Frauchiger, P., Gaertner,
H., Gleizes, A., Gonzalez-Couto, E., Jeandenans, C., Karmime, A.,
Kowall, T., Lagache, S., Mahe, E., Masselot, A., Mattou, H., Moniatte,
M., Niknejad, A., Paolini, M., Perret, F., Pinaud, N., Ranno, F., Raimondi,
S., Reffas, S., Regamey, P. O., Rey, P. A., Rodriguez-Tome, P., Rose,
K., Rossellat, G., Saudrais, C., Schmidt, C., Villain, M., and Zwahlen, C.
(2004) In vitro and in silico processes to identify differentially expressed
proteins. Proteomics 4, 2333–2351

41. Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C. F., States,
D., Gevaert, K., Vandekerckhove, J., and Apweiler, R. (2005) PRIDE: the
proteomics identifications database. Proteomics, in press

42. Apweiler, R., Bairoch, A., and Wu, C. H. (2004) Protein sequence data-
bases. Curr. Opin. Chem. Biol. 8, 76–80

43. Wheeler, D. L., Church, D. M., Edgar, R., Federhem, S., Helmberg, W.,
Madden, T. L., Pontius, J. U., Schuler, G. D., Schriml, L. M., Sequeira,
E., Suzek, T. O., Tatusova, T. A., and Wagner, L. (2004) Database
resources of the National Center for Biotechnology Information: update.
Nucleic Acids Res. 32, D35–D40

44. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A.,
Gasteiger, E., Martin, M. J., Michoud, K., O’Donovan, C., Phan, I.,
Pilbout, S., and Schneider, M. (2003) The Swiss-Prot protein knowl-
edgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31,
365–370

45. Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2005) NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504

46. Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and
Apweiler, R. (2004) The International Protein Index: an integrated data-
base for proteomics experiments. Proteomics 4, 1985–1988

47. Birney, E., Andrews, D., Bevan, P., Caccamo, M., Cameron, G., Chen, Y.,
Clarke, L., Coates, G., Cox, T., Cuff, J., Curwen, V., Cutts, T., Down, T.,
Durbin, R., Eyras, E., Fernandez-Suarez, X. M., Gane, P., Gibbins, B.,
Gilbert, J., Hammond, M., Hotz, H., Iyer, V., Kahari, A., Jekosch, K.,
Kasprzyk, A., Keefe, D., Keenan, S., Lehvaslaiho, H., McVicker, G.,
Melsopp, C., Meidl, P., Mongin, E., Pettett, R., Potter, S., Proctor, G.,
Rae, M., Searle, S., Slater, G., Smedley, D., Smith, J., Spooner, W.,
Stabenau, A., Stalker, J., Storey, R., Ureta-Vidal, A., Woodwark, C.,
Clamp, M., and Hubbard, T. (2004) Ensembl 2004. Nucleic Acids Res.
32, D468–D470

48. Kuster, B., Mortensen, P., Andersen, J. S., and Mann, M. (2001) Mass
spectrometry allows direct identification of proteins in large genomes.
Proteomics 1, 641–650

49. Choudhary, J. S., Blackstock, W. P., Creasy, D. M., and Cottrell, J. S.
(2001) Interrogating the human genome using uninterpreted mass spec-
trometry data. Proteomics 1, 651–667

50. Mann, M., and Pandey, A. (2001) Use of mass spectrometry-derived data
to annotate nucleotide and protein sequence databases. Trends Bio-
chem. Sci. 26, 54–60

51. Desiere, F., Deutsch, E. W., Nesvizhskii, A. I., Mallick, P., King, N. L., Eng,
J. K., Aderem, A., Boyle, R., Brunner, E., Donohoe, S., Fausto, N.,
Hafen, E., Hood, L., Katze, M. G., Kennedy, K. A., Kregenow, F., Lee, H.,
Lin, B., Martin, D., Ranish, J. A., Rawlings, D. J., Samelson, L. E., Shiio,
Y., Watts, J. D., Wollscheid, B., Wright, M. E., Yan, W., Yang, L., Yi,
E. C., Zhang, H., and Aebersold, R. (2005) Integration with the human
genome of peptide sequences obtained by high-throughput mass spec-
trometry. Genome Biol. 6, R5

52. Brandt, U., Yu, L., Yu, C. A., and Trumpower, B. L. (1993) The mitochon-
drial targeting presequence of the Rieske iron-sulfur protein is pro-
cessed in a single step after insertion into the cytochrome bc1 complex
in mammals and retained as a subunit in the complex. J. Biol. Chem.
268, 8387–8390

