x
Filter:
Filters applied
- Reviews
- false discovery rateRemove false discovery rate filter
Publication Date
Please choose a date range between 2021 and 2022.
Reviews & Perspectives
5 Results
- ReviewOpen Access
Deciphering Spatial Protein–Protein Interactions in Brain Using Proximity Labeling
Molecular & Cellular ProteomicsVol. 21Issue 11100422Published online: October 2, 2022- Boby Mathew
- Shveta Bathla
- Kenneth R. Williams
- Angus C. Nairn
Cited in Scopus: 0In Brief PL has emerged as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and protein–protein interaction networks in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. Here, we review recent advances in PL methods and their application to neurobiology. - Perspective Special Issue: ImmunopeptidomicsOpen Access
Are There Indeed Spliced Peptides in the Immunopeptidome?
Molecular & Cellular ProteomicsVol. 20100099Published online: May 19, 2021- Arie Admon
Cited in Scopus: 0In Brief Peptide splicing was suggested to significantly contribute ligands to the immunopeptidome. This article argues that peptide splicing is at most very rare, even if it happens at all. Considerations against peptide splicing are based on bioinformatics calculations related to the analysis of the LC-MS/MS data, and on the abundance of water in the cells, which should compete effectively with the transpeptidation reaction, needed for peptide splicing. - Review Special Issue: GlycoproteomicsOpen Access
Recent Advances in Software Tools for More Generic and Precise Intact Glycopeptide Analysis
Molecular & Cellular ProteomicsVol. 20100060Published online: February 5, 2021- Weiqian Cao
- Mingqi Liu
- Siyuan Kong
- Mengxi Wu
- Yang Zhang
- Pengyuan Yang
Cited in Scopus: 0In Brief This article provides a systematic review of the most recent MS-based strategies and corresponding software tools for the analysis of intact glycopeptides, particularly intact N-glycopeptides, reported in the last decade, including the process of identifying N-glycopeptides from MS data, the existing methods of MS data acquisition and interpretation, the quality control methods, the display of results, and the software applications. - Review Special Issue: GlycoproteomicsOpen Access
The Role of Data-Independent Acquisition for Glycoproteomics
Molecular & Cellular ProteomicsVol. 20100042Published online: January 6, 2021- Zilu Ye
- Sergey Y. Vakhrushev
Cited in Scopus: 0In Brief As a highly abundant and diverse post-translational modification, protein glycosylation is challenging to characterize in various approaches including MS. In MS-based proteomics, data-independent acquisition (DIA) has been advanced rapidly and showed outstanding analytical performances. DIA now started to be applied in different facets of glycoproteomics, including deglycosylated and intact N-linked and O-linked glycopeptides, and screening of oxonium ions. We summarized current applications of DIA in glycoproteomics and discussed its limitations and perspectives. - Review Special Issue: GlycoproteomicsOpen Access
Calculating Glycoprotein Similarities From Mass Spectrometric Data
Molecular & Cellular ProteomicsVol. 20100028Published online: January 5, 2021- William E. Hackett
- Joseph Zaia
Cited in Scopus: 0In Brief To understand the roles of glycoproteins in biological processes, it is necessary to quantify the changes that occur to glycosylation at individual sites and to the whole molecule. That glycoprotein glycosylation is inherently heterogeneous means that the distribution of glycoforms at each glycosite must be quantified in order to inform calculation of molecular similarities. We review analytical and statistical methods for determining glycoprotein molecular similarities from glycoproteomics data.