








Parallelization of identification and quantification using DIA

and 14 data points per peak were generated by scaling the MS2 segment number accordingly (Figure 1a).

The analysis revealed optimal quantification with high identification rate and reproducibility at 8 data

points per peak corresponding to the method with 24 MS2 segments and a cycle time of 2.3s (Figure 1b,

Suppl Figure 1 and 2). Using this method 80,275 peptides were identified and 69,207 peptides with CVs

below 20% were observed. Interestingly, the method with the lowest peak sampling performed best as

judged only by identifications, but when comparing identifications below 20% CV the method providing 8

data points per peak performed best. This set of methods with varying data points per peak represents a

tradeoff between high peak sampling but few MS2 segments and low peak sampling with many MS2

segments (for a constant m/z range) (Figure 1a). High peak sampling will provide better quantification

because the true peak area can be better approximated. More MS2 segments will provide better

guantification because the MS2 spectra resulting from a smaller MS2 segment size will be less complex.

Next, we varied the MS1 and MS2 resolutions in the DIA method, while the sampling of the

chromatographic peaks was kept constant at 8 (Figure 1c). In order to balance the varying time needed

for a scan while changing the resolution, the number of MS2 segments was varied (18, 22, 24 and 25 MS2

segments). The MS1 scan resolution did not have a strong impact on identification, reproducibility and

guantitative accuracy (Figure 1d). A resolution of 120,000 was found to perform best, both in terms of

peptide identification and peptides with CVs below 20%. It is noteworthy that in Spectronaut, MS1 scores

influence the overall performance of the analysis. When looking at MS1 instead of MS2 quantification, we
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found that using a resolution of 120,000 over 30,000 improved the number of peptides with CVs below

20% by 16% (Suppl Figure 3).

Next, the MS2 resolution of the DIA method was optimized. Again, the number of MS2 segments was

varied to counter balance the scan time and keep a constant cycle time (6, 11, 24 and 35 MS2 segments,

Figure 1e). The method with 30,000 resolution resulted in optimal performance of peptide identification,

reproducibility and quantitative precision (Figure 1f). The number of MS2 segments in all the DIA methods

tested differed by over 5-fold. Hence, the relative ion current between the different methods also varied

by 5-fold. In order to reach the optimal intra scan dynamic range on a trapping mass spectrometer, it is

beneficial that the desired number of ions is trapped before the maximal fill time is reached. We wanted

to investigate how the DIA method performance relates to the percentage of scans reaching maximal fill

time (Suppl Figure 4). Large DIA segments result in compressed dynamic range and higher complexity on

fragment level but a high resolution, small DIA segments will be undesirable due to lower ion numbers at

reduced resolution. A good balance showed to be in the range of 60% of the DIA segments reaching

maximal fill time with 22 DIA segments of 30,000 resolution.

DIA performance compared to serial acquisition speed of DDA

It is was found that with DDA maximally 20% of the roughly 220,000 detectable peptide features can be

identified in a single run even with the newest generation of instruments available(32, 33). This limit is

mostly the result of the sequential nature of all DDA methods. The theoretical maximum number of MS2

scans can be calculated based on the settings of the DDA method (number of MS2 scans and cycle time)
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and the acquisition duration (see Methods). In real DDA experiments, fewer MS2 scans are acquired than

the theoretical maximum owing to dynamic exclusion of already acquired peaks and the absence of

precursor peaks satisfying the criteria of the DDA method (charge state, intensity threshold, ...).

Furthermore, during data analysis, not every MS2 fragmentation spectrum is identified. The best

identification rates achieved are in the range of 70% for short (30min) and 50% for long gradients (2-

4h)(33).

IM

In contrast to DDA, DIA does not have this serial limitation. The parallel fragmentation in DIA of “al

precursors (restricted by the trapping capacity) potentially enables identification and quantification of all

trapped and fragmented precursors. To compare peptide identification rates, DIA was compared to an

optimized DDA method which is using the fastest MS2 scan speed and was developed by Scheltema and

colleagues (Top15, 60,000 MS1 and 15,000 MS2 resolution)(33). This DDA method displayed the best

reported performance in mammalian samples and was used in studies with deepest proteome coverage

(2, 23). The Hela data of Scheltema and colleagues were used as DDA reference data(33). Scheltema et

al. performed their acquisitions on an analogue setup to the one used in this study (75um x 50cm Reprosil