53. Gevaert, K., Goethais, M., Martens, L., Van Damme, J., Staes, A., Thomas,
G. R., and Vandekerckhove, J. (2003) Exploring proteomes and analyz-
ing protein processing by mass spectrometric identification of sorted
N-terminal peptides. Nat. Biotechnol. 21, 566–569

54. Song, H., Hecimovic, S., Goate, A., Hsu, F. F., Bao, S., Vidavsky, I.,
Ramanadham, S., and Turk, J. (2004) Characterization of N-terminal
processing of group VIA phospholipase A2 and of potential cleavage
sites of amyloid precursor protein constructs by automated identifica-
tion of signature peptides in LC/MS/MS analyses of proteolytic digests.

J. Am. Soc. Mass Spectrom. 15, 1780–1793
55. Zhang, H., Yan, W., and Aebersold, R. (2004) Chemical probes and

tandem mass spectrometry: a strategy for the quantitative analysis of
proteomes and subproteomes. Curr. Opin. Chem. Biol. 8, 66–75

56. Julka, S., and Regnier, F. (2004) Quantification in proteomics through
stable isotope coding: a review. J. Proteome Res. 3, 350–363

57. Goshe, M. B., and Smith, R. D. (2003) Stable isotope-coded proteomic
mass spectrometry. Curr. Opin. Biotechnol. 14, 101–109

58. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P.
(2003) Absolute quantification of proteins and phosphoproteins from
cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 100,
6940–6945

59. Aebersold, R. (2003) Constellations in a cellular universe. Nature 422,
115–116

60. Kuster, B., Schirle, M., Mallick, P., and Aebersold, R. (2005) Nat. Rev. Mol.
Cell. Biol. 6, 577–583

61. Schena, M. (2003) Microarray Analysis, Wiley-Liss, Hoboken, NJ
62. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative

profiling of differentiation-induced microsomal proteins using isotope-
coded affinity tags and mass spectrometry. Nat. Biotechnol. 19,
946–951

63. Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated
statistical analysis of protein abundance ratios from data generated by
stable-isotope dilution and tandem mass spectrometry. Anal Chem. 75,
6648–6657

64. MacCoss, M. J., Wu, C. C., Liu, H., Sadygov, R., and Yates, J. R. (2003)
A correlation algorithm for the automated quantitative analysis of shot-
gun proteomics data. Anal. Chem. 75, 6912–6921

65. Halligan, B. D., Slyper, R. Y., Twigger, S. N., Hicks, W., Olivier, M., and
Greene, A. S. (2005) ZoomQuant: an application for the quantitation of
stable isotope labeled peptides. J. Am. Soc. Mass Spectrom. 16,
302–306

66. Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., Goodlett, D. R., Eng,
J., and Aebersold, R. (2003) The study of macromolecular complexes by
quantitative proteomics. Nat. Genet. 33, 349–355

67. Foster, L. J., De Hoog, C. L., and Mann, M. (2003) Unbiased quantitative
proteomics of lipid rafts reveals high specificity for signaling factors.
Proc. Natl. Acad. Sci. U. S. A. 100, 5813–5818

68. Marelli, M., Smith, J. J., Jung, S., Yi, E., Nesvizhskii, A. I., Christmas, R. H.,
Saleem, R. A., Tam, Y. Y. C., Faragasanu, A., Goodlett, D. R., Aebersold,
R., Rachubinski, R. A., and Aitchison, J. D. (2004) Quantitative mass
spectrometry reveals a role for the GTPase Rho1p in actin organization
on the peroxisome membrane. J. Cell Biol. 167, 1099–1112

69. Gingras, A. C., Aebersold, R., and Raught, B. (2005) Advances in protein
complex analysis using mass spectrometry. J. Physiol. 563, 11–21

70. Liu, H., Sadygov, R. G., and Yates, J. R. (2004) A model for random
sampling and estimation of relative protein abundances in shotgun
proteomics. Anal. Chem. 76, 4193–4201

71. Blondeau, F., Ritter, B., Allaire, P. D., Wasiak, S., Girard, M., Hussain,
N. K., Angers, A., Legendre-Guillemin, V., Roy, L., Boismenu, D., Kear-
ney, R. E., Bell, A. W., Bergeron, J. J., and McPherson, P. S. (2004)
Tandem MS analysis of brain clathrin-coated vesicles reveals their
critical involvement in synaptic vesicle recycling. Proc. Natl. Acad. Sci.
U. S. A. 101, 3833–3838

