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to co-isolation interference and we note that the issue has been reduced, though not completely 

eliminated, with newer generation Orbitrap MS instruments, where the improved source has 

enhanced the signal to noise ratio(34). Furthermore new isobaric tagging methods have been 

developed which claim to be co-isolation free(42), however their multiplexing capability is 

currently limited to a 6-plex. 

Furthermore, we used the previously mentioned Y chromosome peptides to study the different 

reporter ion interference (RII) conditions across 21 different 10-plex TMT batches with 

different number of male and female derived cell lines, as well as different channel 

combinations. The data highlighted the effects of primary (male channel isotopic 

contamination into a +1Da female channel), secondary (male channel isotopic contamination 

into a -1Da female channel). Reporter channels affected by both primary and secondary 

reporter ion interference showed a median signal increase in high intensity peptides of 1.7-fold 

compared to channels not subjected to reporter ion interference. This was found to be primarily 

caused by “primary RII” as the data also showed that “secondary RII” had the smallest effect 

with only a median 1.02-fold increase compared to channels with no reporter ion interference. 

To best avoid the effects of reporter ion interference, we have used these data to propose 

optimised experimental set ups for assigning samples to specific channels that can either 

minimize, or eliminate (when possible), the effect of primary and secondary reporter ion 

interference between conditions/populations. Nonetheless, we highlight again that mixing 

significantly different populations within a TMT batch, for example iPSCs and terminally 

differentiated somatic cells, will introduce false positives within the data, as illustrated here by 

the Y chromosome-specific peptides detected within all female cell lines. 

For such large-scale experiments it is also vital to have strict quality control (QC) procedures 

in place to evaluate and maintain a constant performance within the instrument/s. In our case 

one of the TMT batches (PT6388) revealed poor performance in the QC run (see supplemental 
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figures). The failed QC run was not detected until after the samples were run, producing poor 

results within that batch. We therefore recommend that to execute large-scale TMT a rigorous 

QC procedure should be set in place before the start of the experiment. 

In conclusion, TMT is a valuable methodology for DDA analysis and its potential to increase 

scalability and precise quantitation have made it a justifiably popular approach for high-

throughput proteomic studies. Here, we have provided an in-depth, practical evaluation of 

parameters affecting the generation of high-quality quantitative data from very large-scale 

TMT-based proteomics analyses, and we highlight some of the limitations which should be 

carefully considered when planning these experiments. We hope the resulting information will 

prove useful for improving experimental design and resulting data quality for many future 

proteomics projects. 
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Figure legends 
Figure 1 – Protein and peptide missing values: (a) Percentage of missing values for each TMT batch 

calculated at the protein level. (b) Percentage of missing values for each TMT batch calculated at the peptide 

level.  (c) Box plot showing the results for protein missing values as a function of the number of 10-plex TMT 

batches (see methods). (d) Box plot showing the results for peptide missing values as a function of the number 

of 10-plex TMT batches (see methods). For both c & d the lower and upper hinges represent the 1st and 3rd 

quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the 

hinge, the lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge 

 
 
Figure 2 – Peptide identifications and intensities: (a) Number of peptides identified with MS3 intensity greater 

than zero in all TMT channels, coloured by TMT batch. (b) Histogram of the median normalised peptide intensity 

(see methods). (c) Stacked density plot showing peptides grouped by median normalised peptide intensity 

quartiles and their percentage of detection across all TMT channels. (d) Stacked density plot showing quartiles of 

identification rates for each peptide and their corresponding log10 normalised MS3 intensity. 

 

Figure 3 – Variation: (a) Box plots showing the protein copy number coefficient of variation for all proteins 

detected in each 10-plex TMT batch as well as all proteins detected in all the reference line replicates (TMT 

channel 126C in all batches). (b) Box plots showing the protein copy numbers of the 100 most abundant proteins 

with a coefficient of variation greater than or equal to 7.5 across all  reference line replicates (TMT channel 126C 

in all batches). For both boxplots the lower and upper hinges represent the 1st and 3rd quartiles. The upper whisker 

extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, the lower whisker extends 

from the hinge to the smallest value at most 1.5 * IQR of the hinge  

 
Figure 4 – Y chromosome peptides in female channels: Scatter plot showing the gender/incidence of false 

positives across 21 TMT batches and their reporter ion mass tags. Male cell lines are shown as a grey square, 

female cell lines are represented by a circle. The female lines (circles) are shaded to indicate the percentage of Y 

chromosome specific peptides that were detected in their channel within each TMT batch. 
 
Figure 5 – TMT channel leakage analysis: (a) Box plot showing the median normalised intensity of Y 

chromosome specific peptides for both female and male cell lines across 21 TMT batches. (b) Box plot of ratios 

for Y chromosome specific peptides, comparing male channels vs female channels affected by different reporter 

ion interference type.  (c) Box plot of ratios for Y chromosome specific peptides, stratified by the median 

normalised intensity, comparing female channels affected by different types of reporter ion interference vs female 

channels not subjected to reporter ion interference. For all 3 boxplots the lower and upper hinges represent the 1st 

and 3rd quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from 

the hinge, the lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge 
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Figure 6 –TMT experimental design from reporter ion interference analysis: (a) 5-5 grouped layout for a 10-

plex TMT batch with 5 replicates of two conditions. Two channels are being affected by cross population primary 

and secondary reporter ion interference. (b) optimal layout for a 10-plex TMT batch with 5 replicates of two 

conditions with no cross population primary or secondary reporter ion interference. (c) optimal 11-plex 

configuration for 3 populations with two empty channels, no channels suffer cross population reporter ion 

interference. (d) optimal 11-plex configuration for 3 populations with one empty channel and one control channel. 

Only two channel suffers primary and secondary reporter ion interference. 
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Figure 3: 
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Figure 4: 
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Figure 5: 

 
 

Figure 6: 
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