Pur chromatography coupled to a Q Exactive HF instrument). DIA methods for gradient lengths than other

2h were optimized in a similar manner as described above. A comparison of DIA precursor identifications

to DDA MS2 spectrum numbers and identifications was performed (Figure 2a). Most strikingly, DIA

identifications surpass the theoretical maximal possible number of MS2 spectra that can be acquired on

the Q Exactive HF instrument for up to 2h acquisitions with the optimal DDA method from Scheltema and
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colleagues. Specifically, the precursor identifications were on average 39,921 (30min gradient), 75,212

(1h), 104,021 (1.5h), 117,288 (2h) and 143,159 (4h). DIA results exceeded DDA in terms of peptide

identifications by a factor of 2.8 at 1h to 2.0 at 4h. This demonstrates that DIA not only outperforms DDA

in terms of its actual performance, but also its theoretical maximal performance.

To further demonstrate the potential of DIA, an artificially complex sample was generated by combining

whole cell lysate peptides from H. sapiens (Hela, liver tissue), C. elegans, S. cerevisiae and E. coli (spectral

libraries were generated as described in methods). The targeted analysis of the DIA data resulted in

detection of over four times more peptides and over two fold more proteins than DDA (203,982 peptides

of 15,184 proteins in DIA; 45,812 peptides of 5,964 proteins in DDA) (Figure 2b and c and Suppl Figure 5a

and b).

Two controlled, quantitative experiments with triplicate analysis of two mixed proteome samples (as

above) were performed in block randomization using DIA and DDA. The quantitative data was analyzed

for DDA and DIA (Figure 3 and Suppl Figure 5c to f). For DIA, it revealed the ability to significantly identify

differential abundance at as low as 10% for 982 proteins of C. elegans (of 3118). For the t-test candidate

list (generated by the Spectronaut analysis and filtered by g-value of < 5%), the ground truth (H. sapiens

unchanged; C. elegans, E. coli and S. cerevisiae changed) was used to calculate a FDR (FDR = FP/(TP+FP) of

5.03%. Importantly, this corresponds precisely with the FDR estimation by g-value filtering of the

candidate list in Spectronaut validating the implementation of the g-value calculation in Spectronaut.
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Optimized single shot DIA on a 1m column setup

Label-free proteomics has the advantage of fast sample preparation and scalability to large cohorts of

samples. Sample pre-fractionation in combination with label-free proteomics is problematic because the

number of mass spectrometric acquisitions increases by the factor of fractions per sample. This decreasing

guantitative precision due to irreproducibility (70).

For this reason and motivated by the results above, we wanted to explore the current technical limits of

single shot DIA. For this purpose, the chromatography was improved for 4h acquisitions. The column

length was increased to 1m and the DIA method was optimized. Again, a spectral library was generated

as described before (see Methods). Triplicate DIA of HelLa and HEK-293 was performed. This improved LC-

MS setup resulted in the identification and quantification of 158,105 peptides of 7,560 proteins in HEK-

293 and 156,729 peptides of 7,358 proteins reproducibly identified in the Hela triplicate (improvement

over DIA 50cm setup 10% on peptide and 3% on protein level) (Figure 4a, Suppl Figure 6a). Peptide

identifications with CVs below 20% were 122,429 for HEK-293 and 123,567 for Hela (Figure 4b).

Usage of resource data for targeted analysis of DIA data

Besides the DIA data acquisition, we also wanted to explore the limits of the spectral libraries which are

used for the targeted analysis of DIA data. Different gradients, instruments, sample processing and quality

of LC-MS-DIA data have so far hindered the usability of proteome wide spectral libraries derived from

DDA resources (6, 42, 71). However, recent approaches improving retention time prediction demonstrate

the possibility to use DDA-resource proteome wide spectral library for the targeted analysis of DIA data
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(54, 71)). In order to test the limits of these approach, we generated a spectral library from the data of

the “11 common cell lines” publication, which include Hela and HEK-293(21) using MaxQuant(72) and

Spectronaut (54). In that resource publication, 4h DDA acquisitions were performed on the identical

chromatographic resin as was used for the DIA in this study. The obtained spectral library covered 10,354

proteins and contained 223,700 peptides. Targeted analysis of the 1m 4h DIA resulted in the identification

of on average 99,418 peptides for HEK-293 corresponding to 8,123 protein (82,578 peptides for HeLa of