72. Chelius, D., and Bondarenko, P. V. (2002) Quantitative profiling of proteins
in complex mixtures using liquid chromatography and mass spectrom-
etry. J. Proteome Res. 1, 317–323

73. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., Norton, S.,
Kumar, P., Anderle, M., and Becker, C. H. (2003) Quantification of
proteins and metabolites by mass spectrometry without isotopic label-
ing or spiked standards. Anal. Chem. 75, 4818–4826

74. Himeda, C. L., Ranish, J. A., Angello, J. C., Maire, P., Aebersold, R., and
Hauschka, S. D. (2004) Quantitative proteomics identification of Six4 as
the Trex-binding factor in the muscle creatine kinase enhancer. Mol.
Cell. Biol. 24, 2132–2143

75. Lee, C., and Roy, M. (2004) Analysis of alternative splicing with microar-
rays: successes and challenges. Genome Biol. 5, 231

76. Johnson, J. M., Edwards, S., Shoemaker, D., and Schadt, E. E. (2005)
Dark matter in the genome: evidence of widespread transcription de-
tected by microarray tiling experiments. Trends Genet. 21, 93–102

77. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation

Interpretation of Shotgun Proteomic Data

1438 Molecular & Cellular Proteomics 4.10

 by guest on Septem
ber 17, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/


between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19,
1720–1730

78. Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia,
S. L. R., Giodano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M.,
and Beer, D. G. (2002) Discordant protein and mRNA expression in lung
adenocarcinomas. Mol. Cell. Proteomics 1, 304–313

79. Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L., and
Aebersold, R. (2002) Complementary profiling of gene expression at the
transcriptome and proteome levels in Saccharomyces cerevisiae. Mol.
Cell. Proteomics 1, 323–333

80. Tian, Q., Stepaniants, S., Mao, M., Weng, L., Feetham, M. C., Doyle, M. J.,
Yi, Y. C., Dai, H., Thorsson, V., Eng, J., Goodlett, D., Berger, J. P.,
Gunter, B., Linseley, P. S., Stoughton, R. B., Aebersold, R., Collins,
S. J., Hanlon, W. A., and Hood, L. E. (2004) Integrated genomic and
proteomics analyses of gene expression in mammalian cells. Mol. Cell.
Proteomics 3, 960–969

81. McRedmond, J. P., Park, S. D., Reilly, D. F., Coppinger, J. A., Maguire,
P. B., Shields, D. C., and Fitzgerald, D. J. (2003) Integration of proteom-
ics and genomics in platelets: a profile of platelet proteins and platelet-
specific genes. Mol. Cell. Proteomics 3, 133–144

82. Maziarz, M., Chung, C., Drucker, D. J., and Emili, A. (2005) Integrating
global proteomics and genomic expression profiles generated from islet
� cells: opportunities and challenges to deriving reliable biological in-
ferences. Mol. Cell. Proteomics 4, 458–474

83. Cox, B., Kislinger, T., and Emili, A. (2005) Integrating gene and protein
expression data: pattern analysis and profile mining. Methods 35,
303–314

84. Gautier, L., Mooller, M., Friis-Hansen, L., and Knudsen, S. (2004) Alterna-
tive mapping of probes to genes for Affymetrix chips. BMC Bioinfor-
matics 5:111

85. Flikka, K., Yadetie, F., Laegreid, A., and Jonassen, I. (2004) XHM: a system
for detection of potential cross-hybridizations in DNA microarrays. BMC
Bioinformatics 5:117

86. Pontius, J. U., Wagner, L., and Schuler, G. D. (2003) UniGene: a unified
view of the transcriptome, in The NCBI Handbook, pp. 1–12, National
Center for Biotechnology Information, Bethesda, MD

87. Liu, G., Loraine, A. E., Shigeta, R., Cline, M., Cheng, J., Valmeekam, V.,
Sun, S., Kulp, D., and Siani-Rose, M. A. (2003) NetAffx: Affymetrix
probesets and annotations. Nucleic Acids Res. 31, 82–86