7,861 proteins) (Figure 4a,Suppl Figure 6a). Peptide identifications with CVs below 20% were 84,922 and

71,952 respectively (Figure 4b). Shared peptides with the project specific spectral show equal quantitative

precision. (Figure 4c, Suppl Figure 6b). To further evaluate the robustness with respect to the source of

spectral libraries, we used the panHuman spectral library published by Rosenberger et al.(59). This

spectral library was generated on a different instrument class, a time of flight mass spectrometer, and

shorter 2h gradients. Targeted analysis of the HEK-293 and Hela data using the pan human spectral library

resulted in a remarkable 7,445 and 6,830 protein identifications respectively (Figure 4a). Peptide

identifications with CVs below 20% were 81,461 and 67,017 respectively (Figure 4b). Again the

guantitative precision was similar to the other experiments (Figure 4c, Suppl Figure 6b). Global protein

identification analysis of the 4h DIA showed that 7,199 proteins were shared across all spectral libraries

in HEK-293 (6,537 for HelLa) which is consistent with a low protein FDR. Importantly, the CVs of proteins

were in all cases lower than the CVs for peptides, the lowest protein CVs were recorded for the project

specific spectral library analysis (Figure 4d).
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The performance of a proteome scale resource spectral library was further evaluated on a tissue sample.

447 published mouse sample DDA runs (brain and liver tissues) from Sharma et al. (2) and Azimifar et al.

(23) were used to generate a spectral library comprising 13,505 mouse proteins. DIA of a murine

cerebellum sample was performed as before and targeted data analysis done using the resource derived

spectral library (Figure 4e). In a single 4h acquisition 9,061 proteins and cumulatively in triplicate DIA

10,058 proteins were identified. The median CV was 13% for 113,257 peptides (Figure 4f).

Somatosensory cortex 1 barrel field profiling

As a demonstration of the application of parallel MS analysis, we undertook a study of changes to mouse

brain tissue during sensory development. The behavioral adaptation of mammals to environmental

alterations underlines neuronal changes in different brain regions at structural, molecular and functional

levels. A prime example in the sensory system is the primary somatosensory cortex of mice (S1), and in

particular the whisker-to-barrel system, which is an established model for characterizing plasticity in

cortical development and influence of sensory inputs in this process. However, the longitudinal and

system-wide view of the changes in protein networks during neuronal development is uncharacterized.

To investigate changes in the abundance of large-protein networks before and after the critical period for

whisker experience-induced synaptic strength (postnatal days 10 to 14, P10-P14(73)), samples of the

mouse S1BF were dissected at P9, P15, P30 and P54.

For the DIA profiling, the samples were prepared in sample preparation replicates and acquired using 2h

single shot measurements in a block randomized manner. Targeted analysis of the DIA data resulted in
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the quantification of 6,069 proteins with 94% data set completeness across all four stages (Figure 5a and

Suppl Figure 7a, spectral library see methods). The median CVs of the condition replicates were below

15% and the protein CVs lower than the peptide CVs (Suppl Figure 7b). Unsupervised clustering clearly

separated the critical periods of whisker experience-induced synaptic strength (Figure 5b). A principal

component analysis showed, that the principal component 1 explained 52.2% of the variance and the time

points align in the correct order (Suppl Figure 7c). A pairwise statistical testing based on t-tests was

performed (S1BF -comparison.xIsx). Fuzzy c-means clustering of the significantly differential abundant

proteins was performed and resulted in six distinct clusters, three with upregulation and three with

downregulation of protein expression (Figure 5c).

As expected, synaptic transmission related proteins displayed an acute increased in expression from P9

to P15 reaching a plateau afterwards. A more linear increase of expression over the whole development

time was detected for proteins of the mitochondrial respiratory chain and for proteins for cytokine

stimulus. Conversely, a reduced expression was detected for proteins related to axon genesis, RNA splicing

or UBL conjugation processes. These differences serve as molecular portraits of the particular

requirements at the functional, energetic and structural levels during this developmental period(74, 75) .

At the level of specific candidates, synaptic proteins significantly regulated during normal development

represent attractive candidates. Interestingly, our data partially correlate with previous findings occurring

during sensory deprivation in mouse barrel cortex (67) - proteins such as SynGAp1 or GluA1l (reported to
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play a key role in axonal outgrowth during development(76) and synaptic plasticity(77) respectively) are

down-regulated during deprivation and up-regulated during normal development (Suppl Figure 7d). PSD-

95 and gephyrin showed increased expression in development, but no significant change during

deprivation. A comparative pathway analysis confirmed key neuronal functions to be differentially

regulated in these two distinct scenarios (e.g. glutamate receptor signaling, synaptic long term

potentiation) (Figure 5d).

In addition, we characterized the longitudinal changes in the phosphorylation status for 234 proteins in

this DIA profiling. Fuzzy c-means clustering analysis was performed and clusters detected (Suppl Figure

7d, S1BF -phospho-comparison.xlsx). Our results indicate known neuronal proteins showing both a dual

regulation (abundance and phosphorylation; e.g. Marcksl1l) as well as only changed at the post-

translational level (e.g. Map2, Lamtor 1, Tight junction protein ZO-1) (Suppl Figure 7e).

To confirm that high quality of profiling studies can be performed with resource spectral libraries, the

S1BF DIA data were analyzed using the spectral library from mouse resource data (described above). The

approach profiled over 8,000 proteins with high reproducibility and quantitative precision (Suppl Figure

8a - d). The protein identifications were 20% higher than with the project specific spectral library at about

15% lower peptide identifications. Fuzzy c-means clustering resulted in an analogue set of 6 distinct

clusters as with the project specific spectral library (Suppl Figure 8e). Comparison of the differential

abundant proteins resulted in an overlap of 1,031 proteins from 1,396 candidates using the resource
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spectral library and 1,419 from the project spectral library analysis. Correlation analysis of the candidates

demonstrated that 95% of the candidates differ in less than 10% for the ratio of comparisons (Suppl Figure

8f).

Discussion

We introduce a simple framework to optimize DIA methods and show what is achievable with single shot

DIA discovery proteomics using current instrumentation. The demonstrated improvements are based on

the implementation of improvements in scan resolution, chromatography, spectral library and data

analysis. Our data show that roughly 50% of a cell line or tissue proteome can be quantified consistently

across samples run at a frequency of approximately 10 per day and instrument. The approach features

simple sample preparation and an experiment is linearly scalable since no limited sample mixing or (gas

phase) fractionation is applied (6). We expect this not only to be relevant to industrial and academic

research but also in clinical research.

Remarkably, we found that single shot DIA is able to quantify more peptides than state of the art DDA

methods can theoretically acquire. Practically, DIA identified twice as many peptides as the best DDA data

available, and in a sample of four mixed proteomes four time as many. This shows that DIA is particularly

suited to very complex samples. In contrast to the MS1 alignment in MaxQuant that has no FDR control,

the FDR in our DIA analysis is controlled at 1% and no alignment was performed (50). In human cell lines,

we could quantify more than 7,500 proteins corresponding to 70% of all detectable peptide features in
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an MS1 map or 158’000 out of 220°000(33). In tissue more than 9,000 proteins could be quantified with

a single shot. This corresponds to roughly 60% of the estimated expressed proteome for human cell lines

and tissue(2, 78). On the protein level the number of missing values was 2.5% and median CVs were in

the range of 5% confirming the high reproducibility and quantitative precision from our previous

study(42). Despite the four-fold higher resolution of the MS1 scan, the CVs were in median 61% higher

than in MS2 quantification (5.5% vs 8.8% CV). Interferences on MS1 are likely to affect multiple members

of an isotopic envelope equally.

The DIA data reached a level where proteome scale resource spectral libraries performed in DIA with high

coverage, reproducibility and quantitative precision. When compared to the project specific library, the

coverage was almost identical on protein level and roughly 30% reduced on peptide level. Hence, the

performance of proteome scale resource spectral libraries still lags behind extensive project specific

spectral libraries. However, when compared to the best available DDA data, the coverage was 40%

higher(33). Further, resource spectral libraries have the advantage that no extra project specific spectral

library has to be generated. It is worth mentioning that the larger “search space” of the resource spectral

libraries also bears the risk of an increased protein FDR. An investigation of overlapping proteins identified

with the different spectral libraries did not indicate this to be dominating issue. This effect should be more

closely examined in the future. To show the power of single shot DIA in a realistic experiment, we profiled

a set of twelve samples representing four stages of mouse S1BF development to a depth of 6,000 proteins

within one and a half days of LC-MS time. In this profiling, we could directly observe phospho sites of 200
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proteins without performing phospho enrichment. The profiling of phosphorylated peptides in the

background of the unmodified peptides enabled direct observation of phosphorylation status during the

development.