88. McGowan, S. J., Terrett, J., Brown, C. G., Adam, P. J., Aldridge, L., Allen,
J. C., Amess, B., Andrews, K. A., Barnes, M., Barnwell, D. E., Berry, J.,
Bird, H., Boyd, R. S., Broughton, M. J., Brown, A., Bruce, J. A., Brusten,
L. C. M., Draper, N. J., Elsmore, B. M., Freeman, C. D., Giles, D. M.,
Gong, H., Gormley, D., Griffiths, M. R., Hawkes, T. D. R., Haynes, P. S.,
Heesom, K. J., Herath, A., Hollis, K., Hudsen, L. J., Inman, J., Jacobs,
M., Jarman, D., Kibria, I., Kilgour, J. J., Kinuthia, S. K., Lane, K. E., Lees,
M. L., Loader, J., Longmore, A., McEwan, M., Middleton, A., Moore, S.,
Murray, C., Murray, H. M., Myatt, C. P., Ng, S. S., O’Neil, A., Parekh,
R. B., Patel, A., Patel, K. B., Patel, S., Patel, T. P., Philp, R. J., Platt, A.
E., Poyser, H., Prendergast, C., Prime, S., Redpath, N., Reeves, M.,
Robinson, A. W., Rohlff, C., Rosenbaum, J. M., Schenker, M., Scrivener,
E., Shipston, N., Siddiq, S., Southan, C., Spencer, D. I. R., Stamps, A.,
Steffens, M. A., Stevenson, D., Sweetman, G. M. A., Taylor, S.,
Townsend, R., Ventom, A. M., Waller, M. N. H., Weresch, C., Williams,
A. M., Woolliscroft, R. J., Yu, X., and Lyall, A. (2004) Annotation of the
human genome by high-throughput sequence analysis of naturally oc-
curring proteins. Curr. Proteomics 1, 41–48

89. Rohlff, C. (2004) New approaches towards integrated proteomic data-
bases and depositories. Expert Rev. Proteomics 1, 267–274

90. Dowel, R. D., Jokerst, R. M., Day, A., Eddy, S. R., and Stein, L. (2001) The
distributed annotation system. BMC Bioinformatics 2:7

91. Craig, R., Cortens, J. P., and Beavis, R. C. (2004) Open source system for
analyzing, validating, and storing protein identification data. J. Pro-
teome Res. 3, 1234–1242

92. Skrabanek, L., and Campagne, F. (2001) TissueInfo: high-throughput
identification of tissue expression profiles and specificity. Nucleic Acids
Res. 29, e102

93. Mu, X., Zhao, S., Pershad, R., Hsieh, T. F., Scarpa, A., Wang, S. W., White,
R. A., Beremand, P. D., Thomas, T. L., Gan, L., and Klein, W. H. (2001)
Gene expression in the developing mouse retina by EST sequencing
and microarray analysis. Nucleic Acids Res. 29, 4983–4993

94. Yeo, G., Holste, D., Kreiman, G., and Burge, C. B. (2004) Variation in
alternative splicing across human tissues. Genome Biol. 5, R74

95. Taylor, C. F., Paton, N. W., Garwood, K. L., Kirby, P. D., Stead, D. A., Yin,
Z., Deutsch, E. W., Selway, L., Walker, J., Riba-Garcia, I., Mohammed,
S., Deery, M. J., Howard, J. A., Dunkley, T., Aebersold, R., Kell, D. B.,
Lilley, K. S., Roepstorff, P., Yates, J. R., III, Brass, A., Brown, A. J., Cash,
P., Gaskell, S. J., Hubbard, S. J., and Oliver, S. G. (2003) A systematic
approach to modeling capturing and disseminating proteomics exper-
imental data. Nat. Biotechnol. 21, 247–254

96. Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W.,
Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung,
K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E.,
McComb, M. E., Oliver, S. G., Omenn, G., Paton, N. W., Simpson, R.,
Smith, R., Taylor, C. F., Zhu, W., and Aebersold, R. (2004) A common
open representation of mass spectrometry data and its application to
proteomics research. Nat. Biotechnol. 22, 1459–1466

97. Orchard, S., Zhu, W., Julian, R. K., Hermjakob, H., and Apweiler, R. (2003)
Further advances in the development of a data interchange standard for
proteomics data. Proteomics 3, 2065–2066

98. MacCoss, M. J., McDonald, W. H., Saraf, A., Sadygov, R., Clark, J. M.,
Tasto, J. J., Gould, K. L., Wolters, D., Washburn, M., Weiss, A., Clark,
J. I., and Yates, J. R. (2002) Shotgun identification of protein modifica-
tions from protein complexes and lens tissue. Proc. Natl. Acad. Sci.
U. S. A. 99, 7900–7905

99. Choudhary, G., Wu, S. L., Shieh, P., and Hancock, W. S. (2003) Multiple
enzymatic digestion for enhanced sequence coverage of proteins in
complex proteomic mixtures using capillary LC with ion trap MS/MS. J.
Proteome Res. 2, 59–67