As with computing and genomics, parallel processing is the convention nowadays. Similarly LC-MS is

heading into the same direction: in every fragment ion scan on average 12-17 peptides are quantified with

single shot DIA (1-4h). Improvements in instrumentation might enable further parallelization of ion

processing pushing the boundaries of what'’s possible today.
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Figure 1: Systematic optimization of the DIA method on a Q Exactive HF instrument using a Hela lysate

and 2h gradients. Triplicate analyses of a Hela digests for DIA method development were performed. (a)

[llustration of the relationship of data points per peak and number of DIA-MS2 segments at constant MS1

and MS2 resolutions. Relative axis were used. (b) The average identifications of triplicate DIA and the

number of peptides CVs below defined thresholds were calculated. (c) lllustration of the relationship of

the number of DIA-MS2 segments at different MS1 resolutions maintaining a constant cycle time. Relative

axis were used. (d) The average identifications of triplicate DIA and the number of peptides CVs below

defined thresholds were calculated. (e) lllustration of the relationship of the number DIA-MS2 segments

at different MS2 resolutions maintaining a constant cycle time. Relative axis were used. (f) The average

identifications of triplicate DIA and the number of peptides CVs below defined thresholds were calculated.

The error bars display the standard deviations. The asterisk indicates the highest number of peptides with

CV below 20%.

Figure 2: Parallel acquisition and targeted identification of DIA surpasses serial acquisition of DDA. (a)

The identifications and MS2 spectrum acquisitions were compared a different gradient lengths for a Hela

lysate. The DIA method was optimized for different gradient lengths and the identifications were

calculated from a triplicate analysis (red). The error bars show standard deviations. The theoretical

maximal number of MS2 spectra was calculated for a Topl5 method (gray, see methods). For DDA,

empirically derived MS2 spectra (light blue) and number of identifications (dark blue) were taken from
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Sheltema et al. (b) A mixed-organism sample was recorded in DIA mode and DDA using a 4h gradient. The

peptide and stripped sequence identifications of the DIA single shots were calculated. (c) The protein

identifications were calculated for the mixed-organism acquisitions.

Figure 3: Controlled quantitative experiment Box plot visualization of percent change (based on MS1 and
MS2 quantification for DIA and MS1 for DDA) of all identified proteins of the low fold change two sample
mixed proteome experiment (comparison S2/S1 for H. sapiens, C. elegans and S. cerevisiae and S1/S2 for
E. coli). Only overlapping identifications are shown. The theoretical fold changes are indicated for the

organisms.

Figure 4: 4h single shot maximized DIA on 1m column setup (a) Triplicate DIA of HeLa and HEK-293 lysate

were recorded using a Im*75um column with Reprosil Pur chromatography with 4ug loading using a 4h

gradient. The targeted analysis of the DIA was performed using three spectral libraries: a project specific,

a library generated from the MS data of the published repository (11 common cell lines, see methods)

and the panHuman spectral library of Rosenberger et al. The average protein identifications were

calculated. (b) The average peptide identifications of a DIA triplicate analysis of HeLa and the number of

peptides CVs below defined thresholds were calculated. (c) The CVs of the triplicate DIA was calculated

for 52,339 shared peptides and medians were visualized. (d) The CVs on peptide and protein level were

calculated for the three analyses. Lowest median indicated by the dotted line (HEK-293 project specific).

(e) Triplicate DIAs was performed using a murine cerebellum lysate and targeted analysis was performed

using a spectral library generated from the MS data of two published repositories (see methods).
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Cumulative and shared protein identifications were calculated. (f) The CVs of the triplicate DIA was

calculated for 113,257 shared peptides. The error bars display the standard deviations.

Figure 5: S1BF sensory development proteome profiling (a) Four important stages of sensory

development of the mouse perinatal period were profiled in the S1BF using block randomized

DIA and a project specific spectral library. The average protein identifications were plotted

for the individual developmental stages with standard deviations. (b) For exploratory data

analysis, a heat map based on normalized intensities was generated using unsupervised

clustering. (c) Fuzzy c-means clustering analysis was performed and visualized with enriched

GO terms. The black line in the membership bar shows the threshold above which proteins

belong to the cluster. (d) IPA Pathway activation comparison of the S1BF with normal sensory

development and a study with sensory deprivation by postnatal bilateral whisker trimming

(Butko et al., 2012). Blue color indicates pathway inactivation and orange activation.

35/40

020z ‘T 4800100 U0 159n6 Aq H10duluodow mmm//:sdiy wouy papeojumoq


https://www.mcponline.org

Parallelization of identification and quantification using DIA

Figures and legends

a Data points per peak C Data points per peak
MS2 MS2
iecoliition DIA segments vasolitioh DIA segments
Dat: int:
Z:r%%'{.‘ks MS1 resolution
= 14 240,000
11 120,000
Ms1 e Ms1 = 60,000
resolution =5 resolution = 30,000
b Peptide identifications d Peptide identifications
80,000 80,000

Count

*
*
60,000
40,000
I 20,000
0
8 11 14

30,000 60,000 120,000
MS1 resolutions

M cv<20% M Cv<10%

240,000

.. 60,000
=3
3

3 40,000

20,000

0

5
Datapoints per peak

O all W cv<20% M Ccv<10% Oall

Figure 1

Count

Ms2

resolution

80,000
60,000

40,000

20,000

Data points per peak

MsS1
resolution

Peptide identifications

I
15000 30,000 60,000

MS2 resolutions
Oall M cv<20% W

DIA segments

MS2 resolution

= 120,000

60,000
= 30,000
= 15,000

120,000

CV<10%

36/40

020z ‘T 4800100 U0 159n6 Aq H10duluodow mmm//:sdiy wouy papeojumoq


https://www.mcponline.org

Parallelization of identification and quantification using DIA

MS2 spectra / peptides identified

Figure 2

250,000

200,000

150,000

100,000

50,000

= HRM-DIA peptides identified
DDA MS2 spectra theoretical

b

----- DDA MS2 spectra acquired (Scheltema et al.)

- DDA peptides identified (Scheltema et al.)

Gradient length (h)

Count

250,000

200,000

150,000

100,000

50,000 4

EHRM-DIA
EDDA

Peptides

Stripped
sequences

Proteins identified

16,000
14,000
12,000
10,000

8,000

6,000 o

4,000

2,000

EHRM-DIA
@EDDA

37/40

020z ‘T 4800100 U0 159n6 Aq H10duluodow mmm//:sdiy wouy papeojumoq


https://www.mcponline.org

Parallelization of identification and quantification using DIA

theoretical

50

40

304 fe— — — e e — | — f—

20 4= fe— — —t e o— — = 3

Change (%)

|
DIA DIA DDA DIA DIA DDA DIA DIA DDA
MS1 MS2 MS1 MS1  MS2 MS1 MS1 MS2 M$1

DIA DIA DDA
MS1  MS2 MS1

H. sapiens C. elegans S. cerevisiae

Figure 3

E. coli

38/40

020z ‘T 4800100 U0 159n6 Aq H10duluodow mmm//:sdiy wouy papeojumoq


https://www.mcponline.org

Parallelization of identification and quantification using DIA

8,000 -

Proteins identified

6,000 -

4,000 A

2,000 -

Coefficient of variation (median, %)

€ 12000
10,000
8,000
6,000

4,000

Protein idenBficallons

2,000

Figure 4

8 -

5
@

=

5
z

HEK-293
HEK-293
HEK-293

Hela

Project specific 11celllines panHuman

Spectral library
52,339 shared peptides

m [aad m
g 3 8 3 8§ 3

1 =z 1 =z 1 z
b4 4 4
w w i
T b= b=

Project specific 11celllines  panHuman

Spectral library

M cumulative identifications
O shared identifications

1]

Cerebellum DIA replicates

Count

Coefficient of variation (%)

Coefficient of variation (%)

180,000 A Peptide identifications
Oal H Cv<20% [ Cv<10%
160,000 = o
140,000
120,000
100,000
80,000 4
60,000
40,000 4
20,000
o4 L L
HEK-293 Hela HEK-293 Hela HEK-293 Hela
Project specific 11 cell lines panHuman
Spectral library
30 O peptide @ Protein
25 1
20
15 1
10 1
5 4
] T T T T T T T T T T g T
HEK-293 Hela HEK-293 Hela HEK-293 Hela
Project specific 11 cell lines panHuman
Spectral library

113,257 peptide
precursors
60

39/40

020z ‘T 4800100 U0 159n6 Aq H10duluodow mmm//:sdiy wouy papeojumoq


https://www.mcponline.org

Parallelization of identification and quantification using DIA
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