100. Pan, S., Zhang, H. Rush, J., Eng, J., Zhang, N., Patterson, D., Comb, M. J.,
and Aebersold, R. (2005) High throughput proteome-screening for bi-
omarker detection. (2005) Mol. Cell. Proteomics 4, 182–190

101. Wall, D. B., Kachman, M. T., Gong, S. S., Parus, S. J., Long, M. W., and
Lubman, D. M. (2001) Isoelectric focusing nonporous silica reversed-
phase high-performance liquid chromatography/electrospray ionization
time-of-flight mass spectrometry: a three-dimensional liquid-phase pro-
tein separation method as applied to the human erythroleukemia cell-
line. Rapid Commun. Mass Spectrom. 15, 1649–1661

102. Liu, H., Berger, S. J., Chakraborty, A. B., Plumb, R. S., and Cohen, S. A.
(2002) Multidimensional chromatography coupled to electrospray ioni-
zation time-of-flight mass spectrometry as an alternative to two-dimen-
sional gels for the identification and analysis of complex mixtures of
intact proteins. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 782,
267–289

103. Wienkoop, S., Glinski, M., Tanaka, N., Tolstikov, V., Fiehn, O., and Weck-
werth, W. (2004) Linking protein fractionation with multidimensional
monolithic reversed-phase peptide chromatography/ mass spectrome-
try enhances protein identification from complex mixtures even in the
presence of abundant proteins. Rapid Commun. Mass Spectrom. 18,
643–650

104. Moritz, R. L., Ji, H., Schutz, F., Connolly, L. M., Kapp, E. A., Speed, T. P.,
and Simpson, R. J. (2004) A proteome strategy for fractionating proteins
and peptides using continuous free-flow electrophoresis coupled off-
line to reversed-phase high-performance liquid chromatography. Anal.
Chem. 76, 4811–4824

105. Lee, S. W., Berger, S. J., Martinovic, S., Pasa-Tolic, L., Anderson, G. A.,
Shen, Y., Zhao, R., and Smith, R. D. (2002) Direct mass spectrometric
analysis of intact proteins of the yeast large ribosomal subunit using
capillary LC/FTICR. Proc. Natl. Acad. Sci. U. S. A. 99, 5942–5947

106. VerBerkmoes, N. C., Bundy, J. L., Hauser, L., Asano, K. G., Razu-
movskaya, J., Larimer, F., Hettich, R. L., and Stephenson, J. L., Jr.
(2002) Integrating “top-down” and “bottom-up” mass spectrometric
approaches for proteomic analysis of Shewanella oneidensis. J. Pro-
teome Res. 1, 239–252

107. Strader, M. B., VerBerkmoes, N. C., Tabb, D. L., Connelly, H. M., Barton,
J. W., Bruce, B. D., Pelletier, D. A., Davison, B. H., Hettich, R. L.,
Larimer, F. W., and Hurst, G. B. (2004) Characterization of the 70S
ribosome from Rhodopseudomonas palustris using an integrated “top-
down” and “bottom-up” mass spectrometric approach. J. Proteome
Res. 3, 965–978

108. Nemeth-Cawley, J. F., Tangarone, B. S., and Rouse, J. C. (2003) “Top
down” characterization is a complementary technique to peptide se-

Interpretation of Shotgun Proteomic Data

Molecular & Cellular Proteomics 4.10 1439

 by guest on Septem
ber 17, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/


quencing for identifying protein species in complex mixtures. J. Pro-
teome Res. 2, 495–505

109. Wang, H., Kachman, M. T., Schwartz, D. R., Cho, K. R., and Lubman,
D. M. (2004) Comprehensive proteome analysis of ovarian cancers
using liquid phase separation, mass mapping and tandem mass spec-
trometry: a strategy for identification of candidate cancer biomarkers.
Proteomics 4, 2476–2495

110. Humphery-Smith, I. (2004) A human proteome project with a beginning
and an end. Proteomics 4, 2519–2521

111. Uhlen, M., and Ponten, F. (2005) Antibody-based proteomics for human
tissue profiling. Mol. Cell. Proteomics 4, 384–393

112. Prince, J. T., Carlson, M. W., Wang, R., Lu, P., and Marcotte, E. M. (2004)
The need for a public proteomics repository. Nat. Biotechnol. 22,
471–472

Interpretation of Shotgun Proteomic Data

1440 Molecular & Cellular Proteomics 4.10

 by guest on Septem
ber 17, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